
Object Oriented Programming in
C#

Topics covered

Classes and Objects
Instance Variables, Methods, Constructors, Properties,
Access Specifiers, Static members and methods

Inheritance
Levels of Inheritance, Constructor and
Inheritance, Polymorphism, Interfaces, Abstract
classes, Delegates, Indexers, Sealed Classes, Exception handling

Collections and Generics
Bounded and Unbounded Collections, Generic Programming-
Generic classes, Functions, Constraints on Generic
Programming

Object

• Objects encapsulate part of the application
which can be a process, a chunk of data or an
abstract entity

• Objects in C# are created from types with a
special name in OOP called as class

• Also called as a real named instance

• The process of creation of an object of a class
is instantiation

Class

• An art of systematic arranging of information
and behaviour into a meaningful entity

• Class helps to produce classification

• Encapsulation supports classification

• Defines asbstract charactreristics of an object

• A template for object creation

• Classes are means to provide modularity

Namespaces

• A way to organize related classes and other types

• A logical grouping of elements

• A wrapper that wraps one or more structural
elements to make them unique and differentiated
from other elements

• Accpeted format is
CompanyName.ProjectName.SystemSection

• Ex:Infotel.BillingApp.Customer.CustomerInfo

(fully qualified name)

The “using” Directive

• An abbreviate a class by Prefixing a keyword
specified as “using” to a class's namespace

• Ex: using System;

using Infotel.BillingApp.Customer;

• Most widely used namespace is “System”

• A care should be taken while naming a namespace

• Microsoft recommends the format for namespace
names as;

<CompanyName>.<TechnologyName>

Namespace Aliases

• Using keyword can also be used to assign aliases

• Syntax: using alias=Namespace name;

• Ex:

using System

using CustData=Infotel.BillingApp.Customer;

class Test

{

public static int main()

{

CustData : : CustomerDetail c1=new CustData : : CustomerDetail();

.....

return 0;

}

}

Main() method

• An Entry point method
• Must be static method of a class or a struct
• Must have a return type either int or void
• Default access modifier is private
• main() method can also be assigned as public

explicitly
• Multiple main() methods return a compile time

error
• Accepts a String array argument as;

static void main(String[] args/arg/ar/../..)

CLASS DEFINITIONS IN C#

C# uses the class keyword to define classes:
class MyClass
{
// Class members.
}
• By default, classes are declared as internal (explicit

declaration is optional)
internal class MyClass
{
// Class members.
}

Various class access specifications

1) public class MyClass

{

// Class members.

}

2) public abstract class MyClass

{

// Class members, may be abstract.

}

Various class access specifications

3) public sealed class MyClass

{

// Class members.

}

4) public class MyClass : MyBase

{

// Class members.

}

Access Modifiers for Class Definitions

Defining and Using a Class

class Circle

{

int radius;

double Area()

{

return Math.PI * radius * radius;

}

}

Naming and Accessibility

• Identifiers that are public should start with a
capital letter. For example, Area starts with “A”
(not “a”) because it’s public. This system is known
as the PascalCase naming scheme.

• Identifiers that are not public (which include local
variables) should start with a lowercase letter. For
example, radius starts with “r” (not “R”) because
it’s private. This system is known as the
camelCase naming scheme

Constructors

• A constructor is a special method that runs
automatically when you create an instance of a
class

• new Keyword is used to construct an object at runtime
• Construction happens in 3 steps:

1) Runtime grabs a chunk of memory from OS
2) Filling of fields defined by class
3) Invoke a constructor

• Has same name as class and accepts parameters
• Returning of a value is not allowed
• Every class in C# has a default Constructor

Example: Default Constructor

class Circle
{

private int radius;
public Circle() // default constructor
{

radius = 0;
}
public double Area()
{

return Math.PI * radius * radius;
}

}

Object Creation
Circle c; // Create a Circle variable
c = new Circle(); // Initialize it

Example: Overloading Constructors
class Circle

{

private int radius;

public Circle() // default constructor

{

radius = 0;

}

public Circle(int initialRadius) // overloaded constructor

{

radius = initialRadius;

}

public double Area()

{

return Math.PI * radius * radius;

}

}

Destructor
• A method that is called to destroy the objects that are no

longer in use

• A destructor is declared using (~) tilde sign followed by the
name of destructor

• Ex: class destdemo{

static void main(String[] args) {

Destruct obj1 = new Destruct();

