
Graphs



Terminologies used in graphs

• Graph:

– Is a collection of nodes called vertices and a 
collection of line segments connecting pair of 
vertices called lines.

• Directed graph or Diagraph:

– Is a graph in which each line has a direction to its 
successor. The lines in a directed graph are known 
as arcs.

• Undirected  graph:

– is a graph in which there is no direction on the 
lines known as edges.



Terminologies used in graphs

• Adjacent vertices:

– Two vertices are said to be adjacent vertices is there exists 
an edge that directly connects them.

• Path:

– it is a sequence of vertices in which each vertex is adjacent 
to the next one.

• Cycle:

– it is a path consisting of atleast 3 vertices that starts and 
ends with same vertex.

• Loop:

– Special case of a cycle in which a single arc begins and ends 
with the same vertex.



Terminologies used in graphs

• Strongly connected:

– a graph is strongly connected if there is a path 
from each vertex to every other vertex in the 
digraph.

• Weakly connected:

– a graph is weakly connected if at least two 
vertices are not connected.

• Disjoint graph:

– If two graphs are not connected



Terminologies used in graphs

• Degree of a vertex:

– Number of lines incident to it.

• Outdegree of a vertex:

– In a diagraph, it is the number of arcs leaving the 
vertex.

• Indegree of a vertex:

– In a diagraph, it is the number of arcs entering the 
vertex.



Applications of graphs

• Cities and highways connecting them form a 
graph.

• Components on a circuit board with 
connections among them form a graph.

• An organic chemical compound can be 
considered as a graph

• Message transmission in a network



Six primitive graph operations

• Add vertex

• Delete vertex

• Add edge

• Delete edge

• Find vertex

• Traverse graph



Structure of a graph

Data  status   next   edgeptr

Data  status   next   edgeptr

Data  status   next   edgeptr

datanode Next



Create node

Algorithm create_node return newly created node

struct node *create_node()

1.[Declare]

struct node *temp

2.    temp=create a dynamic node

temp->next=NULL

temp->edgeptr=NULL

temp->status=0

return temp



Insert node

algorithm insnode(char data)

1.[ Declare] 

static struct node *temp

2. if(start=NULL)

1. start=create_node()

2. start->data=data

3. temp=start

else

1. temp->next=create_node()

2.temp=temp->next

3. temp->data=data



Find a node

Algorithm struct node *findnode(char data)

1. [Declare and initialize]

struct node *temp

temp=start

2. Repeat while(temp-
>data!=data&&temp!=NULL)

temp=temp->next

return temp



Create edge

Algorithm struct edge *create_edge()

1.  struct edge *temp

2.    temp=create edge dynamically

3.    return temp



Insert and add edge

Algorithm insedge(char source,char dest)
1. struct node *locsource,*locdest
2. locsource=findnode(source)
3. locdest=findnode(dest)
4. locsource->edgeptr

=addedge
(locsource->edgeptr,locdest)

----------------------------------------------
Algorithm struct edge *addedge
(struct edge* startedge,struct node 

*locdest)
1. struct edge *temp=startedge;
2. if(temp=NULL)

1.  startedge=create_edge()
2.startedge->datanode=locdest
3.startedge->next=NULL

4. Display
startedge->datanode->data

else
1. Repeat while

(temp->next!=NULL)
1. temp=temp->next

2. temp->next=
create_edge()

3. temp=temp->next
4. temp->datanode=locdest
5. temp->next=NULL;
6. Display 

temp->datanode->data
3. return startedge



Insert Edge

Algorithm insedge(char source,char dest)

1. struct node *locsource,*locdest

2. locsource=findnode(source)

3. locdest=findnode(dest)

4. locsource->edgeptr=

addedge(locsource->edgeptr,locdest)



Display Graph

Algorithm  display_graph()
1. [Declare]

struct node *tempnode
struct edge *tempedge
tempnode=start

2.Repeat A,B,C,D while(tempnode!=NULL)
A. Display  tempnode->data
B. tempedge=tempnode->edgeptr

C. Repeat  1,2while(tempedge!=NULL)
1. Display tempedge->datanode->data
2.     tempedge=tempedge->next

D tempnode=tempnode->next



Graph traversals

Depth first traversal

Breadth first traversal



Depth-First Traversal 

– All of a vertex’s descendants are processed before 
we move to an adjacent vertex.

– The preorder traversal of a tree is a depth-first 
traversal



Depth first traversal

– Working:

• The DFS start by processing the first vertex of the 
graph.

• Select any vertex adjacent to the first vertex and 
process it.

• Repeat until a vertex with no adjacent entries is 
reached

• This logic requires stack to complete the 
traversal.

