
Searching

Two Basic Searches for arrays

• Sequential Search:

– Can be used to locate an item in any array.

• Binary Search:

– Requires an ordered list.

Sequential Search

• Used when the list is not ordered.

• Used for small lists or lists that are not

searched often.

• Algorithm of Linear Search

Sequential Search

• Used when the list is not ordered.

• Used for small lists or lists that are not

searched often.

• Algorithm of Linear Search

Algorithm of Linear Search
int linearSearch(int a[], int first,

int last, int key)

Searches a[first]..a[last] for key.

returns: index of the matching
element if it finds key,
otherwise -1.

a in array of (possibly unsorted)
values.

first, last in lower and upper
subscript bounds key in value
to search for.

returns:

index of key, or -1 if key is not
in the array.

1. Repeat for i=first to last

a. if (key = a[i])

display “key found at
location I”

2. return -1; // failed to find key

Efficiency of linear search

Model No. of

Comparisions

Comparisions as

a function of n

Best Case

(fewer comparisions)

1(target is the first

item)

1

Worst Case(most

comparisions)

n(target is the last

item)

n

Average Case(Avg

no. of comparisons)

n/2(target is the

middle item)

n/2

Disadvantage of sequential search

• Sequential search is very slow.

• Eg:

Binary Search

• Binary search is used when the list is

sorted.

• It is used whenever the list starts to

become large.(more than 15 elements).

• Working:

Algorithm of Binary Search

binarysearch(int a[],int

value, int n)

//a[]:list of elements

//value:the value to be

searched

//n:no. of elements in the list

Step 1:[initialize]

first=0

last =n-1

flag=0

Step 2:

repeat through step 4

while(first<=last)

Step 3:

mid=(first+last)/2

Step 4:

if(value<a[mid])

last=mid -1

elseif(value>a[mid])

first=mid+1

elseif(value==a[mid])

print “search

successful”

and location of

the element mid

flag=1

Algorithm of Binary Search

Step 5:

if(flag=0)

print “search is

unsuccessful)

Step 6:

Exit

Efficiency of binary search

Model No. of

Comparisions

Comparisions as

a function of n

Best Case

(fewer comparisions)

1(target is the

middle item)

1

Average Case Log2 n

Worst Case(most

comparisions)

n(target is the last

item)

n

Indexed Sequential search

• Is another searching technique for a sorted list.

• In this an auxiliary “array index” is maintained in addition to the sorted list.

• Each element in the “array index” consists of a key value and a link to the

record in the sorted list that corresponds to the key.

• Imp:

– The elements in the “array index” as well as the elements in the original list

must be sorted on the key.

• Example:

• Advantage:

– Even if elements in the list are examined sequentially, the search time is

sharply reduced as the search is performed on the smaller index rather than

on the larger one.

– Once the correct index position has been found in the original list, a second

sequential search is performed on a smaller position of the original list

itself.

Interpolation search

• Used for searching an ordered array.

• More efficient than the binary search, if the elements are sorted in a array.

• The key is expected to be at mid such that

mid=first+(last –first) * [(key –A[first]) / A[last] -A[first])]

• Algorithm

Algorithm of Binary Search

interpolationsearch(int a[],int value, int n)

//a[]:list of elements

//value:the value to be searched

//n:no. of elements in the list

Step 1:[initialize]

first=0

last =n-1

flag=0

Step 2:

repeat through step 4

while(first<=last)

Step 3:

mid=first+(last –first) * [(key –A[first]) / A[last] -A[first])]

Step 4:

if(value<a[mid])

last=mid -1

elseif(value>a[mid])

first=mid+1

elseif(value==a[mid])

print “search

successful”

and location of

the element mid

flag=1

Efficiency of interpolation search

Model No. of

Comparisions

Comparisions as

a function of n

Best Case

(fewer comparisions)

1(target is the

middle item)

1

Average Case Log2 n

Worst Case(most

comparisions)

n(target is the last

item)

n

Hashed List Searches

• Hashing or hash function is a key-to-

address transformation in which the keys

map to the addresses in the list.

• Hashing is a key-to-address mapping

process

• Diagram

Example:

Key AddressHash Function

Synonyms

• The set of keys that hash to the same

location is called a synonym.

• Example

Collision

• A Collision occurs when a hashing

algorithm produces an address for a key

and that address is already occupied.

• The address produced by the hashing

algorithm is known as the home address.

• The memory that contains all of the home

addresses is known as the prime area.