}

}

class Destruct{

~Destruct()

{

Console.WriteLine(“Destructor is called”);

}

}

this keyword

• Refers to the current instance of a class
• Cannot be used with static members
• “this” keyword is followed by “.” operator for

accessing instance members
• Ex: public class Account{

double accBalance;
public void Balance() {

this.accBalance=10000;
}

}

Static Classes

• A static class or its members do not need any object to
call them

• Calling is possible through direct using a class name

• Use of static keyword to define a class and its members

• Ex: static class employee{

public static int id;

public static int tele_phone;

}

• Ex: Math.sqrt(25);

• Static classes are sealed (No inherit capability)

Static Constructor

• Doesn’t accept any parameters and access
modifiers.

• Invokes automatically, whenever we create a
first instance of class.

• Invoked by CLR so we don’t have a control on
static constructor execution order in c#.

• Only one static constructor is allowed to
create.

Partial Classes

circ1.cs
partial class Circle
{

public Circle() // default constructor
{

this.radius = 0;
}
public Circle(int initialRadius) // overloaded constructor
{

this.radius = initialRadius;
}

}

Partial Classes cont..

circ2.cs
partial class Circle
{

private int radius;
public double Area()
{

return Math.PI * this.radius * this.radius;
}

}

Object Oriented Programming
concepts

Encapsulation

• Process of hiding the irrelevant information of a
specific object to a user

• Process of hiding internal facts
• As per OOP, encapsulation is wrapping up data

and members of a class
• Restricts users from sharing & manipulating the

data resulting into data protection
• Prevents data Corruption
• Binding member variables and methods into a

single unit
• Increases the maintainability

Properties
• Properties are used to encapsulate the fields and data

in a class

• Safer and Controlled approach as compared to field
value accessing using assignment

• A property is a cross between a field and a method

• Syntactically access to Properties is same as fields
access

• Access to the fields and properties is done by the
operator . (dot)

• Access is achieved by keywords get and set

• Accessibility of a property can public, private, or
protected

Syntax for Property declaration

AccessModifier Type PropertyName
{

get
{

// read accessor code
}
set
{
// write accessor code

}
}

Property Example

public class Person
{

public string FirstName
{

get
{

return firstName;
}
set
{

firstName = value; }
}

}
}

Properties Example cont..

public class Button: Control
{

private string caption;
public string Caption {

get {
return caption;
}

set {
caption = value;
Repaint();

}
}

}

Button b = new Button();
b.Caption = "OK";
String s = b.Caption;

Indexers

• An indexer is a special kind of property that you
can add to a class to provide array-like access

• An indexer encapsulates a set of value

• Enables objects of a class to access its members
using an index notation

• Indexers can use non-numeric subscripts

• Ex: public int this [string name] { ... }

• Indexers can be overloaded whereas arrays
cannot

Indexers cont..

• Access through a variable name and square bracket
• Syntax:

<access modifier> <Return Type> this [arg list] {
get { //code for get }
set { //code for set }

}
• Declaration using this keyword:

public int this[string key]
{ get { return storage.Find(key); }

set { storage.SetAt(key, value); }
}

Indexers cont..
• Syntax:

var item = someObject["key"];

someObject["AnotherKey"] = item;

• Access modifier can be Private, Public, Protected, or
Internal

• this keyword shows the object of current class

• Argument List is parameters passed (Atleast One
Parameter required)

• Multiple type parameters are allowed (int, enum, String)

• All indexer in same class should have different signatures

• get and set portions are accessors

Inheritance

• Inheritance promotes reusability of code

• Helps to eliminate redundant code

• A class derives properties from another class

• Single Inheritance

• Hierarchical Inheritance

• Multilevel Inheritance

• Multiple Inheritance (only through Interface)

Polymorphism

• Allows you to invoke methods of a derived
class through base class reference during
runtime (Dynamic polymorphism)

• Provides different implementations of
methods in a class that are called through the
same name (Static polymorphism)

• Ex: Method overloading, Operator
overloading, Indexer overloading

Abstraction

• Abstraction and Encapsulation are
complimentary to each other

• Process of showing general information and
hiding the complex information

• Managing the complexity of the code

• Decomposing complex systems into smaller
components

• Ex: abstract classes and methods

Creating Interfaces

• An interface does not contain any code or
data; it just specifies the methods and
properties that a class that inherits from the
interface

• An interface enables you to completely
separate the names and signatures of the
methods of a class from the method’s
implementation