• Example



DFS algorithm

1. Initialize all nodes to the ready state(status=1).

2. Put the starting node A onto STACK and change its status to 

waiting state(status=2).

3. Repeat steps 4 and 5 until the STACK is empty.

4. Pop the top node N of STACK. Process N and change its 

statues to the processed status(status=3).

5. Push onto STACK all the neighbours of N that are in the 

ready state(status=1) and change their status to the waiting 

state(status=2).

6. Exit



Another DFS Algorithm

Algorithm dfs(adj[][],int nodes,int vertex)

where adj[][] -adjacency matrix

nodes= total number of nodes

v = vertex

1. [Initialize]

visited[vertex]=1

2. Repeat for i=0 to nodes

a. if (adj[v][i] and the vertex is not visited)

dfs(adj, nodes,i)



Breadth  first traversal

• All adjacent vertices of a vertex are processed 
before going to the next level.

• The breadth-first traversal of a graph follows 
the same concept  of the breadth-first 
traversal of a tree.



Breadth  first traversal

• Working:

– Start with a  starting vertex and after processing , process 
all of its adjacent vertices.

– When all of the adjacent vertices have been processed, we 
pick the first adjacent vertex and process all of its vertices 
then the second adjacent vertex and process all of its 
vertices and so on.

• This logic requires queues to complete the traversal

• Example

• Algorithm of BFS



BFS algorithm

1. Initialize all nodes to the ready state(status=1).

2. Put the starting node A in QUEUE and change its status to 

waiting state(status=2).

3. Repeat steps 4 and 5 until QUEUE is empty.

4. Remove the front node N of QUEUE. Process N and change 

its statues to the processed status(status=3).

5. Add to the rear of QUEUE all the neighbours of N that are in 

the ready state(status=1) and change their status to the 

waiting state(status=2).

6. Exit



Another DFS Algorithm

Declare  nodes

Algorithm DFS(int vertex)

1.[initialize]

q[],front=rear=-1

visited[vertex]=1;

2. 

a. Increment rear

b. q[rear]=vertex

c. Repeat while front!= rear

1. Increment front

2. Vertex =q[front]

3. Display vertex

4. Repeat for i=0 to nodes

1.if (adj[v][i] and the vertex is not visited)

a. set visited = 1;

b. increment rear 

c. q[rear]= i



Graph storage structures

• To represent a graph , two sets are stored:

– Ist set represents the vertices of the graph

– IInd set represents the edges of the graph

• The most common structures  used to store 
these sets are

– Arrays

– Linked List



Adjacency matrix

• The adjacency matrix uses a vector(one-
dimensional array) for the vertices and a 
matrix (two-dimensional array) to store the 
edges.

• If two vertices are adjacent i.e there is an edge 
between, the matrix intersect has a value 1. 

• If there is no edge between them , the 
intersect is to value 0.

• Example: 



Adjacency matrix

• Disadvantage:

– The size of the graph must be known before the 
program starts.

– Only one edge can be stored between any 2 vertices



Adjacency List

• The vertex list is a singly-linked list of the 
vertices in the list. Depending on the 
application , it could also be implemented using 
doubly-linked list or circular linked list.

• The edges are stored in single linked list.



Adjacency List

• The pointer at the left of the list links the 
vertex entries together.

• The pointer at the right in the vertex list is a 
head pointer to a linked list of edges from the 
vertex.

• Example



Network

• A network is a graph whose lines are 
weighted.It is also known as weighted graph.

• The meaning of weights depends on the 
application.

• Eg:

– An airline might use a graph where

• Nodes: cities

• Edges: routes

• Edge’s weights:miles between 2 cities



Spanning Tree

• A spanning tree is a tree that contains all of the 
vertices in the graph.

• Minimum spanning tree is chosen with
following properties:

– Every vertex is included

– Total edge weight= minimum cost between  

vertices

• Minimum spanning tree algorithms:

– Kruskal’s algorithm

– Prim’s algorithm



Kruskal’s algorithm

• The edges considered for the inclusion in the 
spanning tree is as per the increasing order of 
the cost of different edges.

• An edge is included in the spanning tree only 
if it does not form a cycle with the edges that 
are already present in the spanning tree.

• Examples:

• Algorithm



Kruskal’s Algorithm

T={}

1. Repeat while T <(n-1) edges and E not empty 

1. choose an edge(v,w) from E of lowest cost.

2. delete (v,w) from E

3. If(v,w) does not create a cycle in T

a. Add(v,w) to T

else

a. discard(v,w)

End while

2. If T <(n-1) edges

display “no spanning tree exist for this graph”



program

Define typedef struct

{

node1

node2

wt

}edge

Algorthim main()

1.[Declare]

edge e[100]

parent[100]

n,i,j,m,cost = 0

2. Enter number of nodes :n

3. Repeat for i= 0 to  20

parent[i]=-1

4.

