University of Mumbai

No. UG/ 36 of 2019-20

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/95 of 2015-16, dated 5th October, 2015 relating to the revised syllabus as per (CBSGS) for the T.Y.B..Sc. Botany (Sem. V & VI).

They are hereby informed that the recommendations made by the Board of Studies in Botany at its meeting held on 18th March, 2019 have been accepted by the Academic Council at its meeting held on 10th May, 2019 <u>vide</u> item No. 4.26 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T. Y .B.Sc. Botany in (Sem. V & VI) has been brought into force with effect from the academic year 2019-20, accordingly. (The same is available on the University's website <u>www.mu.ac.in</u>).

MUMBAI – 400 032 05 July, 2019 To

The Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C./4.26/10/05/2019

No. UG/ 36 -A of 2019

3 July, 2019

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Board of Studies in Botany,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Professor-cum-Director, Institute of Distance and Open Learning (IDOL),
- 5) The Director, Board of Students Development,
- 6) The Co-ordinator, University Computerization Centre,s

(Dr. Ajay Deshmukh) REGISTRAR

(Dr. Ajay Deshmukh)

REGISTRAR

(Credit Based Semester and Grading System with effect from the academic year 2019–2020)

T.Y.B.Sc. Botany Syllabus Restructured for Credit Based and Grading System To be implemented from the Academic year 2019-2020

SEMESTER V

Course Code	UNIT	TOPICS	Credit	L / Weeks
USBO501	PLANT	DIVERSITY III		
	Ι	Microbiology	2.5	1
	II	Algae		1
	III	Fungi		1
	IV	Plant Pathology		1
USBO502	PLANT	DIVERSITY IV		
	Ι	Paleobotany	2.5	1
	II	Angiosperms I		1
	III	Anatomy I		1
	IV	Palynology		1
USBO503	FORM	AND FUNCTION III		
	Ι	Cytology and Molecular Biology	2.5	1
	П	Plant Physiology I		1
	III	Environmental Botany		1
	IV	Plant Tissue Culture		1
USBO504	CURRE	ENT TRENDS IN PLANT		
	SCIEN	CES II		
	Ι	Ethnobotany and Mushroom Industry	2.5	1
	II	Plant Biotechnology I		1
	III	Instrumentation		1
	IV	Pharmacognosy and medicinal botany		1
USBOP5	Practica	als based on Two Courses in		
	Theory (501 & 502) – For 6 Units		3	8
USBOP6	Practicals based on Two Courses in		2	0
	Theory (503 &504) – For 6 Units		3	ð
USBOP7	Practica Theory	als based on Two Courses in (502 & 503) – For 3 Units	3	8
			16	32 + 8 (3 Units)

SEMESTER VI

Course	UNIT	TOPICS	Credit	L / Weeks
Code				
USBO601	PLANT DIVERSITY III			
	Ι	Bryophyta	2.5	1
	II	Pteridophyta		1
		Bryophyta and		
	III	Pteridophyta: Applied		1
		Aspects		
	IV	Gymnosperms		1
USBO602	PLANT	DIVERSITY IV		
	Ι	Angiosperms II	2.5	1
	II	Anatomy II		1
	III	Embryology		1
	IV	Plant Geography		1
USBO603	FORM	AND FUNCTION III		
	Ι	Plant Biochemistry	2.5	1
	II	Plant Physiology II		1
	III	Genetics		1
	IV	Biostatistics		1
	CURRE	NT TRENDS IN PLANT		
USBO604	SCIENCES II			
	Ι	Plant Biotechnology II	2.5	1
	II	Bioinformatics		1
	III	Economic Botany		1
	IV	Post Harvest Technology		1
USDODO	Practica	ls based on Two Courses in	2	0
USBOP8	theory (601 & 602) – For 6 Units	3	8
USDODO	Practica	ls based on Two Courses in	2	Q
USBUP9	theory (603 & 604) – For 6 Units	3	ð
LISBOD10	Practica	lls based on Two Courses in	2	Q
	theory (602 & 603) – For 3 Units	3	o
			16	32 + 8 (3)
			10	Units)

BSc BOTANY: PROGRAM OUTCOMES

Specific core discipline knowledge

- Students can recall details and information about the evolution, anatomy, morphology, systematics, genetics, physiology, ecology, and conservation of plants and all other forms of life.
- Students can recall details of the unique ecological and evolutionary features of the local and Indian flora.

Communication skills

• Students can communicate effectively using oral and written communication skills

Problem solving and research skills

• Students can generate and test hypotheses, make observations, collect data, analyze and interpret results, derive conclusions, and evaluate their significance within a broad scientific context

BSc BOTANY: PROGRAM SPECIFIC OUTCOMES

- To recognize and identify major groups of non-vascular and vascular plants and their phylogenetic relationships.
- To understand the phylogeny of plants and study various systems of classification.
- To explore the morphological, anatomical, embryological details as well as economic importance of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms.
- To understand physiological processes and adaptations of plants.
- To provide knowledge about environmental factors and natural resources and their importance in sustainable development.
- To be able to carry out phytochemical analysis of plant extracts and application of the isolated compounds for treatment of diseases.
- To be able to deal with all microbes and the technologies for their effective uses in industry and mitigation of environmental concerns.
- To explain how current medicinal practices are often based on indigenous plant knowledge and to get introduced to different perspectives on treating ailments according to ethnomedicinal principles.
- To understand patterns of heredity and variation among individuals, species and populations and apply principles for improvement of quality and yield.
- To be able to apply statistical tools to gain insights into significantly different data from different sources.
- To acquire recently published knowledge in molecular biology, such as rDNA technology; PTC and bioinformatics and their applications.

