
STACKS

What is a stack?

• Stores a set of elements in a particular order

• Stack principle: LAST IN FIRST OUT= LIFO

i.e the last element inserted is the first one to be
removed

• Example
– Stack of plates

– Stack of coins

3

stack data structure

Stacks often are drawn vertically:

poppush

 first item in, last item out

 last item in, first item out

Basic Stack Operations

• Push:

– Adds an item at the top of the stack.

– If the stack is full, no more data can be added to
the stack and the stack is said to be in the
overflow state.

– Diagram

Algorithm to push data into stack

Algorithm push(struct stack *s , int item)

To push the data into the stack using array implementation

pre: struct stack *s : pointer to the stack structure

item : data to be pushed in the stack

post: push the data into the array

1. if s->top = ARR - 1

display "STACK IS FULL"

return

2. [increment top by 1]

s->top++

3. [insert data into the stack]

s->a[s->top]=item

count =count +1

Basic Stack Operations

• Pop:

– Removes an item at the top of the stack.

– When the last item is deleted , the stack must be
set to empty state. If pop() is called when the
stack is empty, it is said to be in the underflow
state.

– Diagram

Algorithm to pop data from the stack
Algorithm int pop(struct stack *s)
pre : To pop the data from the stack using array

implementation
struct stack *s : pointer to the stack structure

post : return the popped data to the main()
return data
1. [declare a variable]

int data
2. if s->top =-1

return NULL
3. [remove data from the top of the stack]

data=s->a[s->top]
s->top—
count--
return data

Basic Stack Operations

• Stack top or peep

– It returns the data at the top of the stack but does
not delete it. i.e it only reads the data.

– if the stack is empty, stack top can result in
underflow state.

Algorithm to peep/read data from the stack

Algorithm int peep(struct stack *s)

To peep/read the data from the stack using array implementation

pre: struct stack *s : pointer to the stack structure

post: return the peeped data to the main()

Return data

Refer to pop() algorithm and make the necessary changes

Algorithm to display the stack

Algorithm displaystack(struct stack *s)

Pre : struct stack *s : pointer to the stack structure

post : Display the contents of the stack

1.[intialize]

int x=count;

2. Repeat while x>=0

1 . Display s->a[x]

2. x--;

Application of stacks

• Region in memory within which the programs
temporarily store data as they execute.

• Evaluation of expressions:

– Process of writing the operators of an expression
either before their operands or after their operands is
called as “polish notation”

– 3 forms of polish notation

• Prefix form : the operators come before operands

• Postfix form : the operators come after operands

• Infix form: the operator come in between operands

Algorithm for converting infix to postfix
Algorithm infix_to_postfix()

1. Push “(“ onto STACK and add “)” to
the end of expression A.

2. Scan expression Q from left to right
and repeat 1 to 6 for each element
of Q until the stack is empty.

1. If an operand is encountered ,
add it to Stack B

2. If a “(“ is encountered push it
onto the stack A.

3. If an operator is encountered
then

A) if operator in the stack A has

same precedence or higher

precedence than the

operator encountered then

1. Repeatedly pop

the operators

from the STACK A and

add to Stack B each

operator

B) Add the encountered

operator to STACK A.

6. If “)” is encountered then

A) Repeatedly pop from the

STACK A and add to B each

operator(on the top of

STACK) until a “(“ is

encountered.

B) Remove the “(“

Evaluation of postfix expression
Algorithm evaluate_postfix()

1. createStack(stack)

2. Loop(for each character)

If(character is operand)

1. PushStack(stack,character)

else

1. set oper2= popStack(stack)

2. set oper1=popStack(stack)

3. operator=character

4. set value = calculate

(oper1,operator,oper2)

5. pushStack(stack ,value)

endif

end loop

3. result =popStack(stack)

4. Return result

End evaluate_postfix

Algorithm for converting infix to prefix

Algorithm infix_to_prefix(s[])

1. Get the infix expression s.

2. set i=0

3. Set top1=top2=-1, indicating
stacks are empty.

4. If s[i]=‘(‘ , push it in stack1, go
to step 8

5. If s[i]=operand , push it in
stack2, go to step 8

6. If s[i]=operator

stack1 is empty or stack

top elements has less

priority as compared o

s[i],

x

add operator to the stack1

go to step 8

else

p= pop the operator

from the stack1

O2=pop the operand from
stack2

O1=pop the operand from
stack2

form the prefix expr
p,O1,O2

push operator in stack2 and
go to step 8

End if

Cont…

Algorithm for converting infix to prefix
7. If s[i]=‘)’ then

A) p=pop the operator

from stack1

O2=pop the

operand from

stack2

O1=pop the

operand from

stack2

form the prefix expr

p,O1,O2

push in stack2 and go to

step 7A

B)

remove “(“

go to step8

8. Increment i

9. If s[i] <>’\0’ then go to step 4

10. Everytime pop one operator
from stack1, pop 2 operands
from stack 2 , form the prefix
expr ,O1, O2 , push in stack2
and repeat till stack becomes
empty.

11. Pop operand from stack2 and
print it as expression

12. stop

More Applications of stacks

• Parenthesis matching

• Towers of Hanoi

• Rearranging Railroad cars

• Switch box routing

• Rat in a maze

