
C# Basics

[Vipin Dubey]FB/IG/TW: @educlashco

Basics of C#
 C# is an object oriented programming language created by

Microsoft.

 Build upon some of the best features of some major

programming language.

 C# is one of the most popular programming language.

 C# is a case sensitive language.

[Vipin Dubey]FB/IG/TW: @educlashco

Basic program in C#

using System;

class Program

{

static void Main()

{

Console.WriteLine("Hello World!!!");

Console.ReadLine();

}

}

[Vipin Dubey]FB/IG/TW: @educlashco

Basic program in C#

 The Main method of a .Net program is the entry point ot the

program.

 The ‗System‘ is a namespace provided by the .Net framework

library.

 The static class ‗Console‘ is contained inside the System

namespace.

 The methods inside Console class can also be called by

directly calling the System namespace.

System.Console.WriteLine(―Hello‖);

[Vipin Dubey]FB/IG/TW: @educlashco

Variables

 In C#, you declare variables using the following format:

datatype identifier;

[Vipin Dubey]FB/IG/TW: @educlashco

Variables-contd.
• Note the following:

• num1 is declared as an int (integer).

• num2 is declared as an int and assigned a value at the same time.

• num3 and num4 are declared as float (floating point number)

• You need to declare a variable before you can use it. If not, C#

compiler will flag that as an error.

• You can assign multiple variables in the same statement, as is

shown in the assignment of num3 and num4 .

[Vipin Dubey]FB/IG/TW: @educlashco

Constants

Constants

 The constants refer to fixed values that the program

may not alter during its execution. These fixed values are

also called literals.

 To declare a constant in C#, you use the const keyword, like this:

 //---declared the PI constant---

 const float PI=3.14f;

[Vipin Dubey]FB/IG/TW: @educlashco

 Find the output of the following:

static void Main(string[] args)

{

const int m = 100;

int n = 10;

const int k = n * 5 * 100 / n ;

Console.WriteLine(m * k);

Console.ReadLine();

}

[Vipin Dubey]FB/IG/TW: @educlashco

Variable scope
 Two identically named variables in different scope would

be legal

[Vipin Dubey]FB/IG/TW: @educlashco

 Declaring another variable named i outside the loop or inside
it will cause a compilation error as the following example
shows:

Variable scope

[Vipin Dubey]FB/IG/TW: @educlashco

Data Types
 C# is a strongly typed language and as such all variables

and objects must have a declared data type. The data type

can be one of the following:

 Value

 Reference

 User - defined

 Anonymous

 Value Types:

A value type variable contains the data that it is assigned.

And when you assign a value type variable to another, you

make a copy of it.

[Vipin Dubey]FB/IG/TW: @educlashco

Value Types
int num1 = 5; //---or---

System.Int32 num2 = 5;

 To get the type of a variable, use the GetType() method:

Console.WriteLine(num1.GetType()); //---System.Int32---

 In C#, all noninteger numbers are always treated as a double. And
so if you want to assign a noninteger number like 3.99 to a float
variable, you need to append it with the F (or f) suffix, like this:

 float price = 3.99F;

 You can also assign integer values using hexadecimal
representation. Simply prefix the hexadecimal number with 0x ,
like this:

int num1 = 0xA;

Console.WriteLine(num1); //---10---

[Vipin Dubey]FB/IG/TW: @educlashco

 Nullable Type
 All value types in C# have a default value when they are declared. For

example, the following declaration declares a Boolean and an int
variable:
Boolean married; //---default value is false---

int age; //--- default value is 0---

 However, C# prevents you from using a variable if you do not explicitly
initialize it. The following statements, for instance, cause the compiler to
complain:

Boolean married;

//---error: Use of unassigned local variable ‗married‘---

Console.WriteLine(married);

 To use the variable, you first need to initialize it with a value:

Boolean married = false;

Console.WriteLine(married); //---now OK---

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 Now married has a default value of false . There are times, though, when you do
not know the marital status of a person, and the variable should be neither true
nor false .

 In C#, you can declare value types to be nullable , meaning that they do not yet
have a value.

 To make the married variable nullable, the above declaration can be rewritten in
two different ways (all are equivalent):

Boolean? married = null;

//---or---

Nullable < Boolean > married = null;

 To check the value of a nullable variable, use the HasValue property, like this:

if (married.HasValue) {

//---this line will be executed only

// if married is either true or false---

Console.WriteLine(married.Value); }

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 When dealing with nullable types, you may want to

assign a nullable variable to another variable,like this:

int? num1 = null;

int num2 = num1; // Error

 To resolve this, you can use the null coalescing operator (??