SEMESTER V THEORY

Course Code	Title	Credits	
USBO501	PLANT DIVERSITY – III	2.5 Credits (60 Lectures)	
Course outcomes:	Course outcomes:		
 The students would To gain knowledge and visualization. To understand the s cycle patterns with To learn the general fungi along with life To understand the s of various control r 	be able : about microbial diversity and techniques for c alient features of three major groups of algae, a suitable example; to be able to identify them I characteristics and classification of two majo e cycles of each group; to be able to identify the cope and importance of Plant Pathology and a measures of commonly widespread plant disea	ulturing their life r groups of nem. pply the concepts ases.	
 Unit I: Microbiology Types of Microbes: Protozoa, Mycoplasn 	Viruses, Bacteria, Algae, Fungi, na and Actinomycetes.	(15 lectures)	
Culturing: Sterilizat	ion, media, staining, colony characters.		
 Pure cultures Unit –II: Algae (G.M. Sm. Division Rhodophyta Distribution, Cell struthallus, reproduction: Generations, Econom Structure, life cycle a Batrachospermum. Classification and Distribution, Cell st thallus, Reproduction Generations, Econom Structure, life cycle a Classification and Distribution, Cell st thallus, Reproduction Generations, Econom Structure, life cycle a Classification and Distribution, Cell st thallus, Reproduction Generations, Econom Structure, life cycle a 	nith Classification System to be followed) : Classification and General Characters: incture, pigments, reserve food, range of asexual and sexual, Alternation of ic Importance. Ind systematic position of <i>Polysiphonia</i> , General Characters of Xanthophyta: ructure, pigments, reserve food, range of on: asexual and sexual, Alternation of ic Importance. Ind systematic position of <i>Vaucheria</i> . General Characters of Bacillariophyta: ructure, pigments, reserve food, range of on: asexual and sexual, Alternation of ic Importance. Ind systematic position of <i>Vaucheria</i> . General Characters of Bacillariophyta: ructure, pigments, reserve food, range of on: asexual and sexual, Alternation of ic Importance. Ind systematic position of <i>Pinnularia</i> .	(15 lectures)	
 Unit III: Fungi (G.M. Sm Basidiomycetes: Class ➢ Life cycle of Agari ➢ Life cycle of Pucci Deuteromycetae: Class Life cycle of Alternation 	nith Classification System to be followed) sification and General characters <i>icus</i> <i>inia</i> ssification and General Characters <i>ria</i>	(15 lectures)	

Unit IV: Plant Pathology	
• Study of plant diseases: Causative organism, symptoms,	
predisposing factors, disease cycle and control measures of the	
following.	
White Rust – Albugo candida	
Tikka disease of ground nut: Cercospora	(15 lectures)
Damping off disease: Pythium	
Citrus canker – Xanthomonas axonopodis pv. citri	
Leaf curl – leaf curl virus in Papaya.	
• Study of Physical, chemical and biological control methods of	
plant diseases.	

Course Code	Title	Credits
USBO502	PLANT DIVERSITY – IV	2.5 Credits (60 lectures)
 Course outcomes: The students would be able : To acquire knowledge of different fossil forms and understand their role in evolution. To provide plant description, describe the morphological and reproductive structures of seven families and also identify and classify according to Bentham and Hooker's system. To gain proficiency in the use of keys and identification manuals for identifying any unknown plants to species level. To relate anomalies in internal stem structure with function and appreciate the salient features of the root stem transition zone. 		
• To get exposure to p	pollen study and learn to apply it in various fie	lds.
 <i>Lepidodendron</i>- All f female fructification <i>Lyginopteris</i>- All form fructification. <i>Pentoxylon</i>- All form Contribution of B Paleobotany, Lucknow 	Form genera root, stem, bark, leaf, male and m genera root, stem, leaf, male and female genera. irbal Sahni, Birbal Sahni Institute of w	(15 lectures)
 Unit II: Angiosperms I Morphology of flowe Complete classification prescribed families), I Bentham and Hooked plants up to family families and economic the families. (Special > Capparidaceae > Umbelliferae > Cucurbitaceae > Rubiaceae > Solanaceae > Commelinaceae > Graminae 	r – All Parts of Flower. on of Bentham and Hooker (only for Merits and demerits er's system of classification for flowering with respect to the following prescribed c and medicinal importance for members of stress on fruit morphology to be given)	(15 lectures)
 Unit III: Anatomy I Anomalous secondary Salvadora, Achyranthe Root stem transition Types of Stomata- Anatomicaeous 	y growth in the Stems of <i>Bignonia</i> , es, <i>Dracaena</i> . Storage roots of Beet, Radish nomocytic, Anisocytic, Diacytic, Paracytic,	(15 lectures)

Unit IV: Palynology	
Pollen Morphology	
Pollen viability-storage	$(15 \log t_{\rm max})$
Germination and growth of pollen	(15 lectures)
• Application of Palynology in honey industry, coal and oil	
exploration, Aerobiology and pollen allergies, forensic science	2

Course Code	Title	Credits
USBO503	FORM AND FUNCTIONS- II	2.5 Credits (60 Lectures)
 Course outcomes: The students would be able : To acquire knowledge about two important organelles and molecular mechanisms of translation To understand water relations of plants, inorganic and organic solute transport, and apply the knowledge to manage mineral nutrition and survival in challenging abiotic stresses. To understand succession in plant communities and study remediation technologies in order to apply knowledge acquired for cleanup of polluted sites. To get exposure to principles and techniques of plant tissue culture and apply these studies for improving agriculture and horticulture and to become an entrepreneur. 		
 Unit I: Cytology and Me Structure and function Structure and function Structure and function The genetic code: Cha Translation in Prokary 	blecular Biology a of nucleus a of vacuole b of giant chromosomes aracteristics of the genetic code yotes and Eukaryotes.	(15 lectures)
 Unit II: Plant Physiolog Water relations: Pot Solute transport: Traand passive transport, Translocation of solue experiment. Pressure flow model unloading, anatomy sieve tube translocation Mineral Nutrition: physiological function 	y I ential, osmosis, transpiration, imbibition, ansport of ions across cell membranes, active carriers, channels and pumps. Ites: Composition of phloem sap, girdling I (Munch's hypothesis):Phloem loading and of sieve tube elements and mechanisms of on. Role of Macro and Micro nutrients, ns and deficiency symptoms.	(15 lectures)
 Unit III: Environmental Bioremediation: Prin population in bioremed Phytoremediation: M Plant succession: Hy Space, Succession on the Climax, Succession theories. Unit IV: Plant Tissue Condition Aspects of Micro-product Detailed study of Orc Plant cell suspension metabolites: With sp Somatic Embryogene 	 Botany Botany Bociples, factors responsible and microbial ediation. Metals, Organic pollutants Advosere and Xerosere – Formation of Barren the Land Citing Different Seres leading up to on in Water, Ecesis, Poly and Mono-climax Continuation Conti	(15 lectures) (15 lectures)
• Protoplast Fusion Definition, and van Applications of Soma	and Somatic Hybridization: i) Concept, rious methods of Protoplast Fusion ii) tic Hybridization in Agriculture	

