Searching

Two Basic Searches for arrays
« Sequential Search:
— Can be used to locate an item in any array.

* Binary Search:
— Requires an ordered list.

Sequential Search

« Used when the list is not ordered.

 Used for small lists or lists that are not
searched often.

 Algorithm of Linear Search

Sequential Search

« Used when the list is not ordered.

 Used for small lists or lists that are not
searched often.

 Algorithm of Linear Search

Algorithm of Linear Search

int linearSearch(int a[], int first,
Int last, int key)
Searches affirst]..a[last] for key.

returns: index of the matching
element if it finds key,
otherwise -1.

a in array of (possibly unsorted)
values.

first, last in lower and upper
subscript bounds key in value
to search for.

returns:

index of key, or -1 if key is not
in the array.

1. Repeat for i=first to last
a. If (key = ali})

display “key found at
location I”

2. return -1; // failed to find key

Efficiency of linear search

Model No. of Comparisions as
Comparisions a function of n

Best Case 1(target is the first |1

(fewer comparisions) | ltem)

Worst Case(most n(target is the last | n

comparisions) item)

Average Case(Avg | n/2(target is the n/2

no. of comparisons) | middle item)

Disadvantage of sequential search

» Sequential search Is very slow.
* EQ:

Binary Search

* Binary search Is used when the list is
sorted.

* |tis used whenever the list starts to
become large.(more than 15 elements).

* Working:

Algorithm of Binary Search

binarysearch(int a[],int Step 3:
value, int n) mid=(first+last)/2
/la[]:list of elements Step 4.

/Ivalue:the value to be if(value<a[mid])
searched last=mid -1
//n:no. of elements Iin the list elseif(value>a[mid])

Step 1: initialize] first=mid+1
first=0 elseif(value==a[mid])
last =n-1 print “search
flag=0 successful”

Step 2: and location of

repeat through step 4 the element mid

while(first<=last) flag=1

Algorithm of Binary Search

Step S:
If(flag=0)
print “search is
unsuccessful)
Step 6:
Exit

Efficiency of binary search

Model No. of Comparisions as
Comparisions a function of n

Best Case 1(target is the 1

(fewer comparisions) | middle item)

Average Case Log, n

Worst Case(most n(target is the last | n

comparisions)

item)

Indexed Sequential search

Is another searching technique for a sorted list.
In this an auxiliary “array index” is maintained in addition to the sorted list.

Each element in the “array index” consists of a key value and a link to the
record in the sorted list that corresponds to the key.

Imp:
— The elements in the “array index” as well as the elements in the original list
must be sorted on the key.

Example:

Advantage:

— Even if elements in the list are examined sequentially, the search time is
sharply reduced as the search is performed on the smaller index rather than
on the larger one.

— Once the correct index position has been found in the original list, a second
sequential search is performed on a smaller position of the original list
itself.

Interpolation search

Used for searching an ordered array.

More efficient than the binary search, if the elements are sorted in a array.
The key Is expected to be at mid such that

mid=first+(last —first) * [(key —A[first]) / A[last] -A[first]) |
Algorithm

Algorithm of Binary Search

Interpolationsearch(int af],int value, int n)
//a[]:list of elements
//value:the value to be searched
//n:no. of elements in the list
Step 1:[initialize]
first=0
last =n-1
flag=0
Step 2:
repeat through step 4
while(first<=last)

Step 3:
mid=first+(last —first) * [(key —A[first]) / A[last] -A[first])]
Step 4:
if(value<a[mid])
last=mid -1
elseif(value>a[mid])
first=mid+1
elseif(value==a[mid])
print “search
successful”
and location of
the element mid
flag=1

Efficiency of interpolation search

Model No. of Comparisions as
Comparisions a function of n

Best Case 1(target is the 1

(fewer comparisions) | middle item)

Average Case Log, n

Worst Case(most n(target is the last | n

comparisions)

item)

Hashed List Searches

 Hashing or hash function is a key-to-
address transformation in which the keys
map to the addresses in the list.

