
C# Fundamentals

Part 2

1

Classes

&

Objects

2

Classes:

 Classes are essentially templates from which you create objects.

 In C# .NET programming, everything you deal with involves classes and objects.

 The syntax of a class definition is:

< access_modifiers > class Class_Name

{

//--- Fields, properties, methods, and events ---

}

Using Partial Classes

Instead of defining an entire class by using the class keyword, you can split the definition
into multiple classes by using the partial keyword.

3

Creating an instance of the class:

To instantiate the Contact class defined earlier, you first create a variable of type
Contact :

Contact contact1;

Then instantiate it:

contact1 = new Contact();

Once instantiated we can assign values to variables defined in it.
contact1.ID = 12;

contact1.FirstName = “Wei-Meng”;

contact1.LastName = “Lee”;

contact1.Email = “weimenglee@learn2develop.net”;

You can also assign an object to an object, like the following:
Contact contact1 = new Contact();

Contact contact2 = contact1;

In these statements, contact2 and contact1 are now both pointing to the same
object. Any changes made to one object will be reflected in the other object.

4

Anonymous types:

Anonymous types enable you to define data types without having to formally
define a class.

5

Class Members:
Instance Members

Static Members

Note**: Constants defined within a class are implicitly(by default) static

Access Modifiers:

C# has five access modifiers — private , public , protected , internal and protected
internal .

6

Inheritance
Inheritance is a property of OOPs in which the features

and behavior of a class are derived from another class.
The class whose members are inherited is called the base

class.
The class which inherits the members from the base class

is called the derived class.

Types of inheritance:-
ÅSingle Inheritance
ÅMulti-level inheritance
ÅHierarchical inheritance
ÅHybrid inheritance
ÅMultipath inheritance (not supported in C#)
ÅMultiple inheritance (interfaces)

7

Inheritance

 Inheritance facilitates code reuse and allows you to extend the functionality of
code that you have already written.

 In object - oriented programming, inheritance is classified into two types:
implementation and interface.

 Implementation Inheritance:
Implementation inheritance is when a class derives from another base class, inheriting all the
base class ’ s members

8

 C# supports only single - class inheritance

 If you do not specify the base class, the C# compiler assumes that it is inheriting
from the System.Object class

9

Inheritance

ÅSingle Inheritance – when there is only one
base class and one derived class.

10

Base Class

Derived Class

Inheritance

ÅMultilevel Inheritance – when a derived class
becomes the base class to another derived
class.

11

Base Class

Derived Class

Derived Class

Inheritance

ÅHierarchical Inheritance – when more than
one derived class is inherited from a single
base class.

12

Base Class

Class B Class C Class D

Inheritance

ÅHybrid Inheritance – combination of two or
more inheritance (single, multilevel,
hierarchical)

13

Base Class

Class B Class C Class D

Class B Class B Class B

Inheritance

ÅMultiple Inheritance – only multiple
inheritance of interfaces are supported.

14

Interface A Interface B

Class

Access Modifiers
Åprivate – highest restrictions. Access is limited

only to the containing class.

Åprotected – access is limited to the containing
class and its derived class.

ÅInternal – access is limited to the containing
assembly.

Åprotected internal – access is limited to the
containing assembly and derived classes in
other assembly.

ÅPublic – lowest restrictions. Access is not
restricted.

15

Function Members:

Methods

Properties

Events

Indexers

User - defined operators

Constructors

Destructors

Method Syntax:

A Method must be associated with a class.

16

Passing arguments to a method:

Call by value:

Let the function is:
public int AddNumbers(int x, int y)

{

x++;

y++;

return x + y;

}

Then in the calling block

int num1 = 4, num2 = 5;

Console.WriteLine(AddNumbers(num1, num2));

Console.WriteLine(num1,num2);

17

Call by reference: (either use ref or out keyword)

Because C# functions can only return single values, passing arguments by
reference is useful when you need a method to return multiple values.

ref

In the definition of function:
public int AddNumbers(ref int x, ref int y)

{

x++;

y++;

return x + y;

}

While calling:

int num1 = 4, num2 = 5;

Console.WriteLine(AddNumbers(ref num1, ref num2));

Console.WriteLine(num1,num2);

Note**: The ref keyword requires that all the variables be initialized first.