Course Code	Title	Credits
USBO504	CURRENT TRENDS IN PLANT SCIENCES – II	2.5 Credits (60 Lectures)
 Course outcomes: The students would be able : To get exposure to the technique of mushroom cultivation and explore the possibility of entrepreneurship in the same. To learn ethnobotanical principles, applications and utilize indigenous plant knowledge for the cure of common human diseases and improvement or agriculture. To gain knowledge about the latest molecular biology techniques for isolation and characterization of genes. To learn principles and application of commonly used techniques in instrumentation. To gain proficiency in the monograph study and pharmacognostic analysis of six medicinal plants. 		
 Unit I: Ethnobotar study. Application Ethno-ma Agricultu Edible pl Traditional Skin ailm Liver ailn Wound h Fever: Vi Diabetes: Mushroom Detail geto methor mushroot General a packagin 	 tany and Mushroom Industry ny- Definition, history, sources of data and methods of as of ethnobotany: edicines. edicines. ants. medicines used by tribals in Maharashtra towards nents: Rubia cordfolia, Sandalwood nents: Phyllanthus, Andrographis ealing and ageing: Centella, Typha, Terminalia, Tridax. tex negundo, Tinospora cordifolia leaves Momordica charantia, Syzygium cuminii industry: neral account of production of mushrooms with respect ods of Composting, spawning, casing, harvesting of n. Cultivation of Pleurotus, Agaricus, Volvariella m. account of mushrooms: Nutritional value, picking and g economic importance 	(15 lectures)
 Unit II: Plant B Construction c- DNA libr Identification Genomic lib Analysis of analysis of Hybridization Unit III: Instrumenta 	iotechnology I n of genomic DNA libraries, Chromosome libraries and aries. on of specific cloned sequences in c-DNA libraries and braries genes and gene transcripts –Restriction enzyme, cloned DNA sequences. Hybridization(Southern on) mentation y and Spectrophotometry (Visible, UV and IR) – tion, working, principle and applications.	(15 lectures)
Chromatog Principle an chromatogra chromatogra	raphy: General account of Column chromatography. d bedding material involved in adsorption and partition aphy, ion exchange chromatography, molecular sieve aphy.	(15 lectures)

Unit IV: Pharmacognosy and Medicinal Botany	
• Monographs of drugs with reference to biological sources, geographical distribution, common varieties, macro and microscopic characters, chemical constituents, therapeutic uses, adulterants- Strychnos seeds, Senna leaves, Clove buds, Allium sativum, Acorus calamus and Curcuma longa	(15 lectures)

SEMESTER V PRACTICAL

Minimum marks for passing: 20

Semester V USBOP5 – For 6 Units	Cr
PRACTICAL PAPER I-PLANT DIVERSITY III - USBOP 501 (For 6	1.5
Units)	
Microbiology	
• Study of aeromicrobiota by petriplate exposed method: Fungal culture,	
Bacterial culture.	
• Determination of Minimum Inhibitory Concentration (MIC) of sucrose	
against selected microorganism.	
• Study of antimicrobial activity by the disc diffusion method.	
Algae (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Algae from fresh /	
preserved material and permanent slides.	
> Polysiphonia	
➢ Batrachospermum	
➢ Vaucheria	
Pinnularia	
Fungi (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Fungi from fresh /	
preserved material and permanent slides	
> Agaricus	
> Puccinia	
➢ Alternaria	
Plant Pathology	
• Study of the following fungal diseases:	
White rust in Cruciferae (Brassicaceae)	
Tikka disease in Groundnut	
Damping off disease	
Citrus canker	
Leaf curl in Papaya Leaf	
Semester V USBOP7 – For 3 Units	
PRACTICAL PAPER II-PLANT DIVERSITY IV USBOP 502 (For 3	Cr
& 6 Units)	
Paleobotany	1.5
• Study of the following form genera with the help of permanent slides/	
photomicrographs.	
Lepidodendron	
Lyginopteris	
> Pentoxylon	
Angiosperms I	
• Morphology of Flower – All Parts of Flower	
• Study of one plant from each of the following Angiosperm families as per	
Bentham and Hooker's system of classification.	
Capparidaceae Line alliferrae	

➢ Rubiaceae	
➢ Solanaceae	
Commelinaceae	
➢ Graminae	
• Morphological peculiarities and economic importance of the members of	
the above-mentioned Angiosperm families	
• Identifying the genus and species of a plant with the help of Flora	
Anatomy I	
• Study of anomalous secondary growth in the stems of the following plants	
using double staining technique.	
1) Bignonia	
2) Salvadora	
3) Achyranthes	
4) Dracaena	
• Study of anomalous secondary growth in the roots of	
1) Beet	
2) Radish	
Types of Stomata	
1) Anomocytic	
2) Anisocytic	
3) Diacytic	
4) Paracytic	
5) Graminaceous	
Palynology I	
• Study of pollen morphology (NPC Analysis) of the following by	
Chitale's Method	
Hibiscus	
Datura	
> Ocimum	
Crinum	
Pancratium	
> Canna	
Determination of pollen viability	
• Pollen analysis from honey sample – unifloral and multifloral honey	
• Effect of varying concentration of sucrose on <i>In vitro</i> Pollen germination	
Total Credit	3