). Consider the following example:

int? num1 = null;

int num2 = num1 ?? 0;

Console.WriteLine(num2); //---0---

Value Types

[Vipin Dubey]FB/IG/TW: @educlashco

 For reference types, the variable stores a reference to the data rather than the
actual data. Consider the following:

Button btn1, btn2;

btn1 = new Button();

btn1.Text = ―OK‖;

btn2 = btn1;

Console.WriteLine(―{0} {1}‖, btn1.Text, btn2.Text);

btn2.Text = ―Cancel‖;

Console.WriteLine(―{0} {1}‖, btn1.Text, btn2.Text);

 // First Output: OK OK

 When you change btn2 ‘ s Text property to ― Cancel ‖ , you invariably change
btn1 ‘ s Text property, as the second output shows:

 //Cancel Cancel

 That ‘ s because btn1 and btn2 are both pointing to the same Button object

 To remove the reference to an object in a reference type, simply use the null
keyword: btn2 = null;

Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

 C# supports two predefined reference types — object
and string — which are described in the following table.

Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

Value Types vs Reference Types

[Vipin Dubey]FB/IG/TW: @educlashco

Value Type assignment

Reference Type assignment

[Vipin Dubey]FB/IG/TW: @educlashco

Type Conversion (Type Casting)

 Type conversion is converting one type of data to another

type. It is also known as Type Casting. In C#, type casting has

two forms:

 Implicit type conversion -These conversions are

performed by C# in a type-safe manner. For example, are

conversions from smaller to larger integral types and

conversions from derived classes to base classes.

 Explicit type conversion -These conversions are done

explicitly by users using the pre-defined functions. Explicit

conversions require a cast operator.

[Vipin Dubey]FB/IG/TW: @educlashco

Type Conversion (Type Casting)

 C# is a strongly typed language, so when you are assigning values of
variables from one type to another, you must take extra care to ensure
that the assignment is compatible.

 Converting a value from a smaller range to a bigger range is known
as widening

 The preceding statement could be made valid when you perform a type
casting operation

 **There may be overflow while typecasting, to avoid this we can use
‗check ‗ keyword.

[Vipin Dubey]FB/IG/TW: @educlashco

Correct Set of Code for given data ‘a’ and ‘b’ to print output for ‘c’ as

74 ?
a) int a = 12;

float b = 6.2f;

int c;

c = a / b + a * b;

Console.WriteLine(c);

b) int a = 12;

float b = 6.2f;

int c;

c = a / Convert.ToInt32(b) + a * b;

Console.WriteLine(c);

c) int a = 12;

float b = 6.2f;

int c;

c = a / Convert.ToInt32(b) + a * Convert.ToInt32(b);

Console.WriteLine(c);

d) int a = 12;

float b = 6.2f;

int c;

c = Convert.ToInt32(a / b + a * b);

Console.WriteLine(c); [Vipin Dubey]FB/IG/TW: @educlashco

Does the output remain same or

different for both cases?

 char l ='k';

float b = 19.0f;

int c;

c = (l / Convert.ToInt32(b));

Console.WriteLine(c);

 char l ='k';

float b = 19.0f;

int c;

c = Convert.ToInt32(l / b);

Console.WriteLine(c);

[Vipin Dubey]FB/IG/TW: @educlashco

Correct output for code is?

static void Main(string[] args)

{

float a = 10.553f;

long b = 12L;

int c;

c = Convert.ToInt32(a + b);

Console.WriteLine(c);

}

a) 23.453
b) 22
c) 23
d) 22.453

[Vipin Dubey]FB/IG/TW: @educlashco

Select correct set of code to display the

value of given variable ‘c’ as ‘25.302’.
a) float a = (double) 12.502f;

float b = 12.80f;

float c;

c = (float) a + b;

Console.WriteLine(c);

Console.ReadLine();

b) float a = 12.502D;

float b = 12.80f;

float c;

c = a + b;

Console.WriteLine(c);

Console.ReadLine();

c) double a = 12.502;

float b = 12.802f;

float c;

c = (float)a + b;

Console.WriteLine(c);

Console.ReadLine();

d) double a = (float) 12.502f;

float b = 12.80f;

float c;

c = a + b;

Console.WriteLine(c);

Console.ReadLine();

[Vipin Dubey]FB/IG/TW: @educlashco

++/-- operator
The increment operator (++) or the decrement operator(--)

increments or decrements its operand by 1. The

increment/decrement operator can appear before or after its

operand: ++variable and variable++.

Pre -The result of the operation is the value of the operand

after it has been incremented or decremented.

Post -The result of the operation is the value of the operand

before it has been incremented or decremented.