« Hashing is a key-to-address mapping

Drocess

* Diagram

Key . Hash Function * Address

Example:

Synonyms

* The set of keys that hash to the same
location is called a synonym.

 Example

Collision

* A Collision occurs when a hashing
algorithm produces an address for a key
and that address is already occupied.

* The address produced by the hashing
algorithm Is known as the home address.

 The memory that contains all of the home
addresses is known as the prime area.

Hashing Methods

« Basic Hashing Technigues

Hashing Methods

Direct

Modulo Mid .
.. Rotation
Division Sguare
Subtraction Digit Folding
Extraction

Pseudo
Random
Generation

Direct Hashing

* In direct hashing, the key is the address
without any algorithmic manipulation.

 Therefore the data structure must contain
an element for every possible key.

 Advantage

— Applications of direct hashing are limited but
can be powerful because there are no
synonyms and therefore no collisions.

Cont...

Direct Hashing

* Disadvantage
— Address space Is as large as the key space
* Direct hashing is an ideal method but its
application is very limited.It can be used
only for small lists in which the keys map
to a filled list

* EQ:

Subtraction Method

In this method, the key is transformed to
an address by subtracting a fixed number
from It.

t Is simple and guarantees that there will
ne no collisions.

_Imitations:

Imited.It can be used only for small lists In
which the keys map to a filled list

Similarity between Direct Hashing
and Subtraction Method

 The direct hashing and substraction
methods both guarantee search with no
collisions.They are one-to-one hashing
methods.i.e. only one key hashes to
each address

Modulo-Division Method

* Also known as division remainder, this
method divides the key by the array
size.and uses the remainder for the
address.

address = key MOD listsize
when address range from 0 to listsize-1
Or
address = (key MOD listsize) +1
when address range from 1 to listsize

Modulo-Division Method

* This method works with any list
size.However a list size that Is a prime
number produces fewer collisions than
other list sizes.Therefore make the array
Size a prime number.

« Example

Digit Extraction Method

* In this method, selected digits are extracted
from the key and used as the address.

« Example:

— using six-digit employee number to hash to a
three-digit address (000—-999), we could select
the first, third and fourth digits (from the left) and
use them as the address.

MidSquare Method

* In midsquare hashing , the key Is squared
and the address is selected from the
middle of the squared numbers.

« Advantage:
— Entire key Is used to calculate the

address, reducing chances of collisions

MidSquare Method

* Disadvantage:

— The size of the key.Eqg. If a key is 6 digits, the
product will be 12 digits which is beyond the
max integer size of many computers.

« Variation of Mid Square Method

— Select a portion of the key such as the first
3 digits and then use the midsquare
method.

Folding Methods

* Two folding methods are used
— Fold shift
— Fold boundary

* Fold Shift

— In fold shift, the key value is divided into parts
such that the

size of the parts = size of the required address

— The left and right parts are shifted and
added with the middle part.

— If sum>size of the address |, discard the
leading digits.

* Fold Boundary:

— The left and right numbers are folded on a
fixed boundary between them and centre
number.The two outside values are thus
reversed.

—examples

Rotation Method

Rotation hashing is not used by itself but is
incorporated in combination with other
hashing methods.

Most useful when key are assigned
serially.

A simple hashing algorithm tends to
create synonyms when hashing keys are
Identical except for the last character.

Rotating the last character to the front of
the key minimizes this effect.

Rotation Method

 Modula division method do not work well
with rotation method.

* Rotation is used only in combination with
folding and pseudorandom hashing

Pseudorandom hashing

* In this the key Is used as the seed in a
pseudorandom number generator.

« The resulting random number is then scaled into
the possible range using modulo-division
method.

