Binary Trees

Usage of binary trees

- Used for representing algebraic formulas.
- Used for searching large, dynamic lists.
- Iterative tree traversals

Nodes:

- Finite set of elements.

Branches:

Finite set of directed lines.

Degree :

Number of branches associated with the node.

Indegree:

- Branch directed towards the node.

Outdegree:

- Branch directed away from the node.

- Degree of the node= indegree branches + outdegree branches
- The first node is called as the root.
- The indegree of the root is always zero.
- All nodes other than the root must have an indegree of exactly one. i.e they may have exactly one predecessor.
- All nodes in the tree can have zero, one or more branches. i.e they may have outdegree of zero, one or more.

Leaf node/Terminal Nodes:

Any node with an outdegree zero. i.e a node with no successors.

Internal node:

A node that is not a root or a leaf.

Parent node:

If a node has successor nodes. i.e if it has an outdegree greater than zero.

Child node:

 If a node has a predecessor. i.e a child node has an indegree one.

Siblings:

- Two or more nodes with the same parent.

Ancestor:

any node in the path from the root to the node.

Descendant:

 All nodes in the path from a given node to a leaf.

Path:

 Sequence of nodes in which each node is adjacent to the next one.

Level:

- Distance from the root.
- Level of the root is zero.
- Height of the tree/depth of the tree:
 - Level of the leaf in the longest path from the root + 1
 - Height of the empty tree is -1.

- Size of the tree:
 - Number of nodes in the tree.
- Examples:

Definition of a binary tree

- It is a tree in which nonode can have more than 2 subtrees.
- The maximum outdegree for a node is two.
- A node can have zero, one or two subtrees.

Other Definitions of Binary Tree

- A binary tree may also be defined as follows:-
 - A binary tree is a empty tree
 - A binary tree consists of a node called root, a left subtree and a right subtree both of which are binary trees once again.

Examples

Properties of binary trees

Maximum height:

 $H_{max} = N$ where N = nodes in binary tree.

Minimum height:

$$H_{min} = [log_2 N] + 1$$

- Minimum nodes:
 - Given the height of the binary tree, H
 N_{min} = H
- Maximum nodes:
 - Given the height of the binary tree, H

$$N_{\text{max}} = 2^{H} - 1$$

Properties of binary trees

- Balance factor of a binary tree:
 - Difference in height between its left and right subtrees.

$$BF = H_{Left} - H_{Right}$$

 In a Balanced binary tree, the height of its subtrees differs by no more than 1(i.e its balance factor is either -1,0,1)

General Trees

- A general tree(sometimes called as a tree) is defined as a non-empty finite set T of elements, called nodes such that:
 - The tree contains the root node.
 - The remaining nodes of the tree form an ordered collection of zero or more disjoint trees T1, T2....TM.
- Eg:

Converting a general tree to a binary tree

- Identify the branch from the parent to the first child. The branches from parent become the left pointer in the binary tree.
- Connect the siblings with far-left child.
- Remove all unneeded branches from the parent to its children

Strictly binary tree

- A binary tree where each node is
 - either a leaf or
 - is an internal node with exactly two non-empty children.
 - i.e a node is allowed to have none or 2 children
- A strictly binary tree with n leaves always contains 2n-1 nodes.
- Eg:

Complete Binary Trees

- A complete binary tree has the maximum number of entries for its height.
- A complete binary tree of height h is a binary tree which contains exactly 2^l nodes at level l, $0 \le d \le h$.
 - where I= level of the node N is the length of the node from the root to node N.
- A complete binary tree with L levels contains a total of (2^h-1)nodes
- Eg:

Nearly Complete Binary Trees

- A binary tree of level L is a almost complete/nearly complete binary tree if level 0 to L-2 are full and level L-1 is being filled from left to right
- An almost complete binary tree with N leaves that is not strictly binary has 2N nodes
- Eg:

Expression Trees

- An expression is a sequence of tokens
- A token is either an operand or an operator
- An expression tree is a binary tree with the following properties:
 - Each leaf is an operand
 - The root and the internal nodes are operators
 - Subtrees are subexpressions with the root being the operator
- Egs