Semester V USBOP6 – For 6Units	Cr
Semester V USBOP7 – For 3Units	
PRACTICAL –PAPER III FORM AND FUNCTION II USBOP 503 (For 3 & 6 Units)	1.5
Cytology and Molecular Biology	
• Mounting of Giant chromosomes from <i>Chironomous</i> larva	
• Smear preparation from <i>Tradescantia</i> buds	
 Predicting the sequence of amino acids in the polypeptide chain that will 	
be formed following translation(Eukarvotic)	
Plant Physiology I	
• Estimation of Phosphate phosphorus (Plant acid extract)	
 Estimation of I nosphate phosphorus (1 fait deld extract) Estimation of Iron (Plant acid extract) 	
• Estimation of from (France acid extract)	
Note: Preparation of a standard graph and determination of the multiplication	
factor for Phosphate / Iron estimation using a given standard phosphate /	
Standard Iron solution should be done in regular practical as this will also be	
put as a question in practical exam	
Environmental Botany	
• Estimation of the following in given water sample	
 Dissolved oxygen demand 	
 Biological oxygen demand 	
 Hardness 	
 Salinity and Chlorinity 	
Micropropogation	
Plant Tissue culture:	
 Identification – Multiple shoot culture bairy root culture somatic 	
embryogenesis	
 Preparation of stock solutions for preparation of MS medium 	
• Treparation of stock solutions for preparation of Wis medium	
(Note: Concept of preparation of specified molar solutions should be taught	
and problems based on preparation of stock solutions for tissue culture media	
will be given)	
Semester V USBOP6 – For 6 Units	
PRACTICAL – PAPER IV CURRENT TRENDS IN PLANT SCIENCES	Cr
II USBOP 504 (For 6 Units)	_
Ethnobotany and mushroom industry	1.5
• Study of plants mentioned in theory for Ethnobotany	
• Mushroom cultivation (To be demonstrated)	
• Identification of various stages involved in mushroom cultivation – spawn.	
pin head stage, mature/ harvest stage of Agaricus, Pleurotus, Volvariella	
Biotechnology I	
• Growth curve of E coli	
 Plasmid DNA isolation and Separation of DNA using AGE 	
 Restriction mapping (problems) Southern blotting 	
Instrumentation	
Demonstration of Beer Lambert's Law	
Demonstration of been Lambert's Law	
• Experiment based on ion exchange chromatography for demonstration	
• Experiment based on separation of dyes/ plant pigments using silica gel	
column.	

Pharmacognosy

 Macroscopic/Microscopic characters and Chemical tests for active constituents of the following plants. <i>Allium sativum</i> <i>Acorus calamus</i> 	
Curcuma longa	
Senna angustifolia	
Strychnos nux-vomica	
Eugenia caryophyllata	
Total Credit	3

Course Code	Title	Credits	
USBO601 PLANT DIVERSITY – III		2.5 Credits (60 Lectures)	
Course outcomes:			
The students would	be able :		
• To identify, describ	e and study in detail the life cycles of three Br	yophytes.	
• To and study in deta	ail classification and general characters of three	e classes	
of Pteridophytes and	d identify as well as describe the life cycles of	one	
example from each	class.		
• To study evolutiona	ry aspects and economic utilization of Bryoph	ytes	
and Pteridophytes.	a and study in datail the life avalag of three C		
• 10 identify, describ	e and study in detail the file cycles of three Gy	mnosperms.	
Unit I: Bryophyta (G. M	. Smith Classification system to be		
followed)			
• Life cycle of Marchar	itia	(15 lectures)	
• Life cycle of <i>Pelia</i>			
• Life cycle of Sphagnu	IM M Smith Classification System to be		
followed)	. M. Shifti Classification System to be		
• Lepidophyta – Classifi	ication, general characters: Life cycle of		
Lycopodium			
 Calamophyta – Classif 	fication, general characters: Life cycle of	(15 lectures)	
• Equisetum	, 8		
• Pterophyta - Classifica	tion, general characters: Life cycle of		
Adiantum and Marseli	a		
Unit III: Bryophytes and	Pteridophytes: Applied aspects		
Ecology of Bryophytes			
• Economic importance	of Bryophytes.		
• Bryophytes as Indicate	Drs.		
 Evolution of Sporophyte and Gametophyte in Bryophytes. 		(15 lectures)	
Economic importance	of Pteridophytes		
• Diversity and distribut	Diversity and distribution of Indian Pteridophytes		
• Types of Sori and Evo	lution of Sori in Pteridophytes.		
Unit IV: Gymnosperms	(Chamberlain's Classification System to be		
followed)			
• Life cycle of <i>Thuja</i> ,		(15 lectures)	
• Life cycle of <i>Gnetum</i>		(13 iectures)	
• Life cycle of <i>Ephedra</i> .			
• Economic importance	of Gymnosperms		

Course Code Title Credit		Credits
USBO602 PLANT DIVERSITY – IV		2.5 Credits (60 Lectures)
 Course outcomes: The students would be able : To study contribution of Botanical gardens, BSI to Angiosperm study and provide plant description, describe the morphological and reproductive structures of seven families. To gain exposure to a phylognetic system of classification. To gain insight into the anatomical adaptations of different ecological plant groups. To understand development plant of male and female gametophytes, embryonic structure and development. To understand the different aspects and importance of Biodiversity and utilize them for conservation of species so as to prevent further loss or extinction of Biodiversity and preserve the existing for future generations. 		
 Unit I: Angiosperms II Major Botanic ga Howrah; National Botanic Garden, Dar Botanical survey of I Bentham and Hook plants up to family families and econom morphology for mem ▶ Rhamnaceae ▶ Combretaceae ▶ Asclepiadaceae ▶ Labiatae > Euphorbiaceae > Cannaceae Hutchinson's class Introduction, Merits a System 	rdens of India– Indian Botanic Garden, Botanic Garden (NBRI) Lucknow; Lloyd jeeling; Lalbaugh Botanic Garden, Bangaluru. ndia and regional branches of India er's system of classification for flowering with respect to the following prescribed ic importance, medicinal importance and fruit bers of the families	(15 lectures)
 Unit II: Anatomy II Ecological anatomy Hydrophytes – su Hygrophytes - Typ Mesophytes Sciophytes Sciophytes Halophytes Epiphytes Xerophytes Unit III: Embryology Microsporogenesis 	bmerged, floating, rooted bha	(15 lectures)
 Megasporogenesis- of all embryo sacs Types of ovules Double fertilization Development of embrid 	Development of monosporic type, examples ryo– <i>Capsella</i>	(15 lectures)

Unit IV: Plant Geography (Shifted from Paper – IV)		
Phytogeographical regions of India.		
Biodiversity:		
Definition, diversity of flora found in various forest types of		
India	(15 lootumos)	
Levels of biodiversity	(15 lectures)	
Importance and status of biodiversity		
Loss of biodiversity		
Conservation of biodiversity		
 Genetic diversity- Molecular characteristics 		

