C# Basics

Basics of C#

e C# is an object oriented programming language created by
Microsoft.

® Build upon some of the best features of some major
programming language.
e C# is one of the most popular programming language.

o C#f is a case sensitive language.

Basic program in C#

using System;

class Program

d

static void Main()

d

Console. WriteLine("Hello World!!!");
Console.ReadLine();

g
Basic program in C#

® The Main method of a .Net program is the entry point ot the

program.

® The ‘System’ is a namespace provided by the .Net framework
library.

® The static class “Console’ is contained inside the System

namespace.

® The methods inside Console class can also be called by

directly calling the System namespace.

System.Console. WriteLine(“Hello”);

4 , ™
Variables

* In C#, you declare variables using the following format:

datatype identifier;

class Program

{

static voilid Main(string[] args)

{
//--—-declare the variables---
int numl;
int nmum2 = 5;
float numi, num4;
/f-—-—assign values to the variables---
numl = 4;
num3 = numd = 6.21;
[f--—-print ocut the walues of the wariables---
Console.WriteLine("{0} {1} {2} {3}", numl, num2, num3, numd);
Console.ReadLdine() :
return;
}

N y /

g

Variables-contd.

* Note the following:
* numl is declared as an int (integer).
 num? is declared as an int and assigned a value at the same time.

* num3 and num4 are declared as float (floating point number)
* You need to declare a variable before you can use it. If not, C#

compiler will ﬂag that as an error.

* You can assign multiple variables in the same statement, as is

shown in the assignment of num3 and num4 .

Constants

Constants

* The constants refer to fixed values that the program
may not alter during its execution. These fixed values are
also called literals.

* To declare a constant in C#, you use the const keyword, like this:

® //---declared the PI constant---

® const float PI=3.14{;

* Find the output of the following:
static void Main(string[] args)
d

const int m = 100;

intn = 10;

constintk =n*5%100 / n;
Console. WriteLine(m * k);
Console.ReadLine();

j

~ _ ™
Variable scope

® Two identically named variables in different scope would

be legal

static void Main(string[] args)
{
for (int 1 = 0; 1 <« §5; i++)
{ f/---1 is wvisible within this loop only---
Console.WriteLine (1) ;
Y ff---1 goes out of scope here--—-

for (int i/=.0; 1< 3; i++)

{ //-—1 is wisible within this loop only-——-
Conspla.WriteLine(i);

} /f-—1 goes out of scope here---

ConsolesRaadLline() ;
return;

\ o, y /

~ , ™
Variable scope

o Declaring another variable named i outside the loop or inside
it will cause a compilation error as the following example

shows:

static voild Malin(string[] args)
{

int i = 4; f/-——error——-

for (int i = 0; 1 < 5; i++)
{
int 1 = 6; J//———error—--
Console . WriteLine{i) ;

]

for (int 4 = 0; 1 < 3; 1++)

{

Console.WriteLine(i);

]

Console.ReadlLine() ;
return:

Data Types

e CHisa strongly typed language and as such all variables
and objects must have a declared data type. The data type
can be one of the following:

= Value

= Reference
= User - defined

m Anonymous

® Value Types:
A value type variable contains the data that it is assigned.

And when you assign a value type variable to another, you

make a copy of it.

\ i y /

Value Types

intnuml =5; //---or---

System.Int32 num2 = 5;

® To get the type of a variable, use the GetIype()amethod:
Console. WriteLine(num1.GetType()); //---System.Int32---

* In C#, all noninteger numbers are always treated as a double. And
so if you want to assign a noninteger number like 3.99 to a float
variable, you need to append it with the F (or f') suftix, like this:

* float price = 3.99F;

® You can also assign integer values using hexadecimal
representation. Simply prefix the hexadecimal number with Ox |

like this:
int num1 = OxA;

Console. WriteLine(num1); //---10---

\ oo y /

Value Types

* Nullable Type

* All value types in C# have a default value when they are declared. For
example, the following declaration declares a Boolean and an int
variable:

Boolean married; / /---default value is false---

int age; //--- default value is 0---

* However, C# prevents you from using a variable if you do not explicitly
initialize it. The following statements, for instance, cause the compiler to
complain:

Boolean married;
/ /---error: Use of unassigned local variable ‘married’---

Console. WriteLine(married);

* To use the variable, you first need to initialize it with a value:
Boolean married = false;
Console. WriteLine(married); / /---now OK---

\ i y /

Value Types

® Now married has a default value of false . There are times, though, when you do
not know the marital status of a person, and the variable should be neither true
nor false .