« A common random number generator Is
y=ax +C
X = key
a and c = factors that should be prime
numbers since prime numbers minimize

collisions
* Example

Multiplicative Method

* The hashing technique uses the following
formula:

* h(key) =floor(m * frac(c* key))
where floor =integer part of real number
frac(x)= fractional part

c=0.618, yields good theoritical
properties

* Disadvantage:
— Slower than modulo division method

IMP NOTE

« All hash functions except direct
hashing and subtraction hashing are In

such a way that “many keys hash to one
address”

Collision Resolution

Collision Resolution

Open Addressing

Linked List

Linear Probe

Quadratic Probe

Pseudorandom

Key offset

Buckets

Concepts for collision resolution
methods:

Load factor:

— The load factor(a-alpha)of a hashed list is :
Number of elements in the list *100
Number of physical elements
allocated for the list

— Fullness of a file is measured by its load factor

— When the address space of a relative file gets full, the
probability of collision arises dramatically.

— A load factor 70% or 80% gives reasonable
performance.

— Example. If a file contains n records, the address
space should have room for storing 1.25n
records(80%)

Clustering

* Clustering:

— As the data are added to the list ,some
hashing algorithms tend to cause data to
group within the list.

— This tendency of data to build up unevenly
across a hashed list is known as clustering.

— Clustering is usually created by collisions.

Types of clustering

* Two types of clusters exist:

— Primary clustering:

* Occur when data cluster around a home
address.
— The collision resolution is based on home address
— Easy to identify.
— Primary cluster slows down the operations
— Example

Types of clustering

— Secondary clustering:

* The collision resolution is not based on the
home address.

 The collision resolution algorithm spreads the
collisions across the entire list.

* Not easy to identify

 The time to locate a requested element of data
becomes faster.

 Example

Open Addressing:

— Resolves collisions in the prime area i.e.
the area that contains all of the home

acC
- W
acC

dresses.
nen a collision occurs, the prime area

dresses are searched for an unoccupied

element where the data can be placed.

Linear Probe

 In a linear probe, when data cannot be
stored In the home address, the collision Is
resolved by adding 1 to the current
address.

« Example

* As an alternative to a simple linear probe,
we can add 1, subtract 2, add 3 subtract 4
and so forth until an element is located.

Linear Probe

* We must ensure that the next collision resolution
address lies within the boundaries of the list. Eg:
If a key hashes to the last location in the list,
adding 1 must produce the address of the first
element. Similarly if a key hashes to the first
location in the list, subtracting 1 must produce
the address of the last element.

« Advantages:
— Simple to implement.
— Data tend to remain near their home address.

— Linear probes tend to produce primary clustering.

— Linear probes tend to make the search algorithm
more complex.

Quadratic probe:

* In the quadratic probe,

—the increment =the collision probe
number squared

— The new address = collision location +
Increment

— Disadvantage:

 Time required to square the probe number.
Therefore instead of multiplication factor, we
can use an increment factor that increases by 2
with each probe.

* It is not possible to generate a new address for
every element in the list.

Double Hashing

The pseudorandom collision
resolution and key offset

pseudorandom collision
resolution and key offset

* In each method, rather than use an
arithmetic probe function, the address

IS rehashed

 Both methods prevent primary
clustering.

Pseudorandom collision
resolution

« Uses pseudorandom number to resolve the
collision.

* In this, rather than use the key as a factor in
the random-number calculation, we use the
collision address.

« Advantage:
— Pseudorandom collision resolution have simple
solution

— Produces only one collision resolution path
through the list.

Key offset:

It is a double hashing method that produces
different collision paths for different keys.

The pseudorandom number generator
produces a new address as a function of the
previous address, key offset produces a new
address as a function of the previous
address and the key.

Example

Therefore each key resolves its collision at a
different address

Linked List Collision resolution

 Major disadvantage of open addressing Is
that each collision resolution increases the
probability of future collisions. This
disadvantage is eliminated by Linked list
collision resolution.