[Vipin Dubey]FB/IG/TW: @educlashco

Select output for the following set of code.

static void Main(string[] args)

{

int a = 5;

int b = 10;

int c;

Console.WriteLine(c = ++ a + b ++);

Console.WriteLine(b);

Console.ReadLine();

}

a) 11, 10
b) 16, 10
c) 16, 11
d) 15, 11

[Vipin Dubey]FB/IG/TW: @educlashco

Operators

 Arithmetic Operator

 Relational Operator

 Logical Operator

 Assignment Operator

 Increment and Decrement Operator

 Conditional Operator

 Bitwise Operator

 Special Operator

[Vipin Dubey]FB/IG/TW: @educlashco

Arithmetic Operator

 + : Addition or Unary Plus

 - : Subtraction or unary minus

 *: Multiplication

 /: Division

 %: Modulo Division

 Statements using Arithmetic operator follows BODMAS rule

[Vipin Dubey]FB/IG/TW: @educlashco

Output:
static void Main(string[] args)

{

int a, b, c, x;

a = 90;

b = 15;

c = 3;

x = a - b / 3 + c * 2 - 1;

Console.WriteLine(x);

Console.ReadLine();

}

a) 92

b) 89

c) 90

d) 88

[Vipin Dubey]FB/IG/TW: @educlashco

 Output:

static void Main(string[] args)

{

int a, b, c, x;

a = 90;

b = 15;

c = 3;

x = a - b / 3 + c * 2 - 1;

Console.WriteLine(x);

Console.ReadLine();

}

a) 92

b) 89

c) 90

d) 88

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

int a, b, c, x;

a = 80;

b = 15;

c = 2;

x = a - b / (3 * c) * (a + c);

Console.WriteLine(x);

Console.ReadLine();

}

a) 78

b) -84

c) 80

d) 98

[Vipin Dubey]FB/IG/TW: @educlashco

Relational Operator

 <: less than

 <=: less than or equal to

 >: greater than

 >=:greater than or equal to

 ==: equal to

 !=: not equal to

The value of a relational expression is either true or false.

Example:-

a=10;

b=20;

Console.WriteLine(a>b); // will return false

[Vipin Dubey]FB/IG/TW: @educlashco

Logical Operator

 &&:Logical AND

 ||:Logical OR

 !:Logical NOT

 &:Bitwise logical AND

 |:Bitwise logical OR

 ^:Bitwise logical exclusive OR

Op 1 Op2 Op1 && Op2 Op1||Op2

true true true true

true false false true

false true false true

false false false false

[Vipin Dubey]FB/IG/TW: @educlashco

Assignment Operator

 Assignment operators are used to assign the value of an

expression to a variable.

Eg: a=a+1

 Shorthand operators can also be used like a+=1

Assignment operator Shorthand operator

a=a+1 a+=1

a=a-1 a-+1

a=a*(n+1) a*=(n+1)

a=a/(n-1) a/=(n+1)

a=a%b a%=b

[Vipin Dubey]FB/IG/TW: @educlashco

Conditional Operator

 The character pair ?: is a ternary operator available in C#. This

operator is used to construct conditional expressions of the

form:

 exp1?exp2:exp3

 Eg: x=(a>b)?a:b

 It can also be written in the following format:

If(a>b)

x=a;

else

x=b;

[Vipin Dubey]FB/IG/TW: @educlashco

 Output:-

public static void Main(string[] args)

{

int a = 4;

int c = 2;

bool b = (a % c == 0 ? true : false);

Console.WriteLine(b.ToString());

if (a/c == 2)

{

Console.WriteLine("true");

}

else

{

Console.WriteLine("false");

}

Console.ReadLine();

a) True

False

b) False

True

c) True

True

d) False

False
[Vipin Dubey]FB/IG/TW: @educlashco

Bitwise Operator

Operator Description Example

& Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) = 12, which is 0000 1100

| Binary OR Operator copies a bit if it exists in

either operand.

(A | B) = 61, which is 0011 1101

^ Binary XOR Operator copies the bit if it is

set in one operand but not both.

(A ^ B) = 49, which is 0011 0001

~ Binary Ones Complement Operator is unary

and has the effect of 'flipping' bits.

(~A) = 61, which is 1100 0011 in 2's

complement due to a signed binary number.

<< Binary Left Shift Operator. The left operands

value is moved left by the number of bits

specified by the right operand.

A << 2 = 240, which is 1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the number

of bits specified by the right operand.