* In C#, you can declare value types to be nullable , meaning that they do not yet
have a value.

® To make the married variable nullable, the above declaration can be rewritten in
two different ways (all are equivalent):

Boolean? married = null;
//---or---
Nullable < Boolean > married = null;

* To check the value of a nullable variable, use the HasValue property, like this:
if (married.HasValue) {

/ / ---this line will be executed only

// if married is either true or false---

Console. WriteLine(married. Value); }

N y /

Value Types

® When dealing with nullable types, you may want to

assign a nullable variable to another variable,like this:
int? num1 = null;

intnum2 = numl; // Error

* To resolve this, you can use the null coalescing operator (??

). Consider the following example:
int? num1 = null;
int num?2 = numl1 77 O;

Console. WriteLine(num?2); / /---0---

N y /

Reference Types

® For reference types, the variable stores a reference to the data rather than the
actual data. Consider the following:

Button btn1, btn2;

btn1 = new Button();

btnl.Text = “OK”;

btn2 = btnl;

Console. WriteLine(“{0} {1}”, btnl.Text, btn2.Text);
btn2.Text = “Cancel”;

Console. WriteLine(“{0} {1}”, btnl.Text, btn2.Text);
® // First Output: OK OK

® When you change btn2 ’ s Text property to “ Cancel ” , you invariably change
btn1l ’ s Text property, as the second output shows:

® //Cancel Cancel
® That ' s because btn1 and btn2 are both pointing to the same Button object

* To remove the reference to an object in a reference type, simply use the null

keyword: btn2 = null;

\ i y /

Reference Types

* C# supports two predefined reference types — object
and string — which are described in the following table.

C# Type .NET Framework Type Descriptions

object System.Object Root type from which all types in the CT5
(Common Type System) derive

string System. String Unicode character string

g Value Types vs Reference Types h

Value Types versus Reference Types

For any discussion about value types and reterence types, it is important to understand
how the INET Framework manages the data in memory.

Basically, the memory is divided into two parts — the stack and the heap. The stack is a
data structure used to store value-type variables. When you create an int variable, the
value is stored on the stack. In addition, any call you make to a function (method) is
added to the top of the stack and removed when the function returns.

In contrast, the heap is used to store reference-type variables. When you create an
instance of a class, the object is allocated on the heap and its address is returned and
stored in a variable located on the stack.

Memory allocation and deallocation on the stack is much faster than on the heap, so if
the size of the data to be stored is small, it's better to use a value-type variable than
reference-type variable. Conversely, if the size of data is large, it is better to use

a reference-type variable.

N y /

Value Type assignment

bt
int i = 100; \:> 100

T T
RAM

T

Memory allocation for Value Type

Ref €rence Type assignment

string 5 = "Hello World!!";

L
LY - -

s e » RAM
1]::4];HHTHI ,"" HW
0x600000 Hello World!!
L T I
Reference type variable Actual value

contains addresswhere the
value isstored

Memory allocation for Reference type

N y /

Type Conversion (Type Casting)

* Type conversion is converting one type of data to another
type. It is also known as Type Casting. In C#, type casting has

two forms:

o Implicit type conversion - These conversions are
performed by C# in a type-safe manner. For example, are
conversions from smaller to larger integral types and

conversions from derived classes to base classes.

© Explicit type conversion - These conversions are done
explicitly by users using the pre-defined functions. Explicit
P y by g P P

conversions require a cast operator.