18

Out

If your intention is to use the variables solely to obtain some return values from
the method, you can use the out keyword.

It is identical to the ref keyword except that it does not require the variables

passed in to be initialized first.

For function definition:
public void GetDate(out int day, out int month, out int year)

{

day = DateTime.Now.Day;

month = DateTime.Now.Month;

year = DateTime.Now.Year;

}

 in the calling method:
int day, month, year;

GetDate(out day, out month, out year);

 Note**: the out parameter in a function must be assigned a value before the
function returns. If it isn ’ t, a compiler error results.

19

this keyword: The this keyword refers to the current instance of an object

(It is used to implement the Operator Overloading)

20

Properties: Properties are function members that provide an easy way to read or
write the values of private data members.

Consider following example:

class Student

{

public string name;

public int age;

}

Now you can create a student object and set its public data members as,

Student s = new Student();

s.name=“Ajay Sawant”;

s.age=99;

Technically, the assignment to age variable is valid, but logically it should not be
allowed.

A solution to this is to use properties.

21

The Student class can be re-written as:
class Student

{

string name;

int age;

public int Age

{

get {

return(age);

}

set

age=value;

}

}

public string Name

{

get{

return(name);

}

set{

name=value;

}

}

}
22

The set accessor sets the value.

The get accessor returns the value.

Now to implement the student age constraint we can write:
public int Age

{

get {

return(age);

}

set{

if (value<50 && value>6)

age=value;

else

age=0;

}

}

23

Read Only and Write Only properties:

When a property has both get and set accessor  read- write property

When a property has get but not set accessor  read- Only property

When a property has set but not get accessor  write- Only property

(Write-Only properties are generally never used)

24

 Automatic Properties:

In C# you can shorten those properties that have no filtering (checking) rules by
using a feature known as automatic properties .

25

Now there ’ s no need for you to define private members to store the values of
the properties.

Compiler automatically generates the private variables in this case.

If you decide to add filtering rules to the properties later, you can simply
implement the set and get accessor of each property.

To restrict the visibility of the get and set accessor when using the automatic
properties feature, you simply prefix the get or set accessor with the private
keyword, like this:

public string FirstName {get; private set;}

This statement sets the FirstName property as read - only.

26

Constructors
ÅA special method of the class that will be

automatically invoked when an instance of the
class is created is called a constructor.

ÅThe main use of constructors is to initialize
private fields of the class while creating an
instance for the class.

27

Constructors
Types of constructors:-

ÅDefault Constructor

ÅParameterized Constructor

ÅCopy Constructor

ÅStatic Constructor

ÅPrivate Constructor

28

Constructors
ÅDefault Constructor – constructors with no parameters
ÅParameterized Constructor - A constructor with at least one

parameter
ÅCopy Constructor - The constructor which creates an object

by copying variables from another object. Basically, it take
the object of the same class as a parameter.

ÅStatic Constructor - When a constructor is created as static,
it will be invoked only once for all of instances of the class
and it is invoked during the creation of the first instance of
the class or the first reference to a static member in the
class. A static constructor is used to initialize static fields of
the class and to write the code that needs to be executed
only once.

ÅPrivate Constructor - When a constructor is created with a
private specifier, it is not possible for other classes to derive
from this class, neither is it possible to create an instance
of this class. They are usually used in classes that contain
static members only. 29

Inheritance and Constructors

Remember that if a base class contains constructors, one of them must be a
default constructor.

 Suppose BaseClass contains two constructors — one default and one
parameterized: And DerivedClass contains one default constructor:

You can choose which constructor you want to invoke in BaseClass by using the
base keyword in the default constructor in DerivedClass , like this:

30

Constructors:

Static Constructors

A static constructor does not take access modifiers or have parameters.

A static constructor is called automatically to initialize the class before the first
instance is created or any static members are referenced.

A static constructor cannot be called directly.

The user has no control on when the static constructor is executed in the
program.

