
C# Basics

[Vipin Dubey]FB/IG/TW: @educlashco

Basics of C#
 C# is an object oriented programming language created by

Microsoft.

 Build upon some of the best features of some major

programming language.

 C# is one of the most popular programming language.

 C# is a case sensitive language.

[Vipin Dubey]FB/IG/TW: @educlashco

Basic program in C#

using System;

class Program

{

static void Main()

{

Console.WriteLine("Hello World!!!");

Console.ReadLine();

}

}

[Vipin Dubey]FB/IG/TW: @educlashco

Basic program in C#

 The Main method of a .Net program is the entry point ot the

program.

 The ‗System‘ is a namespace provided by the .Net framework

library.

 The static class ‗Console‘ is contained inside the System

namespace.

 The methods inside Console class can also be called by

directly calling the System namespace.

System.Console.WriteLine(―Hello‖);

[Vipin Dubey]FB/IG/TW: @educlashco

Variables

 In C#, you declare variables using the following format:

datatype identifier;

[Vipin Dubey]FB/IG/TW: @educlashco

Variables-contd.
• Note the following:

• num1 is declared as an int (integer).

• num2 is declared as an int and assigned a value at the same time.

• num3 and num4 are declared as float (floating point number)

• You need to declare a variable before you can use it. If not, C#

compiler will flag that as an error.

• You can assign multiple variables in the same statement, as is

shown in the assignment of num3 and num4 .

[Vipin Dubey]FB/IG/TW: @educlashco

Constants

Constants

 The constants refer to fixed values that the program

may not alter during its execution. These fixed values are

also called literals.

 To declare a constant in C#, you use the const keyword, like this:

 //---declared the PI constant---

 const float PI=3.14f;

[Vipin Dubey]FB/IG/TW: @educlashco

 Find the output of the following:

static void Main(string[] args)

{

const int m = 100;

int n = 10;

const int k = n * 5 * 100 / n ;

Console.WriteLine(m * k);

Console.ReadLine();

}

[Vipin Dubey]FB/IG/TW: @educlashco

Variable scope
 Two identically named variables in different scope would

be legal

[Vipin Dubey]FB/IG/TW: @educlashco

 Declaring another variable named i outside the loop or inside
it will cause a compilation error as the following example
shows:

Variable scope

[Vipin Dubey]FB/IG/TW: @educlashco

Data Types
 C# is a strongly typed language and as such all variables

and objects must have a declared data type. The data type

can be one of the following:

 Value

 Reference

 User - defined

 Anonymous

 Value Types:

A value type variable contains the data that it is assigned.

And when you assign a value type variable to another, you

make a copy of it.

[Vipin Dubey]FB/IG/TW: @educlashco

Value Types
int num1 = 5; //---or---

System.Int32 num2 = 5;

 To get the type of a variable, use the GetType() method:

Console.WriteLine(num1.GetType()); //---System.Int32---

 In C#, all noninteger numbers are always treated as a double. And
so if you want to assign a noninteger number like 3.99 to a float
variable, you need to append it with the F (or f) suffix, like this:

 float price = 3.99F;

 You can also assign integer values using hexadecimal
representation. Simply prefix the hexadecimal number with 0x ,
like this:

int num1 = 0xA;

Console.WriteLine(num1); //---10---

[Vipin Dubey]FB/IG/TW: @educlashco

 Nullable Type
 All value types in C# have a default value when they are declared. For

example, the following declaration declares a Boolean and an int
variable:
Boolean married; //---default value is false---

int age; //--- default value is 0---

 However, C# prevents you from using a variable if you do not explicitly
initialize it. The following statements, for instance, cause the compiler to
complain:

Boolean married;

//---error: Use of unassigned local variable ‗married‘---

Console.WriteLine(married);

 To use the variable, you first need to initialize it with a value:

Boolean married = false;

Console.WriteLine(married); //---now OK---

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 Now married has a default value of false . There are times, though, when you do
not know the marital status of a person, and the variable should be neither true
nor false .

 In C#, you can declare value types to be nullable , meaning that they do not yet
have a value.

 To make the married variable nullable, the above declaration can be rewritten in
two different ways (all are equivalent):

Boolean? married = null;

//---or---

Nullable < Boolean > married = null;

 To check the value of a nullable variable, use the HasValue property, like this:

if (married.HasValue) {

//---this line will be executed only

// if married is either true or false---

Console.WriteLine(married.Value); }

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 When dealing with nullable types, you may want to

assign a nullable variable to another variable,like this:

int? num1 = null;

int num2 = num1; // Error

 To resolve this, you can use the null coalescing operator (??