N y /

Type Conversion (Type Casting)

* C# is a strongly typed language, so when you are assigning values of
variables from one type to another, you must take extra care to ensure
that the assighment is compatible.

1nt num;
short sNum = 20;
num = sNum; //-—--0K---

° Converting a value from a smaller range to a bigger range is known
as Widening

um = 5;
Num = num; f/f---niot allowed--—-

-

m

e The preceding statement could be made valid when you perform a type

castingr nhprqﬁ_nn
Inmum = o;

sNum = (short) num; ff=——-sNum 15 now 5---

* **There may be overflow while typecasting, to avoid this we can use

‘check * keyword.

N y /

7~ Correct Set of Code for given data ‘a’ and ‘b’ to print output for ‘c’ as I
74 ?

a)inta = 12;
float b = 6.2f;
int c;

c=a/b+a*b;

Console. WriteLine(c);

b)inta = 12;
float b = 6.2f;
int c;

c = a/ Convert.ToInt32(b) + a * b;

Console. WriteLine(c);

c)inta = 12;
float b = 6.2f;
int c;

¢ = a/ Convert.Tolnt32(b) + a * Convert.Tolnt32(b);
Console. WriteLine(c);

d)inta = 12;
float b = 6.2f;
int c;

¢ = Convert.Tolnt32(a / b + a * b);
Consgle. WriteLine(c);

” Does the output remain same or A
different for both cases?

e char 1 ='k';
float b = 19.0f;
int c;

¢ = (1 / Convert.Tolnt32(b));
Console. WriteLine(c);

e charl ='k';
float b = 19.0f;
int c;

¢ = Convert.Tolnt32(l / b);
Console. WriteLine(c);

Correct output for code is?

static void Main(string][] args)

{

floata = 10.553f;
long b = 12L;

int c;

¢ = Convert.ToInt32(a + b);
Console. WriteLine(c);

;

a) 23.453
b) 22
c) 23
d) 22.453

N y /

Select correct set of code to display the
value of given variable ‘c’ as ‘25.302’.

a) tloat a = (double) 12.502f;
float b = 12.80f;

float c;

¢ = (float) a + b;

Console. WriteLine(c);
Console.ReadLine();

b) floata = 12.502D;
float b = 12.80f;

float c;

c=atb;

Console. WriteLine(c);
Console.ReadLine();

c) double a = 12.502;
float b = 12.802f;
float c;

c = (float)a + b;
Console. WriteLine(c);
Console.ReadLine();

d) double a = (tloat) 12.502f;
float b = 12.80f;

float c;

c=a+tb;

Console. WriteLine(c);
Console.ReadLine();

N y /

++/-—- operator

The increment operator (++) or the decrement operator(--)
increments or decrements its operand by 1.The
increment/decrement operator can appear before or after its

operand: ++variable and variable++.

Pre - The result of the operation is the value of the operand

after it has been incremented or decremented.

Post - The result of the operation is the value of the operand

before it has been incremented or decremented.

4 N
Select output for the following set of code.

static void Main(string[] args)

{

inta = 5;
intb = 10;
int c;

Console. WriteLine(c = ++ a + b ++);
Console. WriteLine(b);
Console.ReadLine();

;

a) 11, 10
b) 16, 10
¢) 16, 11
d) 15, 11

N y /

Operators

* Arithmetic Operator

* Relational Operator

* Logical Operator

® Assignment Operator

® Increment and Decrement Operator
* Conditional Operator

® Bitwise Operator

® Special Operator

Arithmetic Operator

® + : Addition or Unary Plus

® - : Subtraction or unary minus
® *: Multiplication

e /. Division

® %: Modulo Division

* Statements using Arithmetic operator follows BODMAS rule

Output:

static void Main(string|] args)
{

inta, b, ¢, x;

a = 90;

b =15;

c = 3;

X:a-b/3+C*2-1;
Console. WriteLine(x);
Console.ReadLine();

h

a) 92

b) 89

c) 90

d) 88

\ oo y /

/ ® Output: \

static void Main(string|] args)

{

inta, b, ¢, x;
a = 90;

b = 15;

c = 3;