31

Static constructor to count no of Objects created for a class:

32

Copy Constructor:

The C# language does not provide a copy constructor that allows you to copy the
value of an existing object into a new object when it is created.

Instead, you have to write your own.

33

34

Private Constructor
ÅA class with a private constructor cannot be

inherited.

ÅAn object of this class cannot be created until
there is a parameterized constructor.

ÅPrivate constructors are used to put utility
methods inside the class and to call those
methods directly without creating instances.

36

Private Constructor

37

System.Object Class:

 In C#, all classes inherit from the System.Object base class.

 This means that all classes contain the methods defined in the System.Object
class.

 All class definitions that do not inherit from other classes by default inherit
directly from the System .Object class.

38

Methods of System.Object class:

Equals() —

 Checks whether the value of the current object is equal to that of another
object.

 By default, the Equals() method checks for reference equality (that is, if two
objects are pointing to the same object). You should override this method for your
class.

GetHashCode() —

 Returns a hash code for the class. The GetHashCode() method is suitable for use
in hashing algorithms and data structures, such as a hash table.

GetType() —

 Returns the type of the current object

ToString() —

 Returns the string representation of an object 39

Structures

Structures:

An alternative to using classes is to use a struct.

A struct is a lightweight user - defined type that is very similar to a class, but with
some exceptions:

 Structs do not support inheritance or destructors.

 A struct is a value type (class is a reference type).

 A struct cannot declare a default constructor.

 structs are allocated memory on stack.

 Like classes, structs support constructor, properties, and methods.

40

Abstract Class:

 The Shape class does not specify a particular shape, and thus it really does not
make sense for you to instantiate it directly.

 Instead, all other shapes should inherit from this base class.

 To ensure that you cannot instantiate the Shape class directly, you can make it
an abstract class by using the abstract keyword.

41

Abstract Methods:

An abstract method has no implementation, and its implementation is left to the
classes that inherit from the class that defines it.

 An abstract method is defined just like a normal method without the normal
method block ({}).

 Classes that inherit from a class containing abstract methods must provide the
implementation for those methods.

Note**: An abstract class can contain both abstract as well as non abstract
methods.

42

43

44

Interfaces

Interface definition

The interface defines the composition of a class, such as methods properties, and
so on. However, the interface does not provide any implementation for any of
these members.

Implementing class

The class that implements a particular interface provides the implementation for
all the members defined in that interface.

Clients

Objects that instantiate from the implementing classes are known as the client .

The client invokes the methods defined in the interface, whose implementation is

provided by the implementing class.

45

46

Defining Interface:

Defining an interface is similar to defining a class — you use the interface keyword
followed by an identifier (the name of the interface) and then specify the
interface body.

Eg.

You do not use any access modifiers on interface members — they are implicitly
public.

It ’ s important to note that you cannot create an instance of the interface
directly; you can only instantiate a class that implements that interface.

47

Implementing an Interface:

Once an interface is defined, you can create a new class to implement it. The class
that implements that particular interface must provide all the implementation for
the members defined in that interface.

All implemented members must have the public access modifiers.

48

You can now us e the class as you would a normal class:

49

Implementing Multiple Interfaces:

A class can implement any number of interfaces.

50

Extending Interfaces:

You can extend interfaces if you need to add new members to an existing
interface.

For example, you might want to define another interface named IManager to
store information about managers.

Basically, a manager uses the same members defined in the IPerson interface,
with perhaps just one more additional property — Dept.

In this case, you can define the IManager interface by extending the IPerson
interface, like this:

51

To use the IManager interface, you define a Manager class that implements the
IManager interface, like this:

52

You can also extend multiple interfaces at the same time.

The following example shows the Imanager interface extending both the IPerson
and the IAddress interfaces:

The Manager class now needs to implement the additional members defined in
the IAddress interface

53

Delegates
ÅA delegate is a type-safe function pointer i.e. when

you invoke the delegate, the function gets invoked.

ÅThe signature of the delegate must match the
signature of the function, the delegate points to
(type-safe).

ÅTo use a delegate an instance has to be created
similar to class and invoked similar to a method.