Course Code	Title	Credits
USBO603 FORMS AND FUNCTION – III		2.5 Credits 60 Lectures)
 Course outcomes: The students would To study various prole, functions and To gain insight in applications of the To understand priproblems based on their implications. To generate and the and interpret result a broad scientific 	Id be able : plant biomolecular structures and appreciate the d applications of enzymes. to the Nitrogen and plant hormone metabolism e same in agriculture and horticulture. nciples of genetic mapping , mutations and solven them, gain knowledge of various metabolic di set hypotheses, make observations, collect data, lts, derive conclusions, and evaluate their signific context, using suitable statistical techniques.	e structures, with /e sorders and analyze icance within
 Unit I: Plant Biochemia Structure of bio cellulose, pectin, lip acids) Enzymes: Nomence kinetics, Michaelis- competitive and un- Unit II: Plant Physiological 	stry molecules: Carbohydrates (sugars, starch, bids (fatty acids and glycerol), proteins (amino lature, classification, mode of action, Enzyme Menten equation, competitive, non- -competitive inhibitors.	(15 lectures)
 Nitrogen Metabolism: Nitrogen cycle, root nodule formation, and leghaemoglobin, nitrogenase activity, assimilation of nitrates, (NR, NiR activity), assimilation of ammonia, (amination and transamination reactions), nitrogen assimilation and carbohydrate utilization. Physiological effects and commercial applications of Auxins, (15) 		(15 lectures)
 Unit III: Genetics Genetic mapping in eukaryotes: discovery of genetic linkage, gene recombination, construction of genetic maps, three- point crosses and mapping chromosomes, problems based on the same Gene mutations: definition, types of mutations, causes of mutations, induced mutations, the Ame's test Metabolic disorders- enzymatic and non-enzymatic: Gene control of enzyme structure Garrod's hypothesis of inborn errors of metabolism, Phenyl ketone urea. 		
 Unit IV: Biostatistics (\$ Test of significance \$ Regression. ANOVA (one way). 	Shifted from Paper – II) student's <i>t</i> -test – Paired and Unpaired.	(15 lectures)

Course CodeTitleCred		Credits
USBO604 Current Trends in Plant Science – II		2.5 Credits (60 Lectures)
Course outcome The stude To gain ir and ampli To unders and phylo To learn a fats and o To gain k	es: nts would be able : nsight into recent molecular biology techniques for DNA fication and Barcoding techniques and applications there stand and apply tools of Bioinformatics for data retrieval genetic analysis. bout the sources of economically important plants in the ils and apply it for extraction, dealing with entrepreneurs nowledge and proficiency in preservation of post harvest re the possibility of entrepreneurship in the field	analysis ein. e field of ship in the field. t produce
 Unit I: Plant Bi DNA sequer method, Pyr Polymerase DNA barcoo chloroplast g sequence, pr 	Totechnology II nce analysis – Maxam – Gilbert Method and Sanger's to Sequencing. Chain Reaction (PCR). ding: Basic features, nuclear genome sequence, genome sequence, <i>rbc</i> L gene sequence, <i>mat</i> K gene esent status of barcoding in plants.	(15 lectures)
 Unit IV: Bioinformatics (Shifted from Paper – III) Organization of biological data, databases Exploration of data bases, retrieval of desired data, BLAST. Protein structure analysis and application Multiple sequence analysis and phylogenetic analysis 		
 Initial Sequence analysis and phylogenetic analysis Unit III: Economic Botany Essential Oils: Extraction, perfumes, perfume oils, oil of Rose, Sandalwood, <i>Patchouli, Champaca</i>, grass oils: <i>Citronella</i>, Vetiver. Fatty oils: Drying oil (Linseed and Soyabean oil), semidrying oils (Cotton seed, Sesame oil) and non-drying oils (Olive oil and Peanut oil), Vegetable Fats: Coconut and Palm oil 		
 Unit IV : Post I Storage of F Drying Artificia Osmotic Leather, Freezing Plate Free Drying), Canning Pickling Sugar Co Food Pres Use of A 	Harvest Technology Plant Produce –Preservation of Fruits and Vegetables (Dehydration) – Natural conditions – Sun drying, I Drying – Hot Air Drying, Vacuum Drying, ally Dried Fruits, Crystallized or Candied Fruits, Fruit Freeze Drying) (Cold Air Blast System, Liquid Immersion method, eezers, Cryogenic Freezing, Dehydro-Freezing, Freeze (in Brine, in Vinegar, Indian Pickles) oncentrates (Jams, Jellies, Fruit juices) eservatives intioxidants in Preservation	(15 lectures)

SEMEST ER VI PRACTICAL

Minimum	marks	for	passing:	20
1,111111,0111	III III	101	passing	

SEMESTER VI USBOP8 – FOR 6 UNITS	Cr
PRACTICAL PAPER I-PLANT DIVERSITY III – USBOP 601(For 6	1.5
Units)	
Bryophyta (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycle of the following Bryophyta from fresh /	
preserved material and permanent slides	
Marchantia	
➢ Pelia	
> Sphagnum	
Pteridophyta (G.M. Smith Classification System to be followed)	
• Study of stages in the life cycles of the following Pteridophytes from	
fresh / preserved material and permanent slides	
> Lycopodium	
➢ Equisetum	
➤ Adiantum	
➢ Marselia	
Bryophytes and Pteridophytes: Applied aspects	
• Economic importance of Bryophyta	
• Economic importance of Pteridophyta	
• Types of Sporophytes in Bryophyta (from Permanent slides)	
• Types of Sori and Soral Arrangement in Pteridophytes	
Gymnosperms (Chamberlain's Classification System to be followed)	
• Study of stages in the life cycles of the following Gymnosperms from	
fresh / preserved material and permanent slides	
> Thuja	
➢ Gnetum	
➢ Ephedra	
Economic importance of Gymnosperms	
USBOP10 – FOR 3 UNITS	
PRACTICAL PAPER II-PLANT DIVERSITY IV USBOP602 (For 3 &	1.5
6 Units)	
Angiosperms II	
• Study of one plant from each of the following Angiosperm families as	
per Bentham and Hooker's system of classification.	
Rhamnaceae	
Combretaceae	
Asclepiadaceae	
➢ Labiatae	
Euphorbiaceae	
➢ Cannaceae	
• Morphological peculiarities and economic importance of the members	
of the above-mentioned Angiosperm families	
• Identify the genus and species with the help of flora	

