
Sorting

Sorting Hierarchy

Sorts

Internal External

(merges)

Insertion Selection Exchange

•Straight

Insertion Sort

•Shell Sort

•Selection Sort

•Heap Sort

•Bubble Sort

•Quick Sort

Difference between Internal Sort and External Sort

• Internal Sort:

– All of the data are held
in primary memory
during the sorting
process

• External Sort:

– Uses primary memory
for the data currently
being sorted and
secondary storage for
any data that does not
fit in primary memory.

– Eg:

Sort Efficiency

• An estimate of the number of comparisions
and moves required to order an unordered
list.

Insertion Sorts

Internal

Insertion

Sorts

Straight Insertion Sort Shell Sort

Straight Insertion sort

• The list is divided into 2 parts:

– Sorted and Unsorted

• In this, the first element of the unsorted sublist
is transferred to the sorted sublist by inserting it
at the appropriate place.

• If there is a list of n elements , the straight
insertion sort will take at most n-1 passes to sort
the data.

• Algorithm

Algorithm insertionsort(int a[], int noofelements)

1. [Declare]

curdata, prevdata,temp

2. For curdata=1 to to curdata <noofelements

1.For prevdata=curdata to prevdata>0step -1

1. if(x[prevdata-1]>x[prevdata])

a.temp=x[prevdata]

b. x[prevdata]=x[prevdata-1]

c. x[prevdata-1]=temp

3. Display array x after sorting

Sort efficiency of Insertion Sort

• The outer loop executes n-1 times(from 1 to
noofelements).

• The inner loop is dependant on the outer
loop(prevdata=curdata to 1 step -1), we
have a dependant quadratic loop.

• in big-O notation the efficiency of insertion sort is
O(n2)

Shell Sort

• Shell sort is named after its creator, Donald Shell.

• Improved version of straight insertion sort.

• This method is also called diminishing-increment sort

• Complexity of shell sort :

• Worst case performance :depends on gap sequence. But the
known is : O(nlog2n)

• Best case performanceO(n)

• Average case performance :depends on gap sequence

• Algorithm

http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case
http://en.wikipedia.org/wiki/Best,_worst_and_average_case

void shell_sort(int a[],int size)

1.[Declare]

temp,gap,i,j,xchng=1

2. For gap=size/2 to gap> 0 step gap/2

1.do

A.xchng=0

B. for i=0 to i<size-gap

1. if(a[i]>a[i+gap])

a. temp=a[i]

b. a[i] =a[i+gap]

c. a[i+gap]=temp

d. xchng=1

while(xchng ==1)

3. display_sorted_list(list,noofelements)

1. Size is divided by 2 in each loop.
(gap=size/2 to gap> 0 step
gap/2). Therefore, it is executed
logn times.

2. The first inner loop executes size-
gap times i.e

(size-(size/2)) for the first time.

(size-(size/4)) for the second
time and so on…

Therefore, we have

log2n *[(size-(size/2)) +

(size-(size/4)) +

(size-(size/8))…+1]

= nlog2n

3. In big-O notation the effciency of
insertion sort is O(nlog2n)

• Advantage of Shell sort:

– Its only efficient for medium size lists. For bigger
lists, the algorithm is not the best choice.

• Disadvantage of Shell sort:

– It is a complex algorithm and its not nearly as
efficient as the merge, heap, and quick sorts.

– The shell sort is still significantly slower than the
merge, heap, and quick sorts.

http://linux.wku.edu/~lamonml/algor/sort/merge.html
http://linux.wku.edu/~lamonml/algor/sort/heap.html
http://linux.wku.edu/~lamonml/algor/sort/quick.html
http://linux.wku.edu/~lamonml/algor/sort/merge.html
http://linux.wku.edu/~lamonml/algor/sort/heap.html
http://linux.wku.edu/~lamonml/algor/sort/quick.html

Selection Sort

Internal

Selection

Sorts

Straight Selection Sort Heap Sort

Straight Selection Sort

• In this sort, select the smallest item and place
it in the sorted order.

• The list at any moment is divided into 2 sublists
viz sorted and unsorted which are divided by an
imaginary wall.

• Easiest method of sorting.

Straight Selection Sort

• In this , select the beginning element and the
smallest element in the list and exchange.
After each selection and exchange, the wall
between the sorted sublist and unsorted
sublist moves one element increasing the
number of sorted elements and decreasing
the number of unsorted elements.

• Each time one element is moved from
unsorted sublist to the sorted sublist, one pass
is completed.

• For n elements, we need n-1 passes to
completely rearrange the data.

Algorithm of selection sort
• Diagram:

• Algorithm:

Algorithm selection(a[], noofelements)

Pre :list :array of integer elements

last:nth element in the list

Post:sorted list of data

1. For curdata = 0 to curdata< (noofelements-1)

1. For nextdata = curdata +1 to nextdata<noofelements

1. if a[curdata]>a[nextdata]

swap the values

2.Print the sorted array

Efficiency of Selection Sort

• The outer loop executes n-1 times(from 0 to last
-1).

• The inner loop is dependant on the outer
loop(subsequentdata = currentdata +1),we have a
dependant quadratic loop.

• in big-O notation the efficiency of insertion sort is
O(n2)

Heap Sort

• The heap sort algorithm is an improved
version of straight selection sort.

