
Heaps

Definition of a heap

• A heap is a binary tree structure with the
following properties:

– The tree is complete or nearly complete.

– The key value of each node is greater than or equal
to the key value in each of its descendants.

– Note: whenever the term “heap” is used, it refers
to max-heap

Max heap

• A binary tree structure in which the key value in a node
is greater than or equal to the key values in all of its
subtrees.

http://upload.wikimedia.org/wikipedia/commons/4/4c/Max-heap.svg

Min heap

• Min-heap:

– A binary tree structure in which the key value in a
node is less than or equal to the key values in all
of its subtrees.

http://upload.wikimedia.org/wikipedia/commons/6/69/Min-heap.png

Basic heap algorithms

• Two basic maintainance operations are performed on a heap

– Insert a node and

– Delete a node

• Although it is a tree structure , it is meaningless to traverse it,
search it or print it out.

• To implement the insert and delete operations, two basic
algorithms are required

– Reheapup

– reheapdown

ReheapUp and ReheapDown
operations

• Reheap Up operation

– Reorders a “broken” heap by floating the last element up
the tree until it is in its correct location in the heap.

– In this the node must be placed in the last leaf level at the
first empty position.

– If the new node’s key value>key value of the parent, it is
floated up the tree by exchanging the child and parent
keys

• ReheapDown

– Reorders a “broken” heap by pushing the root
down the tree until it is in its correct position in
the heap.

– This algorithm is used mainly when the root is
deleted from the tree.

reheapUp Algorithm

Algorithm reheapUp(int values[], int newNode)

1. if(newNode not the root)

1. Parent= (newNode -1)/2

2. If(values[newNode]>values[parent])

1. Swap(values[newNode],values[parent])

2. reheapUp(values[],parent)

reheapDown algorithm

Algorithm reheapDown(int values[], int root, int last)

1. [declare and initialize]

maxchild, rightchild, leftchild

leftchild=root * 2+1

rightchild=root * 2+2

2.if(leftchild <=last)

1. if(leftchild ==last)

maxchild=leftchild

else

1. if(values[leftchild] < values[rightchild])

. A. maxchild=rightchild

else

A. maxchild=leftchild

2. if(values[root]<values[maxchild])

1. swap(values[root],values[maxchild])

2. reheapDown(values [], maxchild,last)

Build Heap

Algorithm build_heap(heap , size)

1.Set walker to 1

2. Repeat until(walker <size)

1. reheapUp(heap, walker)

2. increment(walker)

Insert heap

Algorithm insertHeap(heap, last, data)

1. If (heap full)

1. Return false

2. Increment last

3. Move data to last node

4. reheapUp(values[], last)

5. return last

Delete heap

Algorithm deleteHeap(heap, last,dataout)

1. if(heap empty)

1. return false

2. Set dataout=root data

3. Move last data to root

4. Decrement last

5. reheapDown(values[], 0,last)

6. return true

Heap Sort

Algorithm heap_sort(A)

1. build_heap(heap,size)

2. Repeat while(n >=0)

1. Swap(A[0],A[i])

2. n=n-1

3. reheapDown(A[],0,n)