An	atomy II	
•	Study of Ecological Anatomy of	
	> Hydrophytes: <i>Hydrilla</i> stem, <i>Nymphaea</i> petiole, <i>Eichhornia</i> offset	
	Epiphytes: Orchid	
	Sciophytes: <i>Peperomia</i> leaf	
	Xerophytes: Nerium leaf, Opuntia phylloclade	
	▶ Halophytes: Avicennia leaf and pneumatophore, Sesuvium / Sueda	
	leaf	
	Mesophytes: Vinca leaf	
En	nbryology	
•	Study of various stages of Microsporogenesis, Megasporogenesis and	
	Embryo Development with the help of permanent slides /	
	photomicrographs	
•	Mounting of Monocot (Maize) and Dicot (Castor and Gram)embryo	
•	In vivo growth of pollen tube in Portulaca /Vinca	
Pla	ant Geography	
•	Study of phytogeographic regions of India	
٠	Preparation of vegetation map using Garmin's GPS Instrument	
•	Problems based on Simpson's diversity Index	
	Total Credit	3
SE	MESTER VI USBOP9 – FOR 6 UNITS	Cr
SE	MESTER VI USBOP10 – FOR 3 UNITS	
PR	ACTICAL PAPER III-FORM AND FUNCTION III USBOP603	1.5
(Fo	or 3 & 6 Units)	
Pla	nt Biochemistry	
•	Estimation of proteins by Biuret method	
٠	Effect of temperature on the activity of amylase	
٠	Effect of pH on the activity of amylase	
٠	Effect of substrate variation on the activity of amylase	
Pla	nt Physiology II	
•	Determination of alpha-amino nitrogen	
•	Effect of GA on seed germination	
•	Estimation of reducing sugars by DNSA method	
Ge	netics	
•	Problems based on three-point crosses, construction of chromosome	
	maps	
•	Identification of types of mutations from given DNA sequences	
•	Study of mitosis using pre-treated root tips of Allium	
Bio	ostatistics	
•	<i>t</i> -test (paired and unpaired)	
•	Problems based on regression analysis	
•		
	ANOVA (One Way)	
	ANOVA (One Way)	
PR	ANOVA (One Way) ACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES	
PR US	ANOVA (One Way) ACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES BOP 604 (For 6 Units)	
PR US Pla	ANOVA (One Way) ACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES BOP 604 (For 6 Units) ant Biotechnology II	
PR US Pla	ANOVA (One Way) ACTICAL PAPER IV CURRENT TRENDS IN PLANT SCIENCES BOP 604 (For 6 Units) ant Biotechnology II DNA sequencing by Sanger's Method and Pyro Sequencing Method	

Bioinformatics	
• BLAST: nBLAST, pBLAST	
Multiple sequence alignment	
Phylogenetic analysis	
RASMOL/SPDBV	
Economic Botany	
• Demonstration: Extraction of essential oil using Clevenger	
• Thin layer chromatography of essential oil of <i>Patchouli</i> and <i>Citronella</i>	
Saponification value of Palm oil	
Post-Harvest Technology	
Preparation of	
Squash	
➤ Jam	
➤ Jelly	
Pickle	
Total Credit	3

Scheme of Examinations:

Theory Course: Semester End Assessment	100	Marks Each Theory Paper
Practical Course	50	Marks Each Practical Paper

Students offering Double major (3 Units) will study Paper II and III

Semester End Theory Examination Question Paper Pattern:

Q.1 – Four (4) Long Answer Questions on Unit – I out of which Two	10 Marks Each
(2) to be solved.	
Q.2 – Four (4) Long Answer Questions on Unit – II out of which	10 Marks Each
Two (2) to be solved.	
Q.3 – Four (4) Long Answer Questions on Unit – III out of which	10 Marks Each
Two (2) to be solved.	
Q.4 – Four (4) Long Answer Questions on Unit – IV out of which	10 Marks Each
Two (2) to be solved.	
Q.5 – Six (6) Short Answer Questions on all four (4) Units out of	05 Marks Each
which Four (4) to be solved.	

Note:

- 1. Minimum Marks of 20 are required in Every Practical Paper Examination in each semester.
- 2. A minimum of four field excursions (with at least one beyond the limits of Mumbai / Local area) for habitat studies are compulsory. Field work of not less than eight hours duration is equivalent to one period per week for a batch of fifteen students.
- 3. A candidate will be allowed to appear for the practical examinations only if he/she submits a certified journal of T.Y.B.Sc. Botany and the Field Report or a certificate from the Head of the Department/Institute to the effect that the candidate has completed the practical course of T.Y.B.Sc. Botany as per the minimum requirements. In case of loss of journal, a candidate must produce a certificate from the Head of the Department/ Institute that the practical for the academic year were completed by the student. However, such a candidate will be allowed to appear for the practical examination but the marks allotted for the journal will not be granted.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP5) Plant Diversity III (USBOP501) Practical Paper – I

 Duration: 9:00 am to 01:00 pm
 Max. Marks:50

 Q.1 Perform the given Microbiological Experiment 'A'
 12

 Q.2 Identify, Classify and Describe Specimens B, C and D. Sketch neat and labeled diagrams of Morphological / Microscopical structures seen in the specimens.
 24

 Q.3 Identify and describe slides / specimens E, F and G.
 09

 Q.4 Journal
 05

KEY:

- A– Any one experiment out of four as prescribed in syllabus.
- B & C– Algae.
- **D** Fungi.
- E, F & G-Plant Pathology, Algae or Fungi not asked above in random order.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP5) Plant Diversity IV (USBOP502) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1A.Classify specimen 'A' up to their families giving reasons. Give floral formula. Sketch neat and		
	labeled L. S. of flower and T.S. ovary.	10
Q. 1B.Id	lentify genus and species of specimen 'B' using flora.	05
Q.2	Make a temporary double stained preparation of T.S. specimen 'C' and comment on	the type
	of secondary growth.	06
Q.3	Perform the Palynology experiment 'D' allotted to you.	07
Q.4	Identify and describe slide/ specimen 'E', 'F', 'G' & 'H'.	12
Q.5	Field report	05
Q.6	Viva voce (based on Paper I and Paper II).	05

KEY

- A-Families of T.Y.B.Sc only
- B-Plants from F.Y & S.Y. B. Sc Families to be included
- C-Anatomy Anomalous Secondary Growth
- **D** As per slip

