CH# Fundamentals
Part 2

FB/IG/TW: @educlashco [Vipin Dubey]

Classes
&

Objects

FB/IG/TW: @educlashco [Vipin Dubey]

Classes:

= Classes are essentially templates from which you create objects.

= [n C# .NET programming, everything you deal with involves‘classes and objects.
= The syntax of a class definition is:

< access_modifiers > class Class_Name

//--- Fields, properties, methods, and events ---

}

Using Partial Classes

Instead of defining an entire class by using the'class keyword, you can split the definition
into multiple classes by using the partial keyword.

public partial class Comtact

{
public inkt ID;
public string Email;
X

public partial class Contact

{
public string FirstName;

public string LastName;
FB/IG/TW: @educlashco [Vipin Dubey]

Creating an instance of the class:

=To instantiate the Contact class defined earlier, you first create.a variable of type
Contact :

Contact contactl,;
=Then instantiate it:
contactl = new Contact();

="Once instantiated we can assign values to variables defined in it.
contactl.ID =12;
contactl.FirstName = “Wei-Meng”;
contactl.LastName = “Lee”;
contactl.Email = “weimenglee@learn2develop.net”;

=You can also assign an object'to an object, like the following:
Contact contactl = new Contact();
Contact contact2 = contactl;

In these statements, contact2 and contactl are now both pointing to the same
object. Any changes made to one object will be reflected in the other object.

FB/IG/TW: @educlashco [Vipin Dubey]

Anonymous types:

Anonymous types enable you to define data types without having to formally
define a class.

var bocockl = new
{
ISEN = "978-0-470-17&661-0",
Title="Professional Windows Vista CGadgets Programming”,
Author = "Wei-Meng Lee",
Publisher="Wrox"

C# anonymous types are immutable, which means all the properties are read-only —
their values cannot be changed once they are initialized.

FB/IG/TW: @educlashco [Vipin Dubey]

Class Members:
Instance Members
Static Members

Note**: Constants defined within a class are implicitly(by-default) static

Access Modifiers:

mC# has five access modifiers — privatey, public , protected , internal and protected
internal .

FB/IG/TW: @educlashco [Vipin Dubey]

Inheritance

Inheritance is a property of OOPs in which the features

and behavior of a class are derived from another class.

The class whose members are inherited is called the base

class.

The class which inherits the members from the base class

is called the derived class.

Types of inheritance:-

Single Inheritance

Multi-level inheritance

Hierarchical inheritance

Hybrid inheritance

Multipath inheritance (not supported in C#)
Multiple inheritance (interfaces)

FB/IG/TW: @educlashco [Vipin Dubey]

Inheritance

= Inheritance facilitates code reuse and allows you to extend the functionality of
code that you have already written.

" [n object - oriented programming, inheritance is classified into two types:
implementation and interface.

" Implementation Inheritance:
Implementation inheritance is when a class derives from another base class, inheriting all the
base class’ s members

?Uhlic class Shape public class Rectangle : Shape
/{-—--properties—-—- 5

public double length { .get; set;]

public double width { get; set; }
f--—-method---

public doubla Perimeter ()

{
return 2 * (this.dength + this.width);

)

FB/IG/TW: @educlashco [Vipin Dubey]

= C# supports only single - class inheritance

= |f you do not specify the base class, the C# compiler assumes:that it is inheriting
from the System.Object class

FB/IG/TW: @educlashco [Vipin Dubey]

Inheritance

* Single Inheritance — when there is only one
base class and one derived class.

Base Class

Derived Class

FB/IG/TW: @educlashco [Vipin Dubey]

10

Inheritance

e Multilevel Inheritance — when a derived class
becomes the base class to another derived
class.

Base Class

Derived Class

Derived Class

FB/IG/TW: @educlashco [Vipin Dubey]

11

Inheritance

 Hierarchical Inheritance — when more than
one derived class is inherited from a single
base class.