ÅThe syntax of a delegate is also similar to the syntax
of a method.

ÅDelegates can be used to define callback methods.

ÅDelegates allow methods to be passed as
parameters.

54

Delegates

55

Delegates - CallBack

Delegates - MultiCast
ÅDelegate which hold and invoke multiple

methods such Delegates are called Multicast
Delegates.

ÅMulticast Delegates are also known as
Combinable Delegates.

ÅThe methods must satisfy the conditions like
the return type of the Delegate.

ÅMulticast Delegate instance is created by
combining two Delegates.

57

Delegates - MultiCast

58

Virtual Methods
(Function Overriding, Runtime polymorphism)

If we want to create a Circle class, we will derive it from shape class.

Then the perimeter function which is defined in the shape class can not be used,
as Circle don’t have length and breadth.

Hence we need to create a new perimeter function in Circle class.

To do so, we need to prefix the Perimeter() method with the virtual keyword to
indicate that all derived classes have the option to change its implementation:

59

The Circle class now has to provide implementation for both the Perimeter() and
Area() methods

60

Indexers
ÅAllows elements of an internal collection of an

object to be accessed by using array notation
on the object itself.

ÅIndexers allow instances of a class or struct to
be indexed just like arrays.

ÅAccessed through an index.

ÅIndexers use simple get and set accessor
methods to assign and retrieve values.

61

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/get
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set

Indexers

62

Indexers

63

Sealed classes and Methods

Sealed Class:

 A class prefixed with the sealed keyword prevents other classes inheriting from
it.

 A sealed class cannot contain virtual methods.

Sealed Methods:

 You can also seal methods so that other derived classes cannot override the
implementation that you have provided in the current class.

However, sealed methods cannot be in the first base class.
public class Rectangle : Shape

{

public override sealed double Area()

{

return this.length * this.width;

}

}

64

65

Sealed classes and Methods

The following table summarizes the different keywords used for inheritance.

66

Polymorphism
ÅRuntime Polymorphism or late binding or

dynamic binding

ïmethod overriding

ïSame method, same signature, different class

ÅCompile time Polymorphism or early binding
or static binding - overloading

67

Overloading Methods
(Function Overloading, Compile time polymorphism)

Method Overloading:

When you have multiple methods in a class having the same name but different
signatures (parameters), they are known as overloaded methods .

class Class1

{

void print(int i)

{

Console.WriteLine("Printing int: {0}", i);

}

void print(double f)

{

Console.WriteLine("Printing float: {0}", f);

}

void print(string s)

{

Console.WriteLine("Printing string: {0}", s);

}

}
68

ÅOverloaded operators are functions with
special names the keyword operator followed
by the symbol for the operator being defined.

ÅAn overloaded operator has a return type and
a parameter list.

ÅOverloaded operators are always static.

public static B operator+(B b1, B b2)

{ return b1.Add(b2); }

69

Operator Overloading
(Compile time Polymorphism)

Operator Overloading
(Compile time Polymorphism)

To see how operator overloading works, consider the following program
containing the Point class representing a point in a coordinate system:

70

 The Point class contains two public properties (X and Y), a constructor, and a
method — DistanceFromOrigin() .

 If you constantly perform calculations where you need to add the distances of two
points (from the origin), your code may look like this:

 A much better implementation is to overload the + operator for use with the Point
class.

71

To overload the + operator, define a public static operator within the Point class as
follows:

72

The operator keyword overloads a built - in operator.

73

Exception Handling
ÅExceptions are a type of error that occurs during the

execution of an application.

Å try – A try block is used to encapsulate a region of code. If any
code throws an exception within that try block, the exception
will be handled by the corresponding catch.

Å catch – When an exception occurs, the Catch block of code is
executed. This is where you are able to handle the exception,
log it, or ignore it. Multiple catch blocks are allowed.

Å finally – The finally block allows you to execute certain code if
an exception is thrown or not. For example, disposing of an
object that must be disposed of.

Å throw – The throw keyword is used to actually create a new
exception that is the bubbled up to a try catch finally block.

74

Exception Handling

C#

Fundamentals

Part 2

Ends

78