E, **F**, **G** & **H**–Fossils, Types of Stomata, Morphology of flower & Morphology of Fruits Studied in Theory – in random order

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP6) FORMS AND FUNCTION III (USBOP503) Practical Paper – III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	1 Make a smear preparation of material 'A' and show the slide to the Examiner. Comme	
	your observation / Expose the giant chromosomes from the salivary glands of Chironomous	
	larva.	08
Q. 2	Perform the experiment 'B' allotted to you (Physiology).	12
Q. 3	Perform the experiment 'C' allotted to you (Ecology).	12
Q. 4.	Calculate the of the given solution 'D' to prepare the required solution.	07
Q. 5.	Identify and describe slide/specimen 'E' & 'F'.	06
Q.6.	Journal.	05

KEY

- **B** Physiology experiment.
- C-Ecology experiment.
- **D** Plant Tissue Culture.
- E & F-Multiple shoot culture, Hairy root culture, Somatic embryogenesis, Amino acid sequencing.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP6) CURRENT TRENDS IN PLANT SCIENCE II (USBOP504) Practical Paper – IV

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1.	. Perform the experiment A- growth curve of <i>E.coli</i> / Isolate plasmid DNA and separate u	
	AGE.	12
Q.2.	Perform the experiment 'B' allotted to you.	10
Q.3.	Describe macroscopical /microscopical character with the help of neat and labelled	
	sketches of specimens 'C' and 'D'. Perform the chemical test / TLC to identify the active	
	constituents.	14
Q. 4	Identify and explain the specimens/ photographs 'E', 'F' and 'G'.	09
Q. 5.	Journal.	05

KEY

B– Experiment based on Beer- Lambert's Law Experiment on separation of dyes/pigments using silica gel column chromatography

C & D–Allium sativum, Acorus calamus, Curcuma longa, Senna angustifolia, Strychnos nux-vomica Eugenia caryophyllata

E, F & G– any stage of mushroom cultivation, any Plant from ethnobotany, problems on restriction mapping

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP7) Plant Diversity IV (USBOP502) (For 3 Units) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1A.	Classify specimen 'A' up to their families giving reasons. Give floral formula. Sketch n and labelled L.S. of flower and T.S. of ovary.	leat 10
Q. 1B.	Identify genus and species of specimen 'B' using flora.	05
Q.2	Make a temporary double stained preparation of T.S. specimen 'C' and comment on the	type
	of secondary growth.	06
Q.3	Perform the Palynology experiment 'D' allotted to you.	07
Q.4	Identify and describe slide/ specimen 'E', 'F', 'G' & 'H'.	12
Q.5	Field report	05
Q.6	Journal.	05

KEY

A-Families of T.Y.B.Sc only

- B-Plants from F.Y & S.Y. B. Sc Families to be included
- C- Anatomy Anomalous Secondary Growth
- **D** As per slip

E, **F**, **G** & **H**– Fossils, Types of Stomata, Morphology of flower & Morphology of Fruits Studied in Theory – in random order

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP7) FORMS AND FUNCTION III (USBOP503) (For 3 Units) Practical Paper – III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Make a smear preparation of material 'A' and show the slide to the Examiner. Commen	
	your observation / Expose the giant Chromosomes from the salivary glands of Chironomous	
	larva.	08
Q. 2	Perform the experiment 'B' allotted to you (Physiology).	12
Q. 3	Perform the experiment 'C' allotted to you (Ecology).	12
Q. 4	Calculate the of the given solution 'D' to prepare the required solution.	07
Q. 5	Identify and describe slide/specimen 'E'& 'F'.	06
Q.6.	Viva voce (based on Paper II and Paper III).	05

KEY

- **B** Physiology experiment.
- C-Ecology experiment.
- **D** Plant Tissue Culture.
- E & F– Multiple shoot culture, Hairy root culture, Somatic embryogenesis, Amino acid sequencing.

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER VI (USBOP8) Plant Diversity III (USBOP601) Practical Paper – I

Duration: 9:00 am to 01:00 pm

Max. Marks:50

1	Identify, classify and describe specimen 'A' and 'B'. Sketch neat and labelled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	12
2	Identify, classify and describe specimen 'C' and 'D'. Sketch neat and labeled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	12
Q.3	Identify, classify and describe specimen 'E'. Sketch neat and labeled diagrams of	
	Morphological/Microscopical structures seen in the specimens.	06
Q.4	Identify and describe slides/specimen 'F', 'G' 'H', 'I' & 'J'.	15
Q.5	Journal.	05

KEY

A & B-Bryophytes: Marchantia, Pellia & Sphagnum

C & D-Pteridophytes: Lycopodium, Equisetum, Adiantum & Marsilea

E- Gymnosperm: Thuja, Gnetum & Ephedra

F, G, H, I & J– Economic importance of Bryophytes, Economic importance of Pteridophytes Types of Sporophytes in Bryophyta, Types of Sori in Pteridophytes, Soral arrangement in Pteridophytes, Economic importance of Gymnosperms. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER VI (USBOP8) Plant Diversity IV (USBOP602) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1 A.	Classify specimen 'A' up to its family giving reasons. Give floral formula. Sketch neat and	
	labeled L.S. of flower and T.S. ovary.	08
Q. 1.B.	Identify genus and species of specimen 'B' using flora.	04
Q. 2	Make a stained preparation of specimen 'C' and comment on its ecological anatomy.	06
Q.3.A	Calculate Simpson's Diversity Index from the given data 'D'.	08
Q.3.B	Mark the Phytogeographic region 'E' in the map of India and Comment on the same.	05
Q.4	Identify and describe slide/specimen 'F', 'G' & 'H'.	09
Q.5	Field Report.	05
Q.6	Viva voce (based on Paper I and Paper II)	05

KEY

- A-Families of T.Y.B.Sc Sem VI only
- B-Plants from F.Y., S.Y. & T.Y. B. Sc. (Sem V Families to be included).
- **C** Ecological anatomy.