Hashing Methods

• Basic Hashing Techniques

Pseudo

Random

Generation

Direct

Subtraction

Modulo

Division

Digit

Extraction

Mid

Square
Rotation

Folding

Hashing Methods

Direct Hashing

• In direct hashing, the key is the address
without any algorithmic manipulation.

• Therefore the data structure must contain
an element for every possible key.

• Advantage

– Applications of direct hashing are limited but
can be powerful because there are no
synonyms and therefore no collisions.

Cont…

Direct Hashing

• Disadvantage

– Address space is as large as the key space

• Direct hashing is an ideal method but its

application is very limited.It can be used

only for small lists in which the keys map

to a filled list

• Eg:

Subtraction Method

• In this method, the key is transformed to

an address by subtracting a fixed number

from it.

• It is simple and guarantees that there will

be no collisions.

• Limitations:

• limited.It can be used only for small lists in

which the keys map to a filled list

Similarity between Direct Hashing

and Subtraction Method

• The direct hashing and substraction

methods both guarantee search with no

collisions.They are one-to-one hashing

methods.i.e. only one key hashes to

each address

Modulo-Division Method

• Also known as division remainder, this

method divides the key by the array

size.and uses the remainder for the

address.

address = key MOD listsize

when address range from 0 to listsize-1

Or

address = (key MOD listsize) +1

when address range from 1 to listsize

Modulo-Division Method

• This method works with any list

size.However a list size that is a prime

number produces fewer collisions than

other list sizes.Therefore make the array

size a prime number.

• Example

Digit Extraction Method

• In this method, selected digits are extracted

from the key and used as the address.

• Example:

– using six-digit employee number to hash to a

three-digit address (000–999), we could select

the first, third and fourth digits (from the left) and

use them as the address.

MidSquare Method

• In midsquare hashing , the key is squared

and the address is selected from the

middle of the squared numbers.

• Advantage:

– Entire key is used to calculate the

address, reducing chances of collisions

MidSquare Method

• Disadvantage:

– The size of the key.Eg. If a key is 6 digits, the

product will be 12 digits which is beyond the

max integer size of many computers.

• Variation of Mid Square Method

– Select a portion of the key such as the first

3 digits and then use the midsquare

method.

Folding Methods

• Two folding methods are used

– Fold shift

– Fold boundary

• Fold Shift

– In fold shift, the key value is divided into parts

such that the

size of the parts = size of the required address

– The left and right parts are shifted and

added with the middle part.

– If sum>size of the address , discard the

leading digits.

• Fold Boundary:

– The left and right numbers are folded on a

fixed boundary between them and centre

number.The two outside values are thus

reversed.

– examples

Rotation Method

• Rotation hashing is not used by itself but is

incorporated in combination with other

hashing methods.

• Most useful when key are assigned

serially.

• A simple hashing algorithm tends to

create synonyms when hashing keys are

identical except for the last character.

• Rotating the last character to the front of

the key minimizes this effect.

Rotation Method

• Modula division method do not work well

with rotation method.

• Rotation is used only in combination with

folding and pseudorandom hashing

Pseudorandom hashing

• In this the key is used as the seed in a

pseudorandom number generator.

• The resulting random number is then scaled into

the possible range using modulo-division

method.

• A common random number generator is

y=ax + c

x = key

a and c = factors that should be prime

numbers since prime numbers minimize

collisions

• Example

Multiplicative Method

• The hashing technique uses the following

formula:

• h(key) =floor(m * frac(c* key))

where floor =integer part of real number

frac(x)= fractional part

c= 0.618 , yields good theoritical

properties

• Disadvantage:

– Slower than modulo division method

IMP NOTE

• All hash functions except direct

hashing and subtraction hashing are in

such a way that “many keys hash to one

address”

Collision Resolution

Collision Resolution

Open Addressing Linked List Buckets

Linear Probe

Quadratic Probe

Pseudorandom

Key offset

Concepts for collision resolution

methods:

• Load factor:
– The load factor(α-alpha)of a hashed list is :

Number of elements in the list *100

Number of physical elements

allocated for the list

– Fullness of a file is measured by its load factor

– When the address space of a relative file gets full, the
probability of collision arises dramatically.

– A load factor 70% or 80% gives reasonable
performance.

– Example. If a file contains n records, the address
space should have room for storing 1.25n
records(80%)

Clustering

• Clustering:

– As the data are added to the list ,some

hashing algorithms tend to cause data to

group within the list.

– This tendency of data to build up unevenly

across a hashed list is known as clustering.