Base Class

Class B Class C

FB/IG/TW: @educlashco [Vipin Dubey]

12

Inheritance

* Hybrid Inheritance — combination of two or
more inheritance (single, multilevel,
hierarchical)

Base Class

Class B Class C

Class B Class B Class B

FB/IG/TW: @educlashco [Vipin Dubey]

13

Inheritance

* Multiple Inheritance — only multiple

inheritance of interfaces are supported.

Interface A Interface B

FB/IG/TW: @educlashco [Vipin Dubey]

14

Access Modifiers

* private — highest restrictions. Access is limited
only to the containing class.

e protected — access is limited to the containing
class and its derived class.

* Internal —access is limited to the containing
assembly.

e protected internal —access is limited to the
containing assembly and derived classes in
other assembly.

e Public — lowest restrictions. Access is not
restricted.

FB/IG/TW: @educlashco [Vipin Dubey]

Function Members:
=Methods

=Properties

=Events

=Indexers

mUser - defined operators
=Constructors

mDestructors

="Method Syntax:

[access modifiers] return type method name (parameters)

{
! f——Method body——-

}
"A Method must be associated with a class.

FB/IG/TW: @educlashco [Vipin Dubey]

Passing arguments to a method:
Call by value:

Let the function is:
public int AddNumbers(int x, int y)

X++;
y++;
return x +v;

Then in the calling block

int numl =4, num2=5;
Console WriteLine(AddNumbers(num1, num2));
Console.WriteLine(num1,num2);

FB/IG/TW: @educlashco [Vipin Dubey]

17

Call by reference: (either use ref or out keyword)

Because C# functions can only return single values, passing arguments by
reference is useful when you need a method to return multiple values.

ref
In the definition of function:
public int AddNumbers(ref int x, ref int y)

{
X++;
y+t;
return x +y;
}
While calling:

int numl =4, num2 =5;
Console WriteLine(AddNumbers(ref num1, ref num?2));
Console WriteLine(num1,num?2);

Note**: The ref keyword requires that all the variables be initialized first.

FB/IG/TW: @educlashco [Vipin Dubey]

18

Out

=|f your intention is to use the variables solely to obtain some return values from
the method, you can use the out keyword.

=t is identical to the ref keyword except that it does not require the variables
passed in to be initialized first.

For function definition:
public void GetDate(out int day, out int month, out int year)

{
day = DateTime.Now.Day;
month = DateTime.Now.Month;
year = DateTime.Now.Year;

}

= in the calling method:
int day, month, year;
GetDate(out day, out month, out year);

= Note**: the out parameter in a function must be assigned a value before the
function returns. If itisn” t, a compiler error results.

19
FB/IG/TW: @educlashco [Vipin Dubey]

this keyword: The this keyword refers to the current instance of an object

(It is used to implement the Operator Overloading)

FB/IG/TW: @educlashco [Vipin Dubey]

20

Properties: Properties are function members that provide an easy way to read or
write the values of private data members.

Consider following example:
class Student

{

public string name;
public int age;
}
Now you can create a student object and.set its public data members as,
Student s = new Student();
s.name="Ajay Sawant”;
s.age=99;
Technically, the assignment to age variable is valid, but logically it should not be
allowed.

A solution to this is to use properties.

21
FB/IG/TW: @educlashco [Vipin Dubey]

The Student class can be re-written as:

class Student

{
string name;
int age;
public int Age
{
get{
}
set
}
}
public string Name
{
get{
}
set{
}
}
}

FB/IG/TW: @educlashco

return(age);

age=value;

return(name);

name=value;

[Vipin Dubey]

The set accessor sets the value.
The get accessor returns the value.