F, **G** & **H**– Economic importance of specimen from prescribe families (Sem VI only), Morphological Peculiarities of prescribed families (Sem – VI only), Embryology. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI (USBOP9) FORM AND FUNCTION III (USBOP603) PRACTICAL III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Perform the experiment 'A' allotted to you.	10
Q.2	Perform the experiment 'B' allotted to you.	10
Q.3	Make a squash preparation to show the stage of mitosis from the pre-treated root tips 'C'.	05
Q.4	Construct a chromosome map from the given data 'D' / Identify the type of mutation and	
	comment on them (any two types of mutations)	10
Q.5	From the given data/ material 'E' determine test of significance using students t-test/	
	Regression Analysis /ANOVA	10
Q.6	Journal.	05

KEY

- A-Plant Biochemistry Experiment.
- **B** Plant Physiology Experiment.

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI (USBOP9) CURRENT TRENDS IN PLANT SCIENCE II (USBOP604) PRACTICAL IV

Duration: 9:00 am to 01:00 pm		Max. Marks:50	
Q.1	Perform the DNA barcoding of plant material using given data 'A'.	12	
	OR		
	Perform DNA sequencing by Sanger's method of the given sequence 'A'.	12	
Q.3	Perform the experiment 'B' allotted to you.	12	
Q.4	Perform the given analysis of data 'C' using computer (Bioinformatics).	08	
Q.5	Prepare the squash/Jam/jelly/pickle from the given material 'D' .	12	
Q.6	Viva voce. (Based on Paper III and Paper IV)	06	

KEY

B-TLC of Patchouli or Citronella / Saponification value

 $C-BLAST \ / \ Multiple \ Sequence \ Alignment \ (MSA) \ / \ Phylogenetic \ Analysis \ / \ RASMOL \ / \ SPDBV$

UNIVERSITY OF MUMBAI T.Y.B.SC. BOTANY SEMESTER V (USBOP10) Plant Diversity IV (USBOP602) (For 3 Units) Practical Paper – II

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q. 1A.	Classify specimen 'A' up to its family giving reasons. Give floral formula. Sketch nea	t and
	labeled L.S. of flower and T.S. ovary.	08
Q. 1.B.	Identify genus and species of specimen 'B' using flora.	04
Q. 2	Make a stained preparation of specimen 'C' and comment on its ecological anatomy.	06
Q.3.A	Calculate Simpson's Diversity Index from the given data 'D'.	08
Q.3.B	Mark the Phytogeographic region 'E' in the map of India and Comment on the same.	05
Q.4	Identify and describe slide/specimen 'F', 'G' & 'H'.	09
Q.5	Field Report.	05
Q.6	Journal	05

KEY

- A-Families of T.Y.B.Sc Sem VI only
- B-Plants from F.Y., S.Y. & T.Y. B. Sc.(Sem V Families to be included).
- **C** Ecological anatomy.

F, **G** & **H**– Economic importance of specimen from prescribe families (Sem VI only), Morphological Peculiarities of prescribed families (Sem – VI only), Embryology. (In random order)

UNIVERSITY OF MUMBAI T.Y.B.Sc. BOTANY SEMESTER VI(USBOP10) FORM AND FUNCTION III (USBOP603) (For 3 units) PRACTICAL III

Duration: 9:00 am to 01:00 pm

Max. Marks:50

Q.1	Perform the experiment 'A' allotted to you.	10
Q.2	Perform the experiment 'B' allotted to you.	10
Q.3	Make a squash preparation to show the stage of mitosis from the pre-treated root tips 'C'.	06
Q.4	Construct a chromosome map from the given data 'D'/ Identify the type of mutation and	
	comment on them (any two types of mutations)	10
Q.5	From the given data/ material 'E' determine test of significance using students t-test/	
	Regression Analysis /ANOVA	09
Q.6	Viva-voce. (based on Paper II and Paper III)	05

KEY

- A– Plant Biochemistry Experiment.
- **B** Plant Physiology Experiment.

ReferenceBooks

- 1. A handbook of Ethnobotany by S.K. Jain, V. Mudgal
- 2. Plants in folk religion and mythology (Contribution to Ethnobotany by S.K.Jain3rdRev.Ed).
- 3. Introduction to Plant Physiology by Noggle and Fritz, Prentice Hall Publishers(2002)
- 4. Plant Physiology by Salisbury and Ross CBS Publishers
- 5. Plant Physiology by Taiz and Zeiger Sinauer Associates Inc. Publishers, 2002
- 6. Genetics by Russel Peter Adison Wesley Longman Inc. (5thedition)
- 7. An introduction to Genetic analysis Griffith Freeman and Company(2000)
- 8. Fundamentals of Biostatics by Rastogi, Ane Books Pvt. Ltd.(2009).
- 9. College Botany Vol I and II by Gangulee Das and Dutta Central Education enterprises.
- 10. Cryptogamic Botany Vol I and II by G M Smith, Mcg raw Hill
- 11. Industrial Microbiology by Cassida, New Age International, New Delhi
- 12. Industrial Microbiology Mac Millan Publications, New Delhi
- 13. Physiological Plant Anatomy by Haberlandt, Mac Millan and Company
- 14. Ayurveda Ahar by P H Kulkarni
- 15. Pharmacognosy by Kokate, Purohit and Gokhale, Nirali Publications
- 16. Bioinformatics by Sunder Rajan
- 17. Instant Notes on Bioinformatics by Westhead (2002), Taylor Francis Publications.
- 18. Bioinformatics by Ignasimuthu
- DNA barcoding plants: taxonomy in a new perspective 2010. K Vijayan and C H Tsou, Current Science, 1530–1541.
- 20. Introduction to Biostatistics by P K Banerjee, Chand Publication.
- 21. Plant Biotechnology by K. Ramawat
- 22. Practical Biochemistry by David Plummer, McGraw Hill Publ.
- 23. Economic Botany by A F Hill, TATA McGRAW-HILL Publishing Co. Ltd.
- 24. Post-Harvest Technology by Verma and Joshi, Indus Publication
- 25. Embryology of Plants by Bhojwani and Bhatnagar
- 26. Pollen Morphology and Plant Taxonomy by G. Erdtman, Hafner Publ. Co., N.Y.
- 27. A text Book of Palynology by K Bhattacharya, New Central Book Agency Pvt. Ltd., London
- 28. An introduction to Embryology of Angiosperms by P Maheshwari, McGraw Hill Book Co.
- 29. Plant Systematics by Gurcharan Singh, Oxford and IBH Publ.
- 30. Taxonomy of Vascular Plants by Lawrence George, H M, Oxford and IBH Publ.