– Clustering is usually created by collisions.

Types of clustering

• Two types of clusters exist:

– Primary clustering:

• Occur when data cluster around a home

address.

– The collision resolution is based on home address

– Easy to identify.

– Primary cluster slows down the operations

– Example

Types of clustering

– Secondary clustering:

• The collision resolution is not based on the

home address.

• The collision resolution algorithm spreads the

collisions across the entire list.

• Not easy to identify

• The time to locate a requested element of data

becomes faster.

• Example

Open Addressing:

– Resolves collisions in the prime area i.e.

the area that contains all of the home

addresses.

– When a collision occurs, the prime area

addresses are searched for an unoccupied

element where the data can be placed.

Linear Probe

• In a linear probe, when data cannot be

stored in the home address, the collision is

resolved by adding 1 to the current

address.

• Example

• As an alternative to a simple linear probe,

we can add 1, subtract 2, add 3 subtract 4

and so forth until an element is located.

Linear Probe

• We must ensure that the next collision resolution
address lies within the boundaries of the list. Eg:
if a key hashes to the last location in the list,
adding 1 must produce the address of the first
element. Similarly if a key hashes to the first
location in the list, subtracting 1 must produce
the address of the last element.

• Advantages:
– Simple to implement.

– Data tend to remain near their home address.

– Linear probes tend to produce primary clustering.

– Linear probes tend to make the search algorithm
more complex.

Quadratic probe:

• In the quadratic probe,

– the increment = the collision probe

number squared

– The new address = collision location +

increment

– Disadvantage:

• Time required to square the probe number.

Therefore instead of multiplication factor, we

can use an increment factor that increases by 2

with each probe.

• It is not possible to generate a new address for

every element in the list.

Double Hashing

The pseudorandom collision

resolution and key offset

pseudorandom collision

resolution and key offset

• In each method, rather than use an

arithmetic probe function, the address

is rehashed

• Both methods prevent primary

clustering.

Pseudorandom collision

resolution

• Uses pseudorandom number to resolve the

collision.

• In this, rather than use the key as a factor in

the random-number calculation, we use the

collision address.

• Advantage:

– Pseudorandom collision resolution have simple

solution

– Produces only one collision resolution path

through the list.

Key offset:

• It is a double hashing method that produces
different collision paths for different keys.

• The pseudorandom number generator
produces a new address as a function of the
previous address, key offset produces a new
address as a function of the previous
address and the key.

• Example

• Therefore each key resolves its collision at a
different address

Linked List Collision resolution

• Major disadvantage of open addressing is

that each collision resolution increases the

probability of future collisions. This

disadvantage is eliminated by Linked list

collision resolution.

• Example

• Linked list collision resolution uses separate

area to store collisions and chains all

synonyms together in a linked list.

Linked List Collision resolution

• Uses two storage areas :prime area and

overflow area :

– Each element in the prime area contains an

additional field- a link head pointer to a linked list

of overflow data in the overflow area.

– When collision occurs , one element is stored in

the prime area and chained to its corresponding

linked list in the overflow area.

– The linked list data can be stored in any order, but

a LIFO sequence is the most common as it the

fastest.

Bucket Hashing

• The keys are hashed to buckets. The buckets
are nodes that accommodate multiple data
occurrences.

• Because a bucket can hold multiple data,
collisions are postponed until the bucket is
full.

• Problems in bucket hashing:
– It uses more space because many of the buckets

are empty or partially empty at any given time.

– It does not completely resolve the collision
problem.

• Example

Application of Hashing

• Hash tables are good in situations where you have enormous amounts of data from

which you would like to quickly search and retrieve information.

• A few typical hash table implementations would be in the following situations:

– For driver's license record's. With a hash table, you could quickly get

information about the driver (ie. name, address, age) given the licence number.

– For compiler symbol tables. The compiler uses a symbol table to keep track of

the user-defined symbols in a C++ program. This allows the compiler to

quickly look up attributes associated with symbols (for example, variable

names)

– For internet search engines.

– For telephone book databases. You could make use of a hash table

implementation to quickly look up John Smith's telephone number.

– For electronic library catalogs. Hash Table implementations allow for a fast

find among the millions of materials stored in the library.

– For implementing passwords for systems with multiple users. Hash Tables

allow for a fast retrieval of the password which corresponds to a given

username.

• Symbol table:

– The symbol table records information about each symbol name in a

program.

– Many compilers set up a table for the various variables in the program

and fill in the information about the symbol later during semantic

analysis when more information about the variable is known