Now to implement the student age constraint we can write:

public int Age
{
get {
return(age);
}
set{
if (value<50 && value>6)
age=value;
else
age=0;
}
}

FB/IG/TW: @educlashco [Vipin Dubey]

23

Read Only and Write Only properties:

= When a property has both get and set accessor = read- write property
= When a property has get but not set accessor = read- Only property

= When a property has set but not get accessor = write- Only property

(Write-Only properties are generally never used)

FB/IG/TW: @educlashco [Vipin Dubey]

= Automatic Properties:

In C# you can shorten those properties that have no filtering (checking) rules by

using a feature known as automatic properties .

public class Contact
{
int _ID;
public int ID
{
get

{

return _ID;

}

sat

{
if (value > 0 EE walue <= 9999)

_ID value;

_ID

Il
[

}

public string/FirstName {get; set;}
public string/LastName {get; set;}
public strimg Email {get; set;}

FB/IG/TW: {@educlashco [Vipin Dubey]

25

=Now there’ s no need for you to define private members to store the values of
the properties.

=Compiler automatically generates the private variables:in this case.

=|f you decide to add filtering rules to the properties later,"you can simply
implement the set and get accessor of each property.

=To restrict the visibility of the get and&et accessor when using the automatic
properties feature, you simply prefixithe get or-set accessor with the private
keyword, like this:

public string FirstName {get; private set;}
This statement sets the FirstName property as read - only.

26
FB/IG/TW: @educlashco [Vipin Dubey]

Constructors

* A special method of the class that will be
automatically invoked when an instance of the
class is created is called a constructor.

* The main use of constructors is to initialize

private fields of the class while creating an
instance for the class.

FB/IG/TW: @educlashco [Vipin Dubey]

Constructors
Types of constructors:-
* Default Constructor
* Parameterized Constructor
* Copy Constructor
* Static Constructor
* Private Constructor

FB/IG/TW: @educlashco [Vipin Dubey]

Constructors

e Default Constructor — constructors with no parameters

e Parameterized Constructor - A constructor with at least one
parameter

* Copy Constructor - The constructor which creates an object
by copying variables from another object. Basically, it take
the object of the same class as a parameter.

e Static Constructor - When a constructor is created as static,
it will be invoked only once for all of instances of the class
and it is invoked during the creation of the first instance of
the class or the first reference to a static member in the
class. A static constructor is used to initialize static fields of
the class and to write the code that needs to be executed
only once.

* Private Constructor - When a constructor is created with a
private specifier, it is not possible for other classes to derive
from this class, neither is it possible to create an instance
of this class. They are usually used in classes that contain

static members only.
FB/IG/TW: @educlashco [Vipin Dubey]

Inheritance and Constructors

Remember that if a base class contains constructors, one of them must be a
default constructor.

= Suppose BaseClass contains two constructors — one default and one
parameterized: And DerivedClass contains one default constructor:

You can choose which constructor you want to invoke in BaseClass by using the
base keyword in the default constructor in DerivedClass , like this:

public class DeravedClass : BaseClass
{

/f-——default constructor---
public DerivedClass(): base(4)
{

ConsolesWriteline ("Constructor in DerivedClass");

]

) . 20
FB/IG/TW: @educlashco [Vipin Dubey]

Constructors:
Static Constructors
mA static constructor does not take access modifiers or have parameters.

mA static constructor is called automatically to initialize the class before the first
instance is created or any static members are referenced.

mA static constructor cannot be called directly.

=The user has no control on when the static constructor is executed in the
program.

31
FB/IG/TW: @educlashco [Vipin Dubey]

Static constructor to count no of Objects created for a class:

public class Contact

{
.-'I.-" s
public static int count;
static Contact()
{
count = 0;
Console.WriteLine("Static constructor”);
]
ff-—-—-first constructor---
public Contact i)
{
count++;
Console.WriteLine("First constructor®):
|
ff...
1

FB/IG/TW: @educlashco [Vipin Dubey]

Copy Constructor:

The C# language does not provide a copy constructor that allows you to copy the
value of an existing object into a new object when it is created.