Defining an Interface

interface IComparable

{

int CompareTo(object obj);

}

• Never specify an access modifier (public,
private, or protected)

• Replace the method body with a semicolon

Implementing an Interface

interface IntfAccountBal
{

int getBal();
}
class ImplInter : IntfAccountBal
{

...
public int getBal()
{

return balaAmount;
}

}

Delegates
• C# handles callback functions through delegate

• A special type of object that contains details of method
rather than data

• A delegate holds three pieces of information

- The name of method on which it makes call

- The arguments (if any)

- The return value (if any)

• Create and Use a delegate

1) Declare a delegate

2) Define delegate method

3) Creating delegate objects

4) Invoking delegate objects

Delegates cont..

• A delegate holds reference of a method

• All delegates are implicity derived from System.Delegate
class

• Declared using a delegate keyword followed by mehtod
signature

• Syntax: <access modifier> delegate <return type>
<delegate_name>(<parameters>)

• Ex: public delegate void Print(int value);

• Ex: public delegate void Compute(int x, int y);

• Delegate types are implicitly sealed

Defining Delegate Methods

• A method whose signature matches the delegate
signature exactly

• Method can be a static or an instance
• Ex: public static void Add(int x, int y)

{
....

}
public void Multiply(int x, int y)
{

....
}

Creating and invoking Delegate
objects

• Syntax:

Delegate-name object-name

= new delegate-name(expression);

• expression can be a name of a method or an object of a
delegate type

• Signature of method passed should be same as of delegate

• Ex: Compute cmp1

= new Compute(DelegateTest.Add);

• Ex: DelegateTest dt = new DelegateTest();

Compute cmp2= new Compute(dt.Multiply);

• Ex: cmp1(30,20);

cmp2(10,15);

Exception Handling

• Exception is a runtime error arises due to some
abnormal conditions

• Exception Handling relates to Capturing &
Handling of runtime errors

• Compile time errors occur during compilation of
a program

• Exceptions can be handled by using;

1) The try...catch...finally statement

2) The throw statement

Exception Hierarchy in c#

The try...catch...finally statement

• try encloses the set of statements that can
cause exception

• catch block handles the occured exception

• A try block can have single or multiple catch
blocks

• The finally block results into absolute
execution of statements

• Only one finally block is allowed for a try block

The try...catch...finally statement

• Ex:

try {

div= 100/number;

}

catch (DivideByZeroException dbze) {

Console.WriteLine(“Exception occured”);

}

finally {

Console.WriteLine(“Result is:”+ div);

Console.ReadLine();

}

The throw statement

• throw clause is used to raise an exception in
case an error occurs in a program

• throw takes only a single argument

• If a throw statement is encountered, a
program terminates

• throw clause can also be used to throw an
exception programatically

• throw keyword is used to throw an exception

throw an Exception explicitly

try {

throw new DivideByZeroException();

}

catch(DivideByZeroException) {

Console.WriteLine(“Exception Occured”);

}

Checked and Unchecked Statements

• Used to check memory overflow exceptions

• checked keyword is used to check the
overflow for integral type arithmetic
operations and conversions

• Ex: Value of a variable exceeds the required
length

• unchecked keyword ignores the overflow-
checking

Collections

Collection Classes

• Collection classes are used for maintaining lists of
objects

• A collection can store & retrieve different types of
Data

• Provides automatic memory management and
capacity expansion

• It is possible to create a custom collection class
• A collection is an object that simply allows you to

group other objects.
• Collection based classes provide support for

Stacks, Queues, Lists, and Hash Tables.

Properties of Collection Classess

• Collection classes are defined as part of the
System.Collections or System.Collections.Generic
namespace.

• Most collection classes derive from the interfaces
ICollection, IComparer, IEnumerable, IList,
IDictionary, and IDictionaryEnumerator and their
generic equivalents.

• Using generic collection classes provides
increased type-safety and in some cases can
provide better performance, especially when
storing value types.

Interface Hierarchy

Collection classes in .Net class library

• ArrayList Class

• HashTable Class

• Queue Class

• Stack Class

• SortedList Class

• A custom collection class can be created by
implementing ICollection interface.

Memory (Array Vs collection)

Dynamic Lists

• .NET Framework offers the generic class List<T>.

• List<T> class implements the IList, Icollection,
IEnumerable, Ilist<T>,Icollection<T>, and
Ienumerable<T> interfaces.