X:a_b/3+c*2—1;
Console. WriteLine(x);
Console.ReadLine();

h

a) 92
b) 89
¢ 90
d) 88

\ oo y /

static void Main(string|] args)

{

inta, b, ¢, x;
a = 80;

b = 15;
c=2;

x=a-b/(3%*c)*(atc);
Console. WriteLine(x);
Console.ReadLine();

}

) 78
b) -84
) 80
d) 98

\ oo y /

g Relational Operator

e <:less than

® <=: less than or equal to

® >: greater than

® >=:greater than or equal to

® ==:equal to

® I=:not equal to

The value of a relational expression is either true or false.
Example:-

a=10;

b=20;

Console. WriteLine(a>b); // will return false

N y /

g Logical Operator

® &&:Logical AND

® | |:Logical OR

* l:Logical NOT

* &:Bitwise logical AND
* | :Bitwise logical OR

e ".Bitwise logical exclusive OR

o1 10p:

true true true true
true false false true
false true false true
false false false false

\ o y /

g Assignment Operator

* Assignment operators are used to assign the value of an

expression to a variable.
Eg: a—atl1

® Shorthand operators can also be used like a+=1

Assignment operator Shorthand operator

a—atl1 at=1
a=a-1 a-+1
a=a*(nt1) a*=(nt1)
a=a/(n-1) a/=(nt1)
a=a%b a%=b

\ o, y /

4 - I
Conditional Operator

® The character pair ?: is a ternary operator available in C#. This
operator is used to construct conditional expressions of the

form:
® explzexp2:exp3
® Eg: x=(a>b)ra:b
® It can also be written in the following format:
If(a>b)
X—a;
else

x=b:

b/

N y /

/ ® Output:- \

public static void Main(string[] args)

{

inta = 4;
intc = 2;

boolb = (a% ¢ == 07? true : false);
Console. WriteLine(b. ToString());

if (a/c==2)

{

Console. WriteLine("true");

}

else

{

Console. WriteLine("false");

}

Console.ReadLine();

a) True
False
b) False
True
c) True

True

d) False

\ el Sedess -~)

/~ Bitwise Operator ™

A=60 // 00111100 B=13 // 0000 1101

& Binary AND Operator copies a bit to the (A & B) = 12, which is 0000 1100

result if it exists in both operands.

Binary OR Operator copies a bit if it existsin (A | B) = 61, which is 0011 1101

either operand.

A Binary XOR Operator copies the bit if it is (A" B) =49, which is 0011 0001

set in one operand but not both.

= Binary Ones Complement Operator is unary (~A) =61, whichis 1100 0011 in 2's
and has the effect of 'flipping' bits. complement due to a signed binary number.
<< Binary Left Shift Operator. The left operands A << 2 =240, which is 1111 0000

value is moved left by the number of bits

specified by the right operand.

>> Binary Right Shift Operator. The left A >>2 =15, which is 0000 1111
operands value is moved right by the number

of bits specified by the right operand.

N y /

static void Main(string][] args)

{

byte varA = 10;

byte varB = 20;

long result = varA & varB;

Console. WriteLine(" {0} AND {1} Result : {2} ", varA, varB, result);
varA = 10;

varB = 10;

result = varA & varB;

Console. WriteLine(" {0} AND {1} Result: {2}", varA, varB, result);
Console.ReadLine();

;

2) 0, 20
b) 10, 10
)0, 10
4)0,0

N y /

4 static void Main(string]] args) N\
{
byte varA = 10;
byte varB = 20;
long result = varA | varB;

Console. WriteLine(" {0} AND {1} Result:{2}" varA, varB,

result);
varA = 10;
varB = 10;

result = varA & varB;

Console. WriteLine(" {0} AND {1} Result: {2}", varA, varB,
result);

Console.ReadLine();

;

2) 0, 20
b) 10, 10
)0, 10
d)0,0

N y /

Control Structures

® Decision making Structures or conditional statements

° Loops

Decision making structures or Conditional Statements
o if

e If-else

® Nested if

® switch

Control Structures

® if Statement

The if statement consists of a boolean expression followed by

one or more statements.
e if-else Statement

The if statement can be followed by an optional else
statement, which executes when the boolean expression is

false.
e Nested if

An if or if-else statement inside another if or if-else

statement.
e Switch

A switch statement allows a variable to be tested for

equality against a list of values.