Instead, you have to write your own.

class Contact

|
ff...
/f——a copy constructor—-—-

public Contact (Contast otherContact)

{
this.ID = otherCaontact.ID;

this.FirstName = otherContact.FirstName;

this.LastName = otherContact.LastName;
this.Email = otherContact.Email;

33
FB/IG/TW: @educlashco [Vipin Dubey]

To use the copy constructor, first create a Contact object:

Contact

cl = new Contact (1234, "Wei-Meng", "Lea",
"weimengleel@learnZdevelop.net™);

Then, instantiate another Contact object and pass in the first object as the argument:

FB/IG/TW: @educlashco

Contact

Console.
Console.
MWritelLine(c2.LastName); //---Lee---

WriteLine (cZ.Email) ; /f-—— weimenglee@learnZdevelop.

Console

Console.

cZ2 = new Contact(cl);
WriteLine(c2.ID); Jf=—=-1234--—-
WriteLine(c2.FirstName); //----Wei-Meng---

[Vipin Dubey]

34

Private Constructor

* A class with a private constructor cannot be
inherited.

* An object of this class cannot be created until
there is a parameterized constructor.

* Private constructors are used to put utility
methods inside the class and to call those
methods directly without creating instances.

FB/IG/TW: @educlashco [Vipin Dubey]

Private Constructor

namespace ConsolefApplicationd

the method inside

! class Program
1
static void Main(string[] args)
! // no instance of the class is created ...
//the class is called directly using the class
Lcnscle.writELinE(CL.add{2,3}j;
b
b
class (1
1
private C1()
1
b
public static int add(int x,int y)
1
return x + y;
}
b

FB/IG/TW: @educlashco [Vipin Dubey]

37

System.Object Class:
= In C#, all classes inherit from the System.Object base class.

= This means that all classes contain the methods defined in the System.Object
class.

= All class definitions that do not inherit from other classes by default inherit
directly from the System .Object class.

38
FB/IG/TW: @educlashco [Vipin Dubey]

Methods of System.Object class:
Equals() —

= Checks whether the value of the current object is equal to,that of another
object.

= By default, the Equals() method checks for reference equality (that is, if two
objects are pointing to the same object). You shouldoverride this method for your

class.

GetHashCode() —

= Returns a hash code for the class:The.GetHashCode() method is suitable for use
in hashing algorithms and datasstructures, such as a hash table.

GetType() —
= Returns the type of the cdrrent object

ToString() —
= Returns the strlng representatlon Of an o Aect 39
FB/IG/TW: @educlashco Vipin Du

Structures

Structures:
An alternative to using classes is to use a struct.

A struct is a lightweight user - defined type that isvery similarto a class, but with
some exceptions:

= Structs do not support inheritance or destructors.
= A struct is a value type (class is a reference type).
= A struct cannot declare a default constructor.

= structs are allocated memory on stack.

= Like classes, structs support constructor, properties, and methods.

40
FB/IG/TW: @educlashco [Vipin Dubey]

Abstract Class:

= The Shape class does not specify a particular shape, and thus-it really does not
make sense for you to instantiate it directly.

= Instead, all other shapes should inherit from this base class.

= To ensure that you cannot instantiate the Shape class directly, you can make it
an abstract class by using the abstract keyword.

public abstract class Shape

{
[/ -—-properties==-

public double‘length { get; set; }
public doubde width _ { get; set; }

/f———method-—--
public double Perimeter ()
{
return 2 * (this.length + this.width);
1

41
FB/IG/TW: @educlashco [Vipin Dubey]

Abstract Methods:

An abstract method has no implementation, and its implementation is left to the
classes that inherit from the class that defines it.

= An abstract method is defined just like a normal method without the normal
method block ({}).

= Classes that inherit from a class containing abstract methods must provide the
implementation for those methods.

sNote**: An abstract class can contain both abstract as well as non abstract
methods.

42
FB/IG/TW: @educlashco [Vipin Dubey]

public abstract class Shape

{
ff-—--properties---

public double length { get: set; }

public double width { get; set;]

/ f———method-——-
public double Perimeter{()

{
return 2 * (this.length + this.width);

)

/ f—-——abstract method-—-
public abstract double Areal):

FB/IG/TW: @educlashco [Vipin Dubey]

43

public class Rectangle :

{

FB/IG/TW: @educlashco

Shape

[Vipin Dubey]

44

Interfaces

Interface definition

The interface defines the composition of a class, such as methods properties, and
so on. However, the interface does not provide any implementation for any of
these members.