). Consider the following example:

int? num1 = null;

int num2 = num1 ?? 0;

Console.WriteLine(num2); //---0---

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 For reference types, the variable stores a reference to the data rather than the
actual data. Consider the following:

Button btn1, btn2;

btn1 = new Button();

btn1.Text = ―OK‖;

btn2 = btn1;

Console.WriteLine(―{0} {1}‖, btn1.Text, btn2.Text);

btn2.Text = ―Cancel‖;

Console.WriteLine(―{0} {1}‖, btn1.Text, btn2.Text);

 // First Output: OK OK

 When you change btn2 ‘ s Text property to ― Cancel ‖ , you invariably change
btn1 ‘ s Text property, as the second output shows:

 //Cancel Cancel

 That ‘ s because btn1 and btn2 are both pointing to the same Button object

 To remove the reference to an object in a reference type, simply use the null
keyword: btn2 = null;

Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

 C# supports two predefined reference types — object
and string — which are described in the following table.

Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

Value Types vs Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

Value Type assignment

Reference Type assignment

[Vipin Dubey]FB/IG/TW: @educlashco

Type Conversion (Type Casting)

 Type conversion is converting one type of data to another

type. It is also known as Type Casting. In C#, type casting has

two forms:

 Implicit type conversion -These conversions are

performed by C# in a type-safe manner. For example, are

conversions from smaller to larger integral types and

conversions from derived classes to base classes.

 Explicit type conversion -These conversions are done

explicitly by users using the pre-defined functions. Explicit

conversions require a cast operator.

[Vipin Dubey]FB/IG/TW: @educlashco

Type Conversion (Type Casting)

 C# is a strongly typed language, so when you are assigning values of
variables from one type to another, you must take extra care to ensure
that the assignment is compatible.

 Converting a value from a smaller range to a bigger range is known
as widening

 The preceding statement could be made valid when you perform a type
casting operation

 **There may be overflow while typecasting, to avoid this we can use
‗check ‗ keyword.

[Vipin Dubey]FB/IG/TW: @educlashco

Correct Set of Code for given data ‘a’ and ‘b’ to print output for ‘c’ as

74 ?
a) int a = 12;

float b = 6.2f;

int c;

c = a / b + a * b;

Console.WriteLine(c);

b) int a = 12;

float b = 6.2f;

int c;

c = a / Convert.ToInt32(b) + a * b;

Console.WriteLine(c);

c) int a = 12;

float b = 6.2f;

int c;

c = a / Convert.ToInt32(b) + a * Convert.ToInt32(b);

Console.WriteLine(c);

d) int a = 12;

float b = 6.2f;

int c;

c = Convert.ToInt32(a / b + a * b);

Console.WriteLine(c); [Vipin Dubey]FB/IG/TW: @educlashco

Does the output remain same or

different for both cases?

 char l ='k';

float b = 19.0f;

int c;

c = (l / Convert.ToInt32(b));

Console.WriteLine(c);

 char l ='k';

float b = 19.0f;

int c;

c = Convert.ToInt32(l / b);

Console.WriteLine(c);

[Vipin Dubey]FB/IG/TW: @educlashco

Correct output for code is?

static void Main(string[] args)

{

float a = 10.553f;

long b = 12L;

int c;

c = Convert.ToInt32(a + b);

Console.WriteLine(c);

}

a) 23.453
b) 22
c) 23
d) 22.453

[Vipin Dubey]FB/IG/TW: @educlashco

Select correct set of code to display the

value of given variable ‘c’ as ‘25.302’.
a) float a = (double) 12.502f;

float b = 12.80f;

float c;

c = (float) a + b;

Console.WriteLine(c);

Console.ReadLine();

b) float a = 12.502D;

float b = 12.80f;

float c;

c = a + b;

Console.WriteLine(c);

Console.ReadLine();

c) double a = 12.502;

float b = 12.802f;

float c;

c = (float)a + b;

Console.WriteLine(c);

Console.ReadLine();

d) double a = (float) 12.502f;

float b = 12.80f;

float c;

c = a + b;

Console.WriteLine(c);

Console.ReadLine();

[Vipin Dubey]FB/IG/TW: @educlashco

++/-- operator
The increment operator (++) or the decrement operator(--)

increments or decrements its operand by 1. The

increment/decrement operator can appear before or after its

operand: ++variable and variable++.

Pre -The result of the operation is the value of the operand

after it has been incremented or decremented.

Post -The result of the operation is the value of the operand

before it has been incremented or decremented.