• Based on a tree structure that reflects a
particular order of a corporate hierarchy.

• i.e. In the corporate management, president
is at the top. When the president retires, the
VP competes for the job and becomes the
president and creates a vacancy.Hence the
vacancy continuously appears at the top. This
idea illustrates the heap sort method.

• The heap sort proceeds in two phases:

– The entries are arranged in the heap(build_heap)

– Remove the element from the top of the heap and
promote another entry to take its place.

Heap sort algorithm

Heap_Sort(A,n)

1. build_heap(A)

2. Repeat a,b,c for i=n to 1 step -1

a. swap(A[0], A[n])

b. n=n-1

c. reheapdown(A,0,n)

Exchange Sort

Internal

Exchange

Sorts

Bubble Sort Quick Sort

Bubble Sort

• In bubble sort , consecutive items are
compared and exchanged on each pass
through the list.

• In bubble sort, in each pass through the data,
the smallest element is bubbled to the
beginning of the unsorted segment array.

• Bubble sort algorithm from the low end and
bubbled up i.e. bubbles to the largest
element

void bubble_sort(int *list,int noofelements)

1. [Initialize]

curdata,nextdata,temp;

2. Repeat for curdata = 0 to curdata<(noofelements -1)

a. Repeat 1,2 for nextdata= 0 to

nextdata< (noofelements- 1)- currentdata)

1. if (list[nextdata]>list[nextdata+1])

swap the values

2. increment nextdata

3. Call display_sorted_list(list,noofelements)

Efficiency of Bubble Sort

• The outer loop executes n times(from 0 to
noofelements -1).

• The inner loop is dependant on the outer
loop(nextdata<noofelements-currentdata
),we have a dependant quadratic loop.

• The efficiency is f(n)=(n)(n+1)/2

• in big-O notation the efficiency of bubble sort is
O(n2)

Quick Sort

• Quick sort is an exchange sort developed by
C.A.R Hoare.

• It is more efficient than the bubble sort
because fewer exchanges are required to
correctly position an element.

• Working

– Each iteration selects an element known as pivot
divides the list into 3 groups:

• A partition of elements whose keys are less than the
pivot’s key.

• The pivot element that is placed in the list

• A partition of elements whose keys are greater than
the pivot’s key.

• The sorting then continues by quick sorting the left
followed by quick sorting the right partition.

• diagram

• Hoare’s original algorithm selected the pivot
key as the first element in the list

• R.C Singleton improved the sort by selecting
the pivot key as the median value of three
elements.

• Each pass in the quick sort divides the list into
3 parts:

– A list of elements smaller than the pivot key

– The pivot key and

– A list of elements greater than the pivot key

• Algorithm

Quick_sort(a[], first ,last)

1.[Initialize]

low=first

high=last

pivot=a[(low+high)/2]

2. Repeat A,B,C

while(low<=high)

A. Repeat step A

while(a[low]<pivot)

A. low=low+1

B. Repeat step B

while(a[high]>pivot)

A. high=high-1

C. if (low<=high)

1.swap low and high

values

2. low=low+1

3.high=high-1

4.if(first<high)

Quick_sort(a, first, high)

5.if(low<last)

Quick_sort(a, low,last)

6. End

Efficiency of Quick Sort

• The first loop(step 2) in conjunction with step
A and B looks at each element in the portion
of the array being sorted.Therefore they loop
through the list n times.

• The list is divided into 2 sublists roughly of
the same size using the pivot. Because the list
is divided into 2 the number of loops is
logarithmic.

• Therefore the efficiency is O(nlogn)

Merge Sort

Algorithm Merge-Sort(Ar, l, r)

if l < r then

1.mid = (l+r)/2

2. Merge-Sort(A, left, mid)

3.Merge-Sort(A, mid+1, right)

4.Merge(A, left, mid +1, right)

Binary Tree Sort

• Binary tree sort makes use of Binary Search Tree(BST)

• Algorithm of Binary tree sort:

1. To place an element at the appropriate position, the element is

compared with node element.

Repeat A while all elements are placed in the tree

A. If the new element <= element in the root node then

it is moved to the left branch

else

it is moved to the right branch

2. To get the tree in the sorted order, the inorder traversal is applied.

• Complexity of Binary Tree Sort:

– Worst case complexity is O(n2)

– Best case complexity is O(n log2 n)

• Example

Radix Sort

• Used to sort a large list of name alphabetically.

• Algorithm of radix sort

1. In the first iteration, the elements are picked up and kept in various

pockets by checking their unit’s digit.

2. The data is then collected from pocket 0 to pocket 9 and they are given

as input to sorter.

3. In the second iteration, the ten’s digit are sorted.

4. Step 2 is repeated

5. In the second iteration, the hundred’s digit are sorted.

6. Step 2 is repeated once again

• Complexity of Radix sort:

– The time requirement depends on the number of digits

and the number of elements in the file. The loop is

traversed “m times” for each digit and the inner loop is

traversed “n times” for each element in the file.

– The sort is approx O(m*n) .

– m approximates to log2n and so that O(m*n)

approximates to O(n log2n).

• Examples

Assignment

• Find out efficiency of Merge Sort

• Compare the efficiencies of bubble, selection
and insertion sort. Which is the most
efficient?