• EX:

public class Racer : Icomparable<Racer>, Iformattable

{//…………}

• We can create a list for above class using List<T> class

• Ex: var racers =new List<Racers>([param’s]);

ArrayList class
• Ordered collection of object indexed in individual manner

• An alternative to an array

• Dynamic manipulation is possible

• Accepts null as valid value

• Declaration of an Array List

ArrayList a1 = new ArrayList();

• Data manipulation methods

ArrayList.add(element);

a1.Add(1); a1.Add("Example") ; a1.Add(true);

a1.Remove(7);a1.RemoveAt(1); al.Sort();

• Properties

count, Capacity, etc.

Array Vs ArrayList

Array ArrayList

Strongly Typed Not

Size is Fixed Dynamic

Set or get a value of any
one element at a time

Wide range of methods for
Manipulation on multiple
elements

Multiple Dimension Single Dimension

Casting is not required Casting Required

Hashtable class

• Similar to ArrayList except the accessing
procedure is through a key

• Each item in Hashtable object has a key/value
pair

• Each key must be unique
• Keys can be short strings or integers
• Add or Retrieve items is possible in Hashtable

class
• Key cannot be null, but a value can be null
• Similar to Dictionary but lower in performance

SortedList class

• A combination of an Array and Hashtable

• Items from a list can be accessed using an
index or a Key

• When using indices - object acts as ArrayList

• When using Keys - object acts as Hashtable

• SortedList is sorted by default (key wise)

• No explicit sort method available

Stack class

• A special case collection which represents a last
in first out (LIFO) concept

• Process of adding to a stack is push operation
• Process of removal is pop operation
• Declaration of the stack

Stack st = new Stack();
• Adding elements to the stack

Stack.push(element);
• Removing elements from the stack

Stack.pop();

Queue class

• Queue class follows First In First Out (FIFO)
concept in data storage

• The methods that add or remove items from a
Queue object are called Enqueue & Dequeue

• Declaration

Queue q = new Queue();

• Adding elements to Queue: q.Enqueue('A');

• Removal of elements from a Queue:

q.Dequeue();

Generic Programming

• A technique with which you can delay the
specification of type

• labels are defined inspite of specific data type

• The label is replaced with specified datatype
at run time when a generic method or class
used

• Syntax: public class ClassName<T>

• Ex: List<String> l1= new List<String>();

Generic Classes

• The List<T>class

• The LinkedList<T>class

• The SortedList<TKey, TValue>class

• The Dictionary<TKey, TValue>class

• The SortedDictionary<TKey, TValue>class

• The Stack<T>class

• The Queue<T>class

• The HashSet<T>class

Constraints on Generics

• Constraints are used in Generics to restrict the
types

• Constraints can be applied using the where
keyword.

• Six types of constraints can be applied: class,
struct, new(), base class name, interface and
derived type.

• Multiple constraints also can be applied

Types of Generic Constraints

Constraint Description

where T : class Type must be reference type.

where T: struct Type must be value type

where T: new() Type must have public parameterless
constructor

where T: <base class name> Type must be or derive from the specified
base class

where T: <interface name> Type must be or implement the specified
interface

where T: U Type supplied for T must be or derive
from the argument supplied for U

Generic Class with Constraints
Example

public class GenericClass<T> where T: class
{

public T EmpName;
public void genericMethod(T EmpDept, T EmpSkill)
{

Console.WriteLine(“Emp Name: ” + EmpName);
Console.WriteLine(“Emp Dept: “ + EmpDept);
Console.WriteLine(“Emp Skill: “ + EmpSkill);

}
}

Methods

• Declaring of Class Method

// Method definition

[<modifiers>] [<return_type>]

<method_name>([<parameters_list>])

{

// … Method's body …

[<return_statement>];

}

Example – Method Declaration

int Add(int number1, int number2)

{

int result = number1 + number2;

return result;

}

Constants

• Once declared and initialized constants always
have the same value for all objects of a
particular type

• In C# constants are of two types:
1. Constants the values of which are extracted

during the compilation of the program (compile-
time constants).

2. Constants the values of which are extracted
during the execution of the program (run-time
constants)

Constants cont..