A >> 2 = 15, which is 0000 1111

A=60 // 0011 1100 B=13 // 0000 1101

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

byte varA = 10;

byte varB = 20;

long result = varA & varB;

Console.WriteLine("{0} AND {1} Result :{2}", varA, varB, result);

varA = 10;

varB = 10;

result = varA & varB;

Console.WriteLine("{0} AND {1} Result : {2}", varA, varB, result);

Console.ReadLine();

}

a) 0, 20
b) 10, 10
c) 0, 10
d) 0, 0

[Vipin Dubey]FB/IG/TW: @educlashco

static void Main(string[] args)

{

byte varA = 10;

byte varB = 20;

long result = varA | varB;

Console.WriteLine("{0} AND {1} Result :{2}", varA, varB,

result);

varA = 10;

varB = 10;

result = varA & varB;

Console.WriteLine("{0} AND {1} Result : {2}", varA, varB,

result);

Console.ReadLine();

}

a) 0, 20

b) 10, 10

c) 0, 10

d) 0, 0

[Vipin Dubey]FB/IG/TW: @educlashco

Control Structures

 Decision making Structures or conditional statements

 Loops

Decision making structures or Conditional Statements

 if

 If-else

 Nested if

 switch

[Vipin Dubey]FB/IG/TW: @educlashco

 if Statement

The if statement consists of a boolean expression followed by

one or more statements.

 if-else Statement

The if statement can be followed by an optional else

statement, which executes when the boolean expression is

false.

 Nested if

An if or if-else statement inside another if or if-else

statement.

 Switch

A switch statement allows a variable to be tested for

equality against a list of values.

Control Structures

[Vipin Dubey]FB/IG/TW: @educlashco

Switch
 Example

switch (caseSwitch)

{

case 1:

Console.WriteLine("Case 1");

break;

case 2:

Console.WriteLine("Case 2");

break;

default:

Console.WriteLine("Default case");

break;

}

[Vipin Dubey]FB/IG/TW: @educlashco

 In C#, fall - throughs are not allowed;

 That is, each case block of code must include the break keyword so that execution can be

transferred out of the switch block (and not ― fall through ‖ the rest of the case statements).

 However, there is one exception to this rule — when a case block is empty. Here ‘ s an

example:

 The case for ― INTC ‖ has no execution block/statement and hence the execution will fall

through into the case for ― YHOO ‖ , which will incorrectly print the output ― 27.15 ‖ . In this

case, you need to insert a break statement after the ― INTC ‖ case to prevent the fall - through

Switch

[Vipin Dubey]FB/IG/TW: @educlashco

Loops
 A loop is a statement, or set of statements, repeated for a specified number of

times or until some condition is met.

 C# supports the following looping constructs:

 for

 foreach

 while and do – while

 For:

 Normal for loop……….. for (int i =0; i < 9; i++) { //code statements ... }

 Foreach

[Vipin Dubey]FB/IG/TW: @educlashco

While, do while loops

 The while statement checks the condition before executing the block of code.

 To execute the code at least once before evaluating the condition, use the do - while

statement.

 do-while loop can be used to write Menu Driven program

[Vipin Dubey]FB/IG/TW: @educlashco

Exiting from a loop

 To break out of a loop prematurely (before the exit condition is met), you can use one of

the following keywords:

 break

 return

 throw

 goto

 Break:

 The break keyword allows you to break out of a loop prematurely.

 Return:

 The return keyword allows you to terminate the execution of a method and return

control to the calling method. When you use it within a loop, it will also exit from the

loop.

[Vipin Dubey]FB/IG/TW: @educlashco

Return
class Program

{

static string FindWord(string[] arr, string word)

{

foreach(string w in arr)

{

if(w.StartsWith(word))

return w;

}

return string.Empty;

}

static void Main(string[] args)

{

string[] words = {"abcd","efgh","ijkl"};

Console.WriteLine(FindWord(words,"efgh"));

Console.ReadLine();

}

}

[Vipin Dubey]FB/IG/TW: @educlashco

Skipping an iteration…. Use of ‘continue’

 To skip to the next iteration in the loop, you can use the continue keyword. Consider the

following block of code:

[Vipin Dubey]FB/IG/TW: @educlashco

Pre-processor Directives

The pre-processor Directives tells the

compiler to process information before

compilation starts.

All pre-processor directives start with a #.

Pre-processor directives are not statements

and thus does not end with a semi-colon.

[Vipin Dubey]FB/IG/TW: @educlashco

Pre-processor Directives

Pre-processor

Directives

#define

#undef

Define and undefine symbols

#if

#else

#elif

#endif

Use login to see if symbol is defined

or not

#region

#endregion

Used for documentation of code.

[Vipin Dubey]FB/IG/TW: @educlashco

C# Fundamentals

Part 1

Ends

[Vipin Dubey]FB/IG/TW: @educlashco