Implementing class

The class that implements a particulardnterface provides the implementation for
all the members defined in that interface.

Clients
Objects that instantiate from thedimplementing classes are known as the client.
The client invokes the methods defined in the interface, whose implementation is

provided by the implementing class.

45
FB/IG/TW: @educlashco [Vipin Dubey]

Differences between an Interface and an Abstract Base Class

Conceptually, an abstract class is similar to an interface; however, they do have some
subtle differences:

d An abstract class can contain a mixture of concrete methods (implemented)
and abstract methods (an abstract class needs at least one abstract method); an
interface does not contain any method implementations.

J An abstract class can contain constructors and destructors; an interface
does not.

d Aclass can implement multiple interfaces, but it can inherit from only one
abstract class.

FB/IG/TW: @educlashco [Vipin Dubey]

46

Defining Interface:

Defining an interface is similar to defining a class — you use the.interface keyword
followed by an identifier (the name of the interface) and then specify the
interface body.

Eg' interface IPerson

{
string Name { get; set; }
DateTime DatecfBirth { get; =set; }
ushort Age();

You do not use any access modifiers oninterface members — they are implicitly
public.

It s important to note that you cannot create an instance of the interface
directly; you can only instantiate a class that implements that interface.

47
FB/IG/TW: @educlashco [Vipin Dubey]

Implementing an Interface:
Once an interface is defined, you can create a new class to implement it. The class
that implements that particular interface must provide all the implementation for

the members defined in that interface.

public class Employee : IPerson

{
public string Name { get; set; }

public DateTime DateocfBirth { get; set; }
public ushort Age()

{
return (ushort) (DateTime.Now.Year - this.DateofBirth.Year):

)

All implemented members must have the public access modifiers.

48

FB/IG/TW: @educlashco [Vipin Dubey]

You can now us e the class as you would a normal class:

Employee el = new Employee():

al.DateofBirth = new DateTime (1980, 7, 28);

el.Name = "Janet”;

Console.WriteLine(el.Age()); /[/-—--prints out Z8<--

FB/IG/TW: @educlashco [Vipin Dubey]

49

Implementing Multiple Interfaces:
A class can implement any number of interfaces.

public class Employee : IPerson, IAddress
{

J f-—--implementation here---

FB/IG/TW: @educlashco [Vipin Dubey]

50

Extending Interfaces:

You can extend interfaces if you need to add new members to.an existing
interface.

For example, you might want to define another interface named IManager to
store information about managers.

Basically, a manager uses the same members defined in the IPerson interface,
with perhaps just one more additional property — Dept.

In this case, you can define the IManager interface by extending the IPerson
interface, like this:
interface IPerscon

{
string Name { get; set;]
DateTime DatecfBirth { get; set; }
ushort Aged):
}
interface : IPerson
{
string { get; set; }

FB/IG/TW: @educlashco [Vipin Dubey]

51

To use the IManager interface, you define a Manager class that implements the
IManager interface, like this:

public class Manager : IManager
{
/f———IPerson——-
public string Name { get; set; }
public DateTime DateofBirth { get; set;]
public ushort Age()

{
return (ushort) (DateTime.Now.Year - this.DateocfBirth.Year):;

)

/ /———IManager—---
public string Dept { get; sety }

52
FB/IG/TW: @educlashco [Vipin Dubey]

You can also extend multiple interfaces at the same time.

The following example shows the Imanager interface extending both the IPerson
and the IAddress interfaces:

interface IManager : IPerson, IAddress

{
string Dept { get; set; }

}

The Manager class now needs to implement the additional members defined in
the IAddress interface

53
FB/IG/TW: @educlashco [Vipin Dubey]

Delegates

* A delegate is a type-safe function pointer i.e. when
you invoke the delegate, the function gets invoked.