1. i = 0

2. Enter number of edges ;m

3.  repeat for i=0 to m-1

1. enter an edge and wt

4. sortedges(e,m)

5. display Edges of the tree



6. i = 0

7. for i=0 to n-1

A. if(checkcycle(parent,

e[i].node1,           

e[i].node2))

1. cost=cost+  

e[i].wt;

8. display cost

Algorithm sortedges(edge a[],int n)

1. [Declare]
i,j

edge temp

2. Repeat for i=0 to n-1

1.Repeat for j=i+1 to n

A. if(a[i].wt>a[j].wt)

swap a[i] and a[j]

3. Repeat for i=0 to n
Display       

a[i].node1,a[i].node2,a[i].wt



Algorithm checkcycle(int p[],int i,int j)

Return integer

1. [Declare and initialize]

v1,v2

v1 = i

v2 = j

2. Repeat while(p[i]>-1)

A. i = p[i]

3. Repeat while(p[j]>-1)

A. j = p[j]

4. if(i!=j)

A. p[j]=i;

B.  Display v1,v2

C. return 1

5. return 0



Kruskal’s algorithm

• Kruskal's algorithm can be shown to run in

• O(E log E) time, or equivalently, O(E log V) 
time, all with simple data structures.

http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Binary_logarithm


Prim’s Algorithm

• Prim's algorithm is an algorithm that finds a 
minimum spanning tree for a connected 
weighted undirected graph. 

• This means it finds a subset of the edges that 
forms a tree that includes every vertex, where 
the total weight of all the edges in the tree is 
minimized. Prim's algorithm is an example of a 
greedy algorithm

• Example

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Minimum_spanning_tree
http://en.wikipedia.org/wiki/Undirected_graph
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Tree_(graph_theory)
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Greedy_algorithm


Prim’s Algorithm

The array structure is used to store the cost of each node

Prim(Graph g)

Pre A: Array to store vertices of the graph

1. Set A =Vertices of the graph g

2. Repeat for each vertex u

1. Cost[u] =∞

2. Vertex_list=NIL

3. Repeat  a and b  while array A not empty

a. Find node with the smallest key and remove from A

b. Repeat for each vertex v belonging to adjacent[u]
1. If(weight[u,v]<cost[u] then

1. Set vertex_list[v]=u

2. Set cost[u]=w(u,v)



Prim’s algorithm

• A simple implementation using an adjacency 
matrix graph representation requires O(V2) 
running time. 

• Efficiency of Prim's algorithm can be shown to 
run in time

O(E log V) where E is the number of edges and 
V is the number of vertices.

http://en.wikipedia.org/wiki/Adjacency_matrix
http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Big-O_notation


Shortest Path Algorithms

• Another common application used with graph 
requires that we find the shortest path 
between two vertices in a network

• Shortest path algorithms

– Dijkstra’s algorithm

– Warshall’ algorithm

• Examples



Relaxation technique

• This technique consists of testing whether we 
can improve the shortest path found so far.

• The relaxation technique may or may not 
decrease the value of the shortest path 
estimate.

• Algorithm relax(u,v,w)

1. If (d[u] +cost(u,v)< d[v]) 

a. d[v]= d[u] + cost(u,v)

b. vertex_list[a] = u

2. Example(pg 433)



Dijkstra’s algorithm

• This algorithm solves the shortest path problem when all edges have non-

negative weights.

• Dijkstra algorithm(G, cost, S)

1. [initialize]

set S={}  S will contain vertices of final 

shortest path cost from S

Queue Q=V(G)   vertices of the graph

2.  repeat a,b,c  while Q not empty

a. set u= extract_min(Q)   pull out new vertex

b. set s= s U {u}

c. repeat  1 for  each vertex v adjacent to u

1. relax(u,v, cost)

• Analysis Dijkstra’s algorithm runs   O(E log V) times.



Floyd-Warshall Algorithm

• Basic concept:

– If for a path(u,v) and its length estimate D[u][v], if we detour(go through) 

via W and shorten the path, then it should be taken.

– This translates into the following equation:

D[u][v]=min(D[u][v], D[u][w] + D[w][v])

• Algorithm floyd-warshall(W)

1.  set n=row[w]

2.  set D(0) =W

3.  repeat  A. for k= 1 to n

A. repeat 1. for i = 1 to n

1. repeat for j=1 to n

set dij
(k) = min(dij

(k-1) , dik
(k-1) + dkj

(k-1))

4. return D(n)

ANALYSIS  : the algorithm run O(n3) times



Assignments 

• Find out the efficiency of Kruskal’s , Prim’s and 
Dijkstra’s algorithm

• Write short notes on warshall’s algorithm with 
an example