« Example

* Linked list collision resolution uses separate
area to store collisions and chains all
synonyms together in a linked list.

Linked List Collision resolution

« Uses two storage areas :prime area and
overflow area :

— Each element in the prime area contains an
additional field- a link head pointer to a linked list
of overflow data in the overflow area.

— When collision occurs , one element is stored In
the prime area and chained to its corresponding
linked list in the overflow area.

— The linked list data can be stored in any order, but
a LIFO sequence is the most common as it the
fastest.

Bucket Hashing

The keys are hashed to buckets. The buckets
are nodes that accommodate multiple data
occurrences.

Because a bucket can hold multiple data,
collisions are postponed until the bucket is

full.
Problems in bucket hashing:

— It uses more space because many of the buckets
are empty or partially empty at any given time.

— It does not completely resolve the collision
problem.

Example

Application of Hashing

« Hash tables are good in situations where you have enormous amounts of data from
which you would like to quickly search and retrieve information.

« A few typical hash table implementations would be in the following situations:

For driver's license record's. With a hash table, you could quickly get
information about the driver (ie. name, address, age) given the licence number.

For compiler symbol tables. The compiler uses a symbol table to keep track of
the user-defined symbols in a C++ program. This allows the compiler to
quickly look up attributes associated with symbols (for example, variable
names)

For internet search engines.

For telephone book databases. You could make use of a hash table
Implementation to quickly look up John Smith's telephone number.

For electronic library catalogs. Hash Table implementations allow for a fast
find among the millions of materials stored in the library.

For implementing passwords for systems with multiple users. Hash Tables
allow for a fast retrieval of the password which corresponds to a given
username.

/2 Hash Table - Windows Internet Explorer provided by SIESCOMS = =] x|
@’—“ - Iﬂ htkp s vy, o5, Uregina, cajLinks/class-infof210/Hash/ j @ 2| X I; Google B

File Edit ‘iew Favorites Tools Help

T:IFB\"U”'IES 8 Hash Table | | ﬁ B == E.ga * Page ~ Safety » Tools - l@lv =

[2. Application: Looking up Passwords 4]

The following section outlines an algorithm for authenticating a user's password. Later, in the lab exercise, you will be given the
skeleton code and asked to add lines to make it work.

One possible use for a hash table is to store computer user login usernames and passwaords.
There are two major steps to this program:

1. The program will load username/password sets from the file password. dat and insert them into the hash table until the end of file is
reached on password.dat. The password.dat file will look something like this with one username/password set per line:

HJack broken.crown
9ill tunmblin'down
Ty CONCTrary

bopeep sheep!lost

2. The program will then present a login prompt, read one username, present a password prompt, and after looking up the username's
password in the hash table, will print either "Authentication successful” or "Authentication failure”. The output might look something like this: J

Login: mary
Password: contrary
Bmthentication successful

Login: jim
Password: contrary
Bumthentication failure

Login: bopeep
Password: sheeplost
Bmthentication failure

Step 2 will be repeated until the end of the input data (EOF) is reached on the console input stream (cin). The EOF character onthe PC's is the
CTRL Z character. |

[pone I_I_ l_l_l_ I_la Internet [v5 - [®=100% -
o Startl @ 0 [o) skype™ - wwranl3 | & applications of has. .. ” @ Hash Table - Win... | E:\MCA-SEM II'Co. .. | [Microsoft PowerPo.. . | ‘E D HD S @ 1019 8m

« Symbol table:

— The symbol table records information about each symbol name in a
program.