• Compile-Time Constants

Ex:

public const double PI =

3.1415926535897932385;

• Run-time Constants

Ex: public readonly double Size; (Allocate a

value at runtime)

String implementation in C#

Strings

• Strings are sequences of characters stored in a
certain address in memory

• Declared by the keyword string

• Default value is null

• Strings are enclosed in quotation marks

• Used for performing various text processing
operations

The System.String Class

• Example of declaring a string:
string greeting = "Hello, C#";

• Representation:

• Alternative: Creating an array of characters
naming it as char[] and fill the elements with
characters one by one

• Character Array creation Disadvantages:
- Filling happens one by one
- Length of text should be known
- The text processing is manual

String class

• String as a class compiles as per Object
Oriented Programming principles

• Values of String class are stored in dynamic
memory (Managed Heap)

• String Variables hold reference of the object in
the Heap

• Character sequences stored in string variable
are never changing

• Accessibility through an Indexer (Only Read)

String Escaping

• Displaying special characters in source code is
called as escaping

• Use of a back slash before quotes

• Ex: string quote = "Book's title is \"Intro to
C#\"";

• Escaped Quotes are discarded by Compiler

Creating and Initialising a string

• Instaintiation of a declared string variable
• Un-Initialised strings are not empty
• String are stored in Heap
• Attempt to manipulate a null string will generate a

NullRefernceException
• Ways of Initialising variables:

1. By assigning a string literal.
2. By assigning the value of another string.
3. By passing the value of an operation which

returns a string.

Creating and Initialising a string

1. Setting a string Literal

string website = "http://www.vegfood.org";

2. Assigning the value of another string

string source = "Some source";

string assigned = source;

3. By passing the value of an operation which

returns a string

string email = "xyz@gmail.com";

string info = "My mail is: " + email;

Memory Allocation for a string

String Comparison Using
Equals method or == operator

string word1 = "C#";
string word2 = "c#";
Console.WriteLine(word1.Equals("C#"));
Console.WriteLine(word1.Equals(word2));
Console.WriteLine(word1 == "C#");
Console.WriteLine(word1 == word2);

Console.WriteLine(word1.Equals(word2,
StringComparison.CurrentCultureIgnoreCase));

Comparing Strings in Alphabetical
Order

string score = "sCore";
string scary = "scary";
Console.WriteLine(score.CompareTo(scary));
Console.WriteLine(scary.CompareTo(score));
Console.WriteLine(scary.CompareTo(scary));
// Console output:
// 1
// -1
// 0

Ignore Letter Casing

string.Compare(string strA, string strB,

bool ignoreCase)

string alpha = "alpha";

string score1 = "sCorE";

string score2 = "score";

Console.WriteLine(string.Compare(alpha, score1, false));

Console.WriteLine(string.Compare(score1, score2, false));

Console.WriteLine(string.Compare(score1, score2, true));

Console.WriteLine(string.Compare(score1, score2,

StringComparison.CurrentCultureIgnoreCase));

// Console output:

// -1

// 1

// 0

// 0

== and != Operators & Memory
Usage

string str1 = "Hello";

string str2 = str1;

Console.WriteLine(str1 == str2);

// Console output:

// True

String variable and Literal

string hel = "Hel";

string hello = "Hello";

string copy = hel + "lo";

Console.WriteLine(copy == hello);

// True

Memory Optimization for Strings
(Interning)

string hello = "Hello";

string same = "Hello";

Strings Concatenation

• Used to glue two strings

• Ex: string greet = "Hello, ";

string name = "reader!";

string result = string.Concat(greet, name);

string result = greet + name;

Change the casing of a string

string text = "All Kind OF LeTTeRs";

Console.WriteLine(text.ToLower());

// all kind of letters

string pass1 = "PasswoRd";

string pass2 = "PaSSwoRD";

string pass3 = "password";

Console.WriteLine(pass1.ToUpper() == "PASSWORD");

Console.WriteLine(pass2.ToUpper() == "PASSWORD");

// Console output:

// True

// True

Search a String within Another String

string book = "Introduction to C# book";

int index = book.IndexOf("C#");

Console.WriteLine(index);

// index = 16

string str = "C# Programming Course";

int index = str.IndexOf("C#"); // index = 0

index = str.IndexOf("Course"); // index = 15

index = str.IndexOf("COURSE"); // index = -1

Searching a String in Memory

Finding All Occurrences of a Substring

string quote = "The main intent of the \"Intro C#\"" + "
book is to introduce the C# programming to newbies.";

string keyword = "C#";

int index = quote.IndexOf(keyword);

while (index != -1)

{

Console.WriteLine("{0} found at index: {1}", keyword,
index);

index = quote.IndexOf(keyword, index + 1);