[Vipin Dubey]FB/IG/TW: @educlashco

Select output for the following set of code.

static void Main(string[] args)

{

int a = 5;

int b = 10;

int c;

Console.WriteLine(c = ++ a + b ++);

Console.WriteLine(b);

Console.ReadLine();

}

a) 11, 10
b) 16, 10
c) 16, 11
d) 15, 11

[Vipin Dubey]FB/IG/TW: @educlashco

Operators

 Arithmetic Operator

 Relational Operator

 Logical Operator

 Assignment Operator

 Increment and Decrement Operator

 Conditional Operator

 Bitwise Operator

 Special Operator

[Vipin Dubey]FB/IG/TW: @educlashco

Arithmetic Operator

 + : Addition or Unary Plus

 - : Subtraction or unary minus

 *: Multiplication

 /: Division

 %: Modulo Division

 Statements using Arithmetic operator follows BODMAS rule

[Vipin Dubey]FB/IG/TW: @educlashco

Output:
static void Main(string[] args)

{

int a, b, c, x;

a = 90;

b = 15;

c = 3;

x = a - b / 3 + c * 2 - 1;

Console.WriteLine(x);

Console.ReadLine();

}

a) 92

b) 89

c) 90

d) 88

[Vipin Dubey]FB/IG/TW: @educlashco

 Output:

static void Main(string[] args)

{

int a, b, c, x;

a = 90;

b = 15;

c = 3;

x = a - b / 3 + c * 2 - 1;

Console.WriteLine(x);

Console.ReadLine();

}

a) 92

b) 89

c) 90

d) 88

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

int a, b, c, x;

a = 80;

b = 15;

c = 2;

x = a - b / (3 * c) * (a + c);

Console.WriteLine(x);

Console.ReadLine();

}

a) 78

b) -84

c) 80

d) 98

[Vipin Dubey]FB/IG/TW: @educlashco

Relational Operator

 <: less than

 <=: less than or equal to

 >: greater than

 >=:greater than or equal to

 ==: equal to

 !=: not equal to

The value of a relational expression is either true or false.

Example:-

a=10;

b=20;

Console.WriteLine(a>b); // will return false

[Vipin Dubey]FB/IG/TW: @educlashco

Logical Operator

 &&:Logical AND

 ||:Logical OR

 !:Logical NOT

 &:Bitwise logical AND

 |:Bitwise logical OR

 ^:Bitwise logical exclusive OR

Op 1 Op2 Op1 && Op2 Op1||Op2

true true true true

true false false true

false true false true

false false false false

[Vipin Dubey]FB/IG/TW: @educlashco

Assignment Operator

 Assignment operators are used to assign the value of an

expression to a variable.

Eg: a=a+1

 Shorthand operators can also be used like a+=1

Assignment operator Shorthand operator

a=a+1 a+=1

a=a-1 a-+1

a=a*(n+1) a*=(n+1)

a=a/(n-1) a/=(n+1)

a=a%b a%=b

[Vipin Dubey]FB/IG/TW: @educlashco

Conditional Operator

 The character pair ?: is a ternary operator available in C#. This

operator is used to construct conditional expressions of the

form:

 exp1?exp2:exp3

 Eg: x=(a>b)?a:b

 It can also be written in the following format:

If(a>b)

x=a;

else

x=b;

[Vipin Dubey]FB/IG/TW: @educlashco

 Output:-

public static void Main(string[] args)

{

int a = 4;

int c = 2;

bool b = (a % c == 0 ? true : false);

Console.WriteLine(b.ToString());

if (a/c == 2)

{

Console.WriteLine("true");

}

else

{

Console.WriteLine("false");

}

Console.ReadLine();

a) True

False

b) False

True

c) True

True

d) False

False
[Vipin Dubey]FB/IG/TW: @educlashco

Bitwise Operator

Operator Description Example

& Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) = 12, which is 0000 1100

| Binary OR Operator copies a bit if it exists in

either operand.

(A | B) = 61, which is 0011 1101

^ Binary XOR Operator copies the bit if it is

set in one operand but not both.

(A ^ B) = 49, which is 0011 0001

~ Binary Ones Complement Operator is unary

and has the effect of 'flipping' bits.

(~A) = 61, which is 1100 0011 in 2's

complement due to a signed binary number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.

A << 2 = 240, which is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the number

of bits specified by the right operand.