— Many compilers set up a table for the various variables in the program
and fill in the information about the symbol later during semantic
analysis when more information about the variable is known

Dec HxOct Char Dec Hx Oct Himl Chr |Dec Hx Oct Himl Chr) Dec Hx Oct Himl Chr
0 0 000 NUL (rnuall) a2 20 040 : Space| 64 40 100 s#ad;y [4 96 60 140 `
1 1 001 S0H (start of heading) 33 21 041 ŏ ! 65 41 101 A &L [97 g1 141 	%7; 4
2 2 002 3TX (start of text) 34 22 04z " " 66 42 102 &«#66: B | 95 62 142 b b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 C: C | 99 53 143 c C
4 4 004 EOT (end of transmission) 36 24 044 #3567 § 65 44 104 «#68; D |100 64 144 d d
5 5 005 ENO (enquiry) 37 25 045 % % 69 45 105 s#69; E (101 65 145 e &
& 6 006 ACE (acknowleddge) 38 zZ6 046 & & 70 46 106 «#70; F (102 66 146 &#l02; €
7 7 007 BEL (hell) 39 27 047 ' ' 71 47 107 G G |103 &7 147 g 9
& & 010 BES (backapace) A0 Z& 050 (| 7z 48 110 H: H |104 65 150 «#104:; b
9 9 011 TAE (horizontal tab) 4] 29 051)) 73 49 111 «#73; I |105 69 151 i 1
10 A 0lZ LF (NL line feed, new line)| 42 24 052 * ¥ 74 Ah 112 J: T |106 64 152 j]
11 B 013 ¥T (wertical tab) 43 2B 053 + + 75 4B 113 «#75; K (107 6B 153 k: k
1z C 0l4d FF (NP form feed, new pagej| 44 2C 054 s#dd; , 76 40 114 «#76; L |105 6C 154 i 1
13 D 015 CR [carriage returh) 45 2D 055 - - 77 4D 115 «#77; M |109 6D 155 m: 0
14 E 0l 30 (shift out) 4f ZE 056 . . 78 4E 116 I N [110 g6E 156 n n
15 F 017 31 (shift in) 47 2F 057 / / 79 4F 117 O 0 (111 aF 157 ll; o
16 10 020 DLE (data link escape) 43 30 060 - O g0 50 120 P (112 70 1le0 Z; b
17 11 021 DCL (device control 1) 49 31 051 1 1 gl 51 121 00 [113 71 1Al q O
15 12 022 DCZ [(device control 2) 50 32 0RZ 2 & g2 02 12z 4 B (114 72 1lAZ &#lld; ¢
19 13 023 DC3 (device control 3) 51 33 063 &«#51; 5 83 53 123 S 5 (115 73 163 l5; =5
20 14 024 DC4 (dewice control 4) 52 34 064 &«#52: 4 g4 54 124 " T (116 74 1lad &#lle; ©
21 15 025 NiE (negative acknowledge) 53 35 065 5 5 85 55 125 #5857 17 (117 75 1la5 &#l17; u
22 16 026 3¥N (synchronous idle) 54 36 066 6 6 g6 Lo 126 ¥V [1183 76 lee q W
23 17 027 ETE (end of trans. block) BE 37 067 7 7 g7 57 127 % W [119 77 1A7 w W
24 18 030 CAN [cancel) S6 38 070 8 8 g8 55 130 «#33; X (120 78 170 &#lE0; X
22 13 031 EM (end of medium) 57 39 071 =#57: 9 g9 59 131 ;: T (121 79 171 &#lZl; ¥
26 1h 032 5UE (substitute) 58 3A 072 : Q0 54 132 Z 2 (122 74 172 &#l2Z) 2
27 1B 033 ESC (escape] 59 3B 075 ; ; 9] S 133 [[|123 7B 173 { {
28 1C 034 F3 (file separator) 60 3C 074 < < Q2Z 5C 134 \: v (124 7C 174 &#l24;
29 1D 035 33 (growup sSeparator) 61 3D 075 l; = 93 5D 135]] (125 7D 175 })
30 1E 036 RS (record separator) 6z 3E 076 �Z; = 94 SE 136 &«#94; * [126 7E 176 &#lZ6; ~
31 1F 037 U3 (unit separator) 63 3F 077 ? ¢ 95 5F 137 «#95; [127 7F 177 DEL

