
Queues

Queues

• A linear list of elements in which

– Inserting can take place at the other end called rear.

– deletion can take place only at one end called
front.

• Queue principle : FIFO

• Conditions

– If there is no element in queue/ empty queue

• FRONT =-1 ; REAR =-1

Queues

– If there is exactly one element in queue

• FRONT = REAR

a1

• Whenever an element is added to the queue,

REAR =REAR +1 or REAR++

• If the item being added is the first element,
FRONT=0, indicating the queue is no longer
empty.

Operations on queues

• Four basic operations on queue

– Enqueue :

• Queue insert operation is called as enqueue.

• The data is inserted in the rear.

• If there is not room to insert another data in the queue ,
the queue is said to be in an overflow state.

• Diagram

• algorithm

Algorithm Enqueue(struct
queue *q, int item)

To add the data to the queue
using array implementation

pre: struct stack *s : pointer
to the queue structure

item : data to be pushed
in the stack

post : to add data to the queue

1.[check if array is full]

if (q->rear=ARR-1)

print "\n QUEUE IS FULL"

2. [increment rear and add item
to the array]

1. q->rear++

2. q->a[q->rear]=item;

3. count++;

3. [if the array is empty

(front =-1) ,set front=0]

if(q->front =-1)

q->front=0

Operations on queues

– Dequeue:

• Queue delete operation is called as dequeue.

• Data is removed from the front of the queue.

• If there are no data in the queue, when a dequeue is
attempted , then the queue is in an underflow state.

• Diagram

• algorithm

Algorithm int dequeue(struct
queue *q)

To remove data from the queue
using array implementation

pre: struct stack *s : pointer to the
queue structure

post:data is removed from the
queue and returned to the
calling program

1. [if the queue is empty return
null]
if(q->front =-1)

return NULL
2. [fetch data from the front of

the queue]
1. data=q->a[q->front]
2. q->a[q->front]=NULL;

3. [if last element was removed
from the queue,

if(q->front=q->rear)
q->front=q->rear=-1;

else
q->front++;

return data;

Operations on queues
– QueueFront:

• Returns data which is at the front of the queue without
changing the contents of the queue.

• If there are no data in the queue, when a queue front is
attempted , then the queue is in an underflow state.

• Diagram

• Algorithm

Algorithm int queuefront(struct
queue *q)

To display the data which is in the
front of the queue

pre: struct stack *s : pointer to the
queue structure

Post : data which is in the front of
the queue is returned to the
calling program

Assignment

Operations on queues

– QueueRear:

• Returns data which is at the rear of the queue without
changing the contents of the queue.

• If there are no data in the queue, when a queue rear is
attempted , then the queue is in an underflow state.

• Diagram

• Algorithm

Algorithm int queuerear(struct
queue *q)

To display the data which is in
the rear end of the queue

pre: struct stack *s : pointer to
the queue structure

Post : data which is in the rear
end of the queue is
returned to the calling
program

Assignment

Display the contents of the queue

Algorithm displayqueue(struct queue *q)

To display the contents of the queue

Pre : struct stack *s : pointer to the queue structure

1.[initialize]

x=0

2.[if rear=-1 then the queue is empty]

1. if(q->rear==-1)

print “QUEUE IS EMPTY”

return;

2. repeat while(x<=q->rear)

1. printf q->a[x]

2. x=x+1

Circular Queues

• Disadvantage of linear queues:

– If an item is removed from the linear array, the
space remains unutilized. To overcome this, the
circular array is used.

– Algorithm:

Algorithm to insert data in a Circular Queue

Algorithm ins_circular_q(Struct
queue *cq, int item)

To insert data into circular queue

Pre :

Post:

1. [Check if the queue is full]

If q->REAR =MAX -1 and

q-> Front =0

print “ circular queue is
full”

return

2. If q-> REAR = MAX -1

q->REAR=0

else

increment q->REAR

if(q->a[q->rear]==0 ||

q->a[q->rear] ==-999)

q->a[q->REAR]= item

else

printf("QUEUE IS FULL");

3. [If an item is inserted , then
queue is not empty]

if q-> front =-1

q->front =0

Algorithm to delete data from a Circular Queue

Algorithm int
delete_from_circular_queue(

{struct queue *q)

1. [Check if the queue is empty]

if(q->front ==-1)

return

2. Assign the value of array to the
variable data and set the array
element to 0

data=a[q->front]

a[q->front]=0

3.[check if the queue is empty]

if(q->front==q->rear)

q->front=q->rear=-1

else

if(q->front=MAX-1)

q->front=0;

else

q->front++

return data

Priority Queues

• Collection of elements where each element is
assigned a priority and the order in which
elements are deleted and processed.

• The following are the rules:

– All elements of higher priority is before any
element of lower priority.

– 2 elements with the same priority are processed
according to the order in which they are added to
the queue.

Priority Queues

– Eg: Time Sharing System

• Programs of high priority are processed first and programs
with the same priority form a standard queue.

• Eg:

• Algorithm

Algorithm for inserting data in the priority queue

Algorithm add_priority_jobs(struct priorityqueue *pq,struct data
dt)

Post: to add jobs in a priority queue

1.[declare variables]

struct data temp

int i,j

2. if(pq->rear==MAX -1)

display “ QUEUE IS FULL”

return

3. rear++;

d[pq->rear]=dt;

if pq->front==-1

pq->front =0;

4. Repeat for(i=0;i<=pq->rear;i++)

1. Repeat for(j=i+1; j<= pq-> rear;j++)

A. If(priority1 >priority2)

swap the jobs

B. If(priority1=priority2)

1. if(orderno1>orderno2)

swap the jobs

Algorithm for displaying data in the priority
queue

void displaycircularqueue(struct circularqueue *q)

1[initialize]

x=0

2. Repeat while(x<=MAX -1)

1. display q->a[x]

2. x++