* The signature of the delegate must match the
signature of the function, the delegate points to
(type-safe).

* To use a delegate an instance has to be created
similar to class and invoked similar to a method.

* The syntax of a delegate is also similar to the syntax
of a method.

* Delegates can be used to define callback methods.
* Delegates allow methods to be passed as
parameters.

FB/IG/TW: @educlashco [Vipin Dubey]

Delegates

public delegate woid Hellodel(string strdelmsg);
namespace Delegates

1
class Program
1
static wvoid Main(string[] args)
1
Hellodel hd = new Helleocdel(Hello);
hd({"Delegates inwvoked..™);
Hellodel hdl = new Hellodel(World);
hdl({"wWorld Delegates inveoked..");
¥
public static woid Hello(string strmsg)
1
Consale.WriteLine(strmsg);
Consale.ReadlLine();
¥
public static woid World(string strmsg)
1
Consocle.Writeline(strmsg);
Console.ReadLine();
¥
h
¥

FB/IG/TW: @educlashco [Vipin Dubey]

Delegates - CallBack

namespace Delegates CallBack

1
public delegate woid CallBack({int i);
class Program
1
static woid Main(string[] args)
d
Classl cl = new Class1();
cl.lLooping({CBack);
¥
static woid CBack(int 7j)
d
Conscle.WritelLine(j);:
Conscle.ReadLine()
¥
H
class Classl
1
public woid Looping(CallBack obj)
1
for (int i = @8; i < 1888688; i+d)
1
if (i % ses == &)
obj(i);
¥
¥
¥
¥

FB/IG/TW: @educlashco [Vipin Dubey]

Delegates - MultiCast

* Delegate which hold and invoke multiple
methods such Delegates are called Multicast

Delegates.

* Multicast Delegates are also known as
Combinable Delegates.

* The methods must satisfy the conditions like
the return type of the Delegate.

* Multicast Delegate instance is created by
combining two Delegates.

FB/IG/TW: @educlashco [Vipin Dubey]

Delegates - MultiCast

delegate woid MultDel();
namespace Delegates_Multicast

i
class Program
1
static wvoid Main(string[] args)
1
MultDel ml = new MultDel({(Cl.good)};
MultDel m2 = new MultDel{Cl.mornj};
MultDel m3 = new MultDel({Cl.after);
MultDel md = ml + m2 + m3;
ma()5
Consocle.Readline();
md = md - m3;
ma()5
Consocle.ReadLline () ;
¥
¥
class C1
1
public static woid good()
1
Conscle.WriteLine(™@ood ");
¥
public static woid morn()
1

Conscle.WriteLine{"Morning™);

FB/IG/TW: @educlashco [Vipin Dubey]

Virtual Methods

(Function Overriding, Runtime polymorphism)

If we want to create a Circle class, we will derive it from shape class.

Then the perimeter function which is defined in the shape class can not be used,
as Circle don’t have length and breadth.

Hence we need to create a new perimeter function in Circle class.

To do so, we need to prefix the Perimeter() method with the virtual keyword to
indicate that all derived classes have the option to change its implementation:

public abstract class Shape
{

//f——properties-—-
public double length { get: set; }
public double width { get; set;]

/f---make this methed as virtual---
public [wirtual |double Perimeter()

{

return 2 * (this.length + this.width});

/ f———abstract method-—-
public abstract double Areal);

59

FB/IG/TW: @educlashco [Vipin Dubey]

ﬂ

t

Q
>

The Circle class now has to provide implementation for Perimeter() and

Area() methods

public class Circle : Shape
{

60
FB/IG/ITW: @educlashco [Vipin Dubey]

Indexers

e Allows elements of an internal collection of an
object to be accessed by using array notation
on the object itself.

* Indexers allow instances of a class or struct to
be indexed just like arrays.

* Accessed through an index.

* Indexers use simple get and set accessor
methods to assigh and retrieve values.

