Cellular Wireless Networks

Cellular Network Organization

- Use multiple low-power transmitters (100 W or less)
- Areas divided into cells
 - Each served by its own antenna
 - Served by base station consisting of transmitter, receiver, and control unit
 - Band of frequencies allocated
 - Cells set up such that antennas of all neighbors are equidistant (hexagonal pattern)

Cellular Network Organization

Adjacent Cells are assigned different frequencies

Reuse of radio channel in different cells.

Enable a fix number of channels to serve an arbitrarily large number of users by reusing the channel

Cellular Concepts

Advantages:

- -higher capacity, higher number of users
- less transmission power needed more robust, decentralized
- -base station deals with interference, transmission area etc. locally

Problems:

- -fixed network needed for the base stations
- -handover (changing from one cell to another) necessary
- -interference with other cells: co-channel, adjacent-channel

• Important Issues:

- Cell sizing
- Frequency reuse planning
- Channel allocation strategies

Possible cell structures

Shape of Cells

Circle

 Circular shaped cells would leave out few spaces without any coverage.

Square

- Width d cell has four neighbours at distance d and four at distance $\sqrt{2} d$
- · Better if all adjacent antennas equidistant
 - Simplifies choosing and switching to new antenna

Shape of Cells

Hexagon

Provides equidistant antennas

Radius defined as radius of circumscribing circle

Distance from center to vertex equals length of side

Distance between centers of cells radius R is $\sqrt{3}$ R

- Not always precise hexagons
 - Topographical limitations
 - Local signal propagation conditions
 - Location of antennas

Cellular Geometries

(a) Square pattern

(b) Hexagonal pattern

Types of cells

- Macro cell their coverage is large (aprox. 6 miles in diameter); used in remote areas, high-power transmitters and receivers are used
- Microcell their coverage is small (half a mile in diameter) and are used in urban zones; low-powered transmitters and receivers are used to avoid interference with cells in another clusters
- Pico cell covers areas such as building or a tunnel

Typical Parameters for Macrocells and Microcells

Parameters	Macrocell	Microcell
Cell radius	1 to 20 km	0.1 to 1 km
Transmission power	1 to 10 W	0.1 to 1 W
Average Delay Spread	0.1 to 10 microsec	10 to 100 nsec
Maximum bit rate	0.3 Mbps	1 Mbps

Frequency Reuse

- Adjacent cells assigned different frequencies to avoid interference or crosstalk
- Objective is to reuse frequency in nearby cells
 - Each cell is assigned a frequency band.
 - Transmission power is controlled to limit power at that frequency escaping to adjacent cells
 - The issue is to determine how many cells must intervene between two cells using the same frequency
- A <u>cluster</u> is a group of adjacent cells where no frequency reuse is done
- The frequency spectrum is divided into sub bands and each sub band is used within one cell of the cluster

Frequency Reuse

- Power of base transceiver controlled
 - Allow communications within cell on given frequency
 - Limit escaping power to adjacent cells
 - Allow re-use of frequencies in nearby cells
 - Use same frequency for multiple conversations
- *E.g.*
 - N cells all using same number of frequencies
 - K total number of frequencies used in systems
 - Each cell has K/N frequencies
 - Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

Characterizing Frequency Reuse

- D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- R = radius of a cell
- d = distance between centers of adjacent cells (d = $\sqrt{3}$ R)
- N = number of cells in repetitious pattern

Reuse factor

Each cell in pattern uses unique band of frequencies

- Hexagonal cell pattern, following values of N possible
 - $N = I^2 + J^2 + (I \times J)$, I, J = 0, 1, 2, 3, ...
- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- D/R = $\sqrt{3}N$
- D/d = \sqrt{N}

Frequency Reuse Patterns

- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7

(c) Black cells indicate a frequency reuse for N = 19

Frequency Reuse Example

48 channels per cell in both cases. Area in both cases is 213 sq. km Figure a has 32 cells giving 1536 channels, b has 128 cells, 6144 channels