A >> 2 = 15, which is 0000 1111

A=60 // 0011 1100 B=13 // 0000 1101

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

byte varA = 10;

byte varB = 20;

long result = varA & varB;

Console.WriteLine("{0} AND {1} Result :{2}", varA, varB, result);

varA = 10;

varB = 10;

result = varA & varB;

Console.WriteLine("{0} AND {1} Result : {2}", varA, varB, result);

Console.ReadLine();

}

a) 0, 20
b) 10, 10
c) 0, 10
d) 0, 0

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

byte varA = 10;

byte varB = 20;

long result = varA | varB;

Console.WriteLine("{0} AND {1} Result :{2}", varA, varB,

result);

varA = 10;

varB = 10;

result = varA & varB;

Console.WriteLine("{0} AND {1} Result : {2}", varA, varB,

result);

Console.ReadLine();

}

a) 0, 20

b) 10, 10

c) 0, 10

d) 0, 0

[Vipin Dubey]FB/IG/TW: @educlashco

Control Structures

 Decision making Structures or conditional statements

 Loops

Decision making structures or Conditional Statements

 if

 If-else

 Nested if

 switch

[Vipin Dubey]FB/IG/TW: @educlashco

 if Statement

The if statement consists of a boolean expression followed by

one or more statements.

 if-else Statement

The if statement can be followed by an optional else

statement, which executes when the boolean expression is

false.

 Nested if

An if or if-else statement inside another if or if-else

statement.

 Switch

A switch statement allows a variable to be tested for

equality against a list of values.

Control Structures

[Vipin Dubey]FB/IG/TW: @educlashco

Switch
 Example

switch (caseSwitch)

{

case 1:

Console.WriteLine("Case 1");

break;

case 2:

Console.WriteLine("Case 2");

break;

default:

Console.WriteLine("Default case");

break;

}

[Vipin Dubey]FB/IG/TW: @educlashco

 In C#, fall - throughs are not allowed;

 That is, each case block of code must include the break keyword so that execution can be

transferred out of the switch block (and not ― fall through ‖ the rest of the case statements).

 However, there is one exception to this rule — when a case block is empty. Here ‘ s an

example:

 The case for ― INTC ‖ has no execution block/statement and hence the execution will fall

through into the case for ― YHOO ‖ , which will incorrectly print the output ― 27.15 ‖ . In this

case, you need to insert a break statement after the ― INTC ‖ case to prevent the fall - through

Switch

[Vipin Dubey]FB/IG/TW: @educlashco

Loops
 A loop is a statement, or set of statements, repeated for a specified number of

times or until some condition is met.

 C# supports the following looping constructs:

 for

 foreach

 while and do – while

 For:

 Normal for loop……….. for (int i =0; i < 9; i++) { //code statements ... }

 Foreach

[Vipin Dubey]FB/IG/TW: @educlashco

While, do while loops

 The while statement checks the condition before executing the block of code.

 To execute the code at least once before evaluating the condition, use the do - while

statement.

 do-while loop can be used to write Menu Driven program

[Vipin Dubey]FB/IG/TW: @educlashco

Exiting from a loop

 To break out of a loop prematurely (before the exit condition is met), you can use one of

the following keywords:

 break

 return

 throw

 goto

 Break:

 The break keyword allows you to break out of a loop prematurely.

 Return:

 The return keyword allows you to terminate the execution of a method and return

control to the calling method. When you use it within a loop, it will also exit from the

loop.

[Vipin Dubey]FB/IG/TW: @educlashco

Return
class Program

{

static string FindWord(string[] arr, string word)

{

foreach(string w in arr)

{

if(w.StartsWith(word))

return w;

}

return string.Empty;

}

static void Main(string[] args)

{

string[] words = {"abcd","efgh","ijkl"};

Console.WriteLine(FindWord(words,"efgh"));

Console.ReadLine();

}

}

[Vipin Dubey]FB/IG/TW: @educlashco

Skipping an iteration…. Use of ‘continue’

 To skip to the next iteration in the loop, you can use the continue keyword. Consider the

following block of code:

[Vipin Dubey]FB/IG/TW: @educlashco

Pre-processor Directives

The pre-processor Directives tells the

compiler to process information before

compilation starts.

All pre-processor directives start with a #.

Pre-processor directives are not statements

and thus does not end with a semi-colon.

[Vipin Dubey]FB/IG/TW: @educlashco

Pre-processor Directives

Pre-processor

Directives

#define

#undef

Define and undefine symbols

#if

#else

#elif

#endif

Use login to see if symbol is defined

or not

#region

#endregion

Used for documentation of code.

[Vipin Dubey]FB/IG/TW: @educlashco

C# Fundamentals

Part 1

Ends

[Vipin Dubey]FB/IG/TW: @educlashco