FB/IG/TW: @educlashco [Vipin Dubey]

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/get
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/set

Indexers

class Names

1
string[] names;
static int count = @;
public Names(int x)

1
names = new string[x];
}
public void add(string na)
1
try
1
if (count > names.Length - 1} throw new IndexOutOfRangeExcepticn();
names[count] = naj
count++;
h
catch (IndexOutOfRangeException ex)
1
Consocle.Writeline(ex.Message);
h
h
public string this[int %]
1
get
1
return names[x];
h
set
1
names[x] = walue;
h
h

FB/IG/TW: @educlashco [Vipin Dubey]

62

class Emplist

r
4
L

List<Employee> 11;
public void add()

4
L

11 = new List<Employee>();

11.Add(new Employee() { ID = 1, FName =
11.Add(new Employee() { ID = 2, FName =
11.Add(new Employee() { ID = 3, FName =

public Employee this[int empld]

get

L

return 11.FirstOrDefault{emp

1
ket
11.FirstOrDefault{emp = emp.
11.FirstOrDefault{emp = emp.
1

T
class Employee

4
L

public int ID { get; set; }
public string FMame { get; set; }
public string LMame { get; set; }

FB/IG/TW: @educlashco

]
W

ID
ID

Emp.

Indexers

"sangesta”, LName = "Soni" });
"Saurabh", LMame = "Shah" });
"Surbhi”, LNMame = "Singh"™ });

ID == empld);

empId}).FName = walue.Fhame;
empId).LName = value.Fhame;

[Vipin Dubey]

63

Sealed classes and Methods

Sealed Class:
= A class prefixed with the sealed keyword prevents other classes inheriting from
it.

m A sealed class cannot contain virtual methods.

Sealed Methods:

= You can also seal methods so that other derived classes cannot override the
implementation that you have provided in the current class.

=However, sealed methods cannot be in the first base class.
public class Rectangle : Shape

{
public override sealed double Area()
{
return this.length * this.width;
}
}

FB/IG/TW: @educlashco [Vipin Dubey]

Sealed classes and Methods

class Program

1
static woid Main(string[] args)
1
¥

public wirtual weid add()

1
¥

public sealed woid sub() // sealed method cannot be in the first ‘base class

1
¥
h

A

class A : Program

1

public sealed override woid add(} // owerriden method can be sealed to prevent it
{ f/ from getting overriden in the derived class
base.add();

¥
h

il

class B : A

1

public override woid add() // since this method is sealed in the base class A
{ // it cannot be overriden in the inherited method B

i

65
FB/IG/TW: @educlashco [Vipin Dubey]

The following table summarizes the different keywords used for inheritance.

Modifier
W
static
virtual

abstract

override

scaled

FB/IG/TW: @educlashco

Description

Hides an inherited method with the same signature.
A member that belongs to the type itself and not to a specific object.
A method that can be overridden by a derived class.

Provides the signature of a method /class but does not contain any
jn‘nplemenmtil:rn.

Owerrides an inherited virtual or abstract method.

A method that cannot be overridden by derived classes; a class that cannot be
inherited by other classes.

66
[Vipin Dubey]

Polymorphism
* Runtime Polymorphism or late binding or
dynamic binding
— method overriding
— Same method, same signature, different class

 Compile time Polymorphism or early binding
or static binding - overloading

FB/IG/TW: @educlashco [Vipin Dubey]

Overloading Methods

(Function Overloading, Compile time polymorphism)

Method Overloading:

When you have multiple methods in a class having the same name but different
signatures (parameters), they are known as overloaded methods.

class Class1
{
void print(int i)
{
Console.WriteLine("Printing int: {0}, i);
}
void print(double f)

{
Console.WriteLine("Printing{float:-{0}",),

}
void print(string s)
{
Console.WriteLine("Printing string: {0}", s);
}
}

FB/IG/TW: @educlashco [Vipin Dubey]

68

Operator Overloading

(Compile time Polymorphism)

* Overloaded operators are functions with
special names the keyword operator followed
by the symbol for the operator being defined.

 An overloaded operator has a return type and
a parameter list.