}

Extracting a Portion of a String

Substring(startIndex, length);

string path = "C:\\Pics\\CoolPic.jpg";

string fileName = path.Substring(8, 7);

// fileName = "CoolPic"

Splitting the String by a Separator

string listOfBeers = "Amstel, Heineken, Tuborg, Becks";

char[] separators = new char[] {' ', ',', '.'};

string[] beersArr = listOfBeers.Split(separators);

foreach (string beer in beersArr)

{

if (beer != "")

{

Console.WriteLine(beer);

}

}

Replacing a Substring

string doc = "Hello, some@gmail.com, " +
"you have been using some@gmail.com in your
registration.";
string fixedDoc =
doc.Replace("some@gmail.com",
"john@smith.com");
Console.WriteLine(fixedDoc);
// Console output:
// Hello, john@smith.com, you have been using
// john@smith.com in your registration.

Triming a String

Ex1:

string fileData = " David Allen ";

string reduced = fileData.Trim();

Ex2:

string fileData = " 111 $ % David Allen ### s ";

char[] trimChars = new char[] {' ', '1', '$', '%', '#', 's'};

string reduced = fileData.Trim(trimChars);

// reduced = "David Allen"

Ex3: string reduced = fileData.TrimEnd(trimChars);

StringBuilder class

• Serves to build and change the Strings

• Used to overcome the string performance
problem

• class is build in the form of array of characters

• Same buffer is used to make any changes

• Objects of StringBuilder are mutable

• StringBuilder keeps a buffer with a certain
capacity (default 16 characters)

StringBuilder class cont..

• The buffer is implemented as an array of characters

• At any moment part of the characters in the buffer
are used and the rest stay in reserve

• If the entire capacity of the buffer is filled, then the
buffer is doubled.

• Ex: StringBuilder sb = new StringBuilder(15);

sb.Append("Hello, C#!");

StringBuilder class Example
class ElegantNumbersConcatenator
{
static void Main()
{
Console.WriteLine(DateTime.Now);
StringBuilder sb = new StringBuilder();
sb.Append("Numbers: ");
for (int index = 1; index <= 200000; index++)
{
sb.Append(index);
}
Console.WriteLine(sb.ToString().Substring(0, 1024));
Console.WriteLine(DateTime.Now);
}
}

StringBuilder Example

public static string ExtractCapitals(string str)
{

StringBuilder result = new StringBuilder();
for (int i = 0; i < str.Length; i++)

{
char ch = str[i];
if (char.IsUpper(ch))
{

result.Append(ch);
}

}
return result.ToString();

}

Parsing Data

• Converting from text to some other data type
(opposite of ToString())

• Parsing Numeric Types:

int intValue = int.Parse(text);

bool boolValue = bool.Parse(text);

• Parsing Dates:

string text = "11/11/2001";

DateTime parsedDate = DateTime.Parse(text);

Reversing a String
public class WordReverser {

static void Main() {

string text = "EM edit";

string reversed = ReverseText(text);

Console.WriteLine(reversed);

// Console output:

// tide ME

}

static string ReverseText(string text) {

StringBuilder sb = new StringBuilder();

for (int i = text.Length - 1; i >= 0; i--)

{

sb.Append(text[i]);

}

return sb.ToString();

} }

Structures

• Structures are defined through the keyword
struct

• Structures (structs) are value types

• Use structures to hold simple data structures
consisting of few fields that come together

• Examples are coordinates, sizes, locations,
colors, etc

Structure (struct) – Example
struct Point2D {

private double x;

private double y;

public Point2D(int x, int y) {

this.x = x;

this.y = y;

}

public double X {

get { return this.x; }

set { this.x = value; }

}

public double Y {

get { return this.y; }

set { this.y = value; }

}

}

Sturct is a value type

Enumerations

• Enumeration is a structure, which resembles a class
but differs from it

• Enumerations can take values only from the
constants listed in the type

• An enumerated variable cannot have value null
• Syntax:

[<modifiers>] enum <enum_name>
{

constant1 [, constant2 [, [, … [, constantN]]
}

Enumeration - Example

enum Days

{

Mon, Tue, Wed, Thu, Fri, Sat, Sun

}

• Each constant, which is declared in one
enumeration, is being associated with a certain
integer

• Ex: int mondayValue = (int)Days.Mon;

Console.WriteLine(mondayValue);

