STACKS




What is a stack?

Stores a set of elements in a particular order
Stack principle: LAST IN FIRST OUT= LIFO

i.e the last element inserted is the first one to be
removed

Example

— Stack of plates
— Stack of coins



stack data structure

Stacks often are drawn vertically:

push pop

< last item in, first item out

< first item in, last item out




Basic Stack Operations

e Push:

— Adds an item at the top of the stack.

— If the stack is full, no more data can be added to
the stack and the stack is said to be in the
overflow state.

— Diagram



Algorithm to push data into stack

Algorithm push(struct stack *s, int item)
To push the data into the stack using array implementation
pre: struct stack *s : pointer to the stack structure
item : data to be pushed in the stack

post: push the data into the array
1. if s->top=ARR-1

display "STACK IS FULL"

return
2. [increment top by 1]

S->top++

3. [insert data into the stack]

s->a[s->top]=item

count =count +1



Basic Stack Operations

* Pop:
— Removes an item at the top of the stack.

— When the last item is deleted , the stack must be
set to empty state. If pop() is called when the
stack is empty, it is said to be in the underflow
state.

— Diagram



Algorithm to pop data from the stack

Algorithm int pop(struct stack *s)

pre : To pop the data from the stack using array
implementation

struct stack *s : pointer to the stack structure

post : return the popped data to the main()
return data

1. [declare a variable]
int data
2. if s->top =-1
return NULL
3. [remove data from the top of the stack]
data=s->a[s->top]
s->top—
count--
return data



Basic Stack Operations

e Stack top or peep

— |t returns the data at the top of the stack but does
not delete it. i.e it only reads the data.

— if the stack is empty, stack top can result in
underflow state.



Algorithm to peep/read data from the stack

Algorithm int peep(struct stack *s)

To peep/read the data from the stack using array implementation
pre: struct stack *s : pointer to the stack structure

post: return the peeped data to the main()

Return data

Refer to pop() algorithm and make the necessary changes



Algorithm to display the stack

Algorithm displaystack(struct stack *s)
Pre : struct stack *s : pointer to the stack structure
post : Display the contents of the stack
1.[intialize]
Int x=count;
2. Repeat while x>=0
1. Display s->a[x]
2. X--;



Application of stacks

* Region in memory within which the programs
temporarily store data as they execute.

e Evaluation of expressions:

— Process of writing the operators of an expression
either before their operands or after their operands is
called as “polish notation”

— 3 forms of polish notation
* Prefix form : the operators come before operands

* Postfix form : the operators come after operands
* Infix form: the operator come in between operands



1.

1.

Algorithm for converting infix to postfix

Algorithm infix_to_postfix()

Push “(“ onto STACK and add “)” to
the end of expression A.

Scan expression Q from left to right
and repeat 1 to 6 for each element

of Q until the stack is empty.

If an operand is encountered,
add it to Stack B

If a “(“ is encountered push it
onto the stack A.

If an operator is encountered
then

A) if operator in the stack A has

same precedence or higher
precedence than the
operator encountered then
1. Repeatedly pop
the operators
from the STACK A and
add to Stack B each
operator
B) Add the encountered
operator to STACK A.
6. If “)” is encountered then
A) Repeatedly pop from the
STACK A and add to B each
operator(on the top of
STACK) until a “(“is
encountered.
B) Remove the “(“



Evaluation of postfix expression

Algorithm evaluate_postfix()
1. createStack(stack)
2. Loop(for each character)

3. result =popStack(stack)
4. Return result

If(character is operand) End evaluate_postfix

1. PushStack(stack,character)
else
1. set oper2= popStack(stack)
2. set operl=popStack(stack)
3. operator=character
4. set value = calculate
(operl,operator,oper2)
5. pushStack(stack ,value)
endif
end loop



Algorithm for converting infix to prefix

Algorithm infix_to_prefix(s[])

1.
2.
3.

Get the infix expression s.
set i=0

Set topl=top2=-1, indicating

stacks are empty.

If s[i]="(", push it in stackl, go

to step 8

If s[i]=operand, push itin
stack2, go to step 8

6. If s[i]=operator

stackl is empty or stack
top elements has less
priority as compared o

s[il,

add operator to the stackl
go to step 8

else

p= pop the operator
from the stackl

O2=pop the operand from
stack?2

Ol1=pop the operand from
stack?2

form the prefix expr
p,01,02

push operator in stack2 and
go to step 8

End if

N A~



Algorithm for converting infix to prefix

/. If s[i]=)’ then step 7A
A) p=pop the operator B)
from stackl remove “(“
O2=pop the go to step8
operand from 8. Increment i
stack?2 9. If s[i] <>’\0’ then go to step 4
O1=pop the 10. Everytime pop one operator
operand from from stackl, pop 2 operands
stack2 from stack 2, form the prefix

expr,01, 02, push in stack?2
and repeat till stack becomes
empty.

form the prefix expr
p,01,02

pushin stack2and goto 171 pop operand from stack2 and

print it as expression
12. stop



More Applications of stacks

Parenthesis matching
Towers of Hanoi
Rearranging Railroad cars
Switch box routing

Rat in a maze