* Overloaded operators are always static.

public static B operator+(B b1, B b2)
{return b1.Add(b2); }

FB/IG/TW: @educlashco [Vipin Dubey]

Operator Overloading

(Compile time Polymorphism)

To see how operator overloading works, consider the following program
containing the Point class representing a point in a coordinate system:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace Operatordverloading

{

clas=s Program

{
static woid Main|(string[] args)
{
}

X

class Point

{
public Single XO{ get; set; }
public Single Y { getijiset;\}
public Point (Single X, Single ¥)
{
this.X = X;
this.Y = ¥;
}
public double DistanceFromOrigin()
{ return (Math.Sqgrt (Math.Pow({this.X, 2} + Math.Pow(this.¥, 2))};
1
1

FB/IG/TW: @educlashco [Vipin Dubey]

» The Point class contains two public properties (X and Y), a constructor, and a
method — DistanceFromOrigin() .

= |f you constantly perform calculations where you need to add the distances of two
points (from the origin), your code may look like this:

static voild Main(string[] args)

{

new Point (4, 5);
new Point (2, T7);

Point pthA
Point ptB

double distancelA, distanceB:;

ptA.DistanceFromOrigin{); //---6.40312423743285---
ptB.DistanceFromOrigini{); //---7.28010988923052-—-

distanceh
distanceB

Console.WriteLine (distanceh + ‘distanceB); f/---13.6832341267134---

Console.Readline () ;

= A much better implementation is to overload the + operator for use with the Point
class.

71
FB/IG/TW: @educlashco [Vipin Dubey]

To overload the + operator, define a public static operator within the Point class as
follows:

class Point

{
public Single X { get; set; }
public Single Y { get; set; }

public Point (Single X, Single Y)
{
this.X = X;
this.¥ = ¥;
}
public double DistanceFromOrigin()
{
return (Math.Sqgrt (Math.Pow(this.X, 2} + Math.Pow(this.¥, 2)));
}

public static double operator +(Point A, Point B)
{

return (A.DistanceFromOrigin() + B.DistanceFromDrigin()):

}

72
FB/IG/TW: @educlashco [Vipin Dubey]

The operator keyword overloads a built - in operator.

static wvold Malin(string[] args)

{
Point ptA

Point ptB

new Point{4, 5);
new Point(2, 7):

Console.WriteLine(ptA + ptB); Ff/---13.68B32341267134——-
Console.ReadLine() ;

73
FB/IG/TW: @educlashco [Vipin Dubey]

Exception Handling

* Exceptions are a type of error that occurs during the
execution of an application.

 try— Atry block is used to encapsulate a region of code. If any
code throws an exception within that try block, the exception
will be handled by the corresponding catch.

» catch — When an exception occurs, the Catch block of code is
executed. This is where you are able to handle the exception,
log it, or ignore it. Multiple catch blocks are allowed.

* finally — The finally block allows you to execute certain code if
an exception is thrown or not. For example, disposing of an
object that must be disposed of.

 throw —The throw keyword is used to actually create a new
exception that is the bubbled up to a try catch finally block.

FB/IG/TW: @educlashco [Vipin Dubey]

¥

Exception Handling

static woid Main{string[] args)

{

[

el ai

string[] name = new string[z];
name[a] = "ABID";
name[1] "EFGH";
name[2] = "WEYZ";

cle wWriteLine{"Enter name:"};
ring nm = Conscle.Readlined);

bool fouwnd
for {int 1

false;

if (name[i] == nn}
found = true;

-

if{found == false)

throw new NamenmotfoundinList({"Nae not found Exception Handlinmg!!

2. WriteLinedex.Messagel;
=.ReadLine};

class MameNotfoundinList : Exception

i

H

public NameMotfoundinList{string message) :

i
¥

FB/IG/TW: @educlashco [Vipin Dubey]

2; 1 < name.Length; i+=)

base(message)

S H

FB/IG/TW: @educlashco

C#
Fundamentals
Part 2
Ends

[Vipin Dubey]