Switch

* Example
switch (caseSwitch)

d

case 1:
Console. WriteLine("Case 1");
break;

case 2:
Console. WriteLine("Case 2");
break;

default:
Console. WriteLine("Default case");
break;

;
\ | N /

" Switch A

* In C#, fall - throughs are not allowed;

® That is, each case block of code must include the break keyword so that execution can be

transferred out of the switch block (and not “ fall through ” the rest of the case statements).

* However, there is one exception to this rule — when a case block is empty. Here ’ s an

example :

string symbol = "INTC";
switch (symbol)

case "MSFT": Console.WriteLine (27.96) ;
break;
case "GOOG": Console.WriteLine (437.55);
break:
case "INTC":
case "YHOO": Console.WriteLine(27.15);
break;
default: Console.WriteLine("Stock symbol not recognized"):
break;

® The case for “INTC ” has no execution block/statement and hence the execution will fall

through into the case for “YHOO 7, which will incorrectly print the output “ 27.15 ” . In this

\ case, you need to insert a break statement after the “ INTC ” case to prevent the fall - through

Loops

* Aloop is a statement, or set of statements, repeated for a specified number of

times or until some condition is met.
o C# supports the following looping constructs:

= for

foreach

while and do — while

® For:
® Normal for loop......... 4 for (inti =0;1i < 9;i++) { //code statements ... }
® Foreach
int[] nums = {1, 2, 3, 4, 5, 6, 7, B, 9 };
foreach (int i in nums)
{
i4= 4; /[;--error: cannot change the value of i---
Console MriteLine(i);
1

\ o, y /

While, do while loops

= The while statement checks the condition before executing the block of code.

= To execute the code at least once before evaluating the condition, use the do - while

statement.

= do-while loop can be used to write Menu Driven program

string reply:

do
Console.WriteLine("Are you sure you want to quit? [yv/n]"):
reply = Console.Readlane () ;

} while (reply != "¥");

N y /

™

Exiting from a loop

* To break out of a loop prematurely (before the exit condition is met), you can use one of

the following keywords:
= break
" return
= throw
" goto
® Break:

® The break keyword allows you to break out of a loop prematurely.
® Return:

® The return keyvvord allows you to terminate the execution of a method and return
control to the calling method. When you use it within a loop, it will also exit from the

loop.

N y /

Return

class Pro gram

{

static string Find Word(string[] arr, string word)

{

foreach(string w in arr)
{
if(w.StartsWith(word))
return w;

;

return string. Empty;

;

static void Main(string[] args)

{
String[] Words — {"abcd" , "efgh" , "ijkl"} ;
Console. WriteLine(FindWord(words, "efgh"));
Console.ReadLine();

h
h

\ oo y /

™

Skipping an iteration.... Use of ‘continue’

* o skip to the next iteration in the loop, you can use the continue keyword. Consider the

following block of code:
for (int 1 = 0; 1 < 9; i++)
{
1f (1 % 2 == 0]
{
f/-—print 1 1f 1t 1s evan---
Con=sole.WriteLine(i):;
continue;
1
J//-—-print this when 4 is odd--—-
Console. WriteLing (" &&x&&m) .
h

Pre-processor Directives

® The pre-processor Directives tells the

compiler to process information before

com:_ailation starts.
o All pre-processor directives start with a #.

® Pre—processor directives are not statements

and thus does not end with a semi-colon.

. . ™
Pre-processor Directives

Pre-processor
Directives

Hdefine Define and undefine symbols
Hundef
Hif Use login to see if symbol is defined
Helse or not
Helif

Hendif

#region Used for documentation of code.
Hendregion

C# Fundamentals
Part 1
Ends