Expression tree traversals

- 3 standard traversals are as follows:
 - Infix,
 - Postfix and
 - Prefix
- The inorder traversal produces infix expression, the postorder traversal produces postfix expression and the preorder traversal produces the prefix expression

Infix traversal algorithm

Algorithm infix(tree) If (tree not empty)

- a. if (tree token is an operand)
 - a. Display operand
- b. else
 - a. Display open parenthesis
 - b. Infix(left subtree)
 - c. Display token
 - d. Infix(right subtree)
 - e. Display close parenthesis
- c. endif

endif

Algorithm postfix(tree)

- 1. If (tree not empty)
 - 1. postfix(left subtree)
 - 2. postfix(right subtree)
 - 3. Display token
- 2. End if

Algorithm prefix(tree)

- 1. If (tree not empty)
 - 1. Display token
 - 2. prefix(left subtree)
 - 3. prefix(right subtree)
- 2. End if

Constructing an expression tree

- Converting a postfix expression to a expression tree:
 - Read the expression one symbol at a time
 - If the symbol is an operand, create a one-node tree and push a pointer to it onto a stack
 - If the symbol is an operator, pop pointers to trees T1 and T2 from the stack (T1 popped first) and form a new tree whose root is the operator and whose left and right children point to T1 and T2 respectively.
 - A pointer to this new tree is then pushed onto the stack
 - Eg:

Forest

- Set of several trees not linked to each other in any way
- Steps in converting the forest as binary trees:
 - Left most trees is represented as binary trees
 - Second tree is made the right child of the root node of the first tree
 - Third tree is made the right child of the root node of the second tree and so on....

- The ASCII is a fixed length code. Each ASCII character is a 7 bit code.
- Every character uses the maximum number of bits.
- Huffman code makes character storage more efficient.
- In Huffman coding, shorter codes are assigned to characters that occur more frequently and longer codes are assigned to characters that occur less frequently.

- Example:
 - E and T occur frequently. Therefore assign one bit each.
 - A,O ,R and N occur less frequently than E and T. Therefore assign two bits each.
 - U, I, D, M, C are next most frequent.
 Therefore assign three bits each and so on...

Fixed Length Code

Fixed-Length Code b a C 30 29 18 37 17 Frequency 010 011 100 Fixed-length 000 001 101 110

Total size is:

$$(37 + 18 + 29 + 13 + 30 + 17 + 6) \times 3 = 450$$
 bits

Variable-Length Code

Total size is:

$$37x^2 + 18x^3 + 29x^3 + 13x^4 + 30x^2 + 17x^3 + 6x^4 = 402$$
 bits

•A savings of approximately 11%

- Usage:
 - Used in a network transmission. The overall length of the transmission is shorter if Huffman encoded characters are transmitted rather than fixed-length encoding. Huffman code is therefore a popular data compression algorithm.
 - Saves transmission time.

- Assign each character a weight based on its frequency of use.
- Steps in building a tree based on Huffman coding.
 - 1.Organize the entire character set into a row, ordered according to frequency from highest to lowest. Each character is now a node at the leaf level of a tree.

2.

2. Find the 2 nodes with the smallest combined frequency weights and join them to forn

Binary Threaded Tree simple

two-le

 It is a binary tree in which every node that does not have a right child has a thread(also known as link) to its inorder successor.

sum(v

chose • Eg:

choice

3. Repe

er possible

, on every ree.

Binary Search Tree(BST)

- A Binary Search Tree(BST) is a binary tree with the following properties:-
 - All items in the left subtree are less than the root.
 - All items in the right subtree are greater than or equal to the root.
 - Each subtree is itself a binary search tree.
 - Eg:

Algorithms of Binary Search Tree

```
Insert node(Recursive) in a Binary Search Tree
struct bsttreenode * insert_bst(struct bsttreenode *t,int x)
1. if(t==NULL)
       1. t=dynamically allocate memory
       2. t->leftchild=NULL
       3. t->info=x
       4. t->rightchild=NULL
       5. return(t)
2. if(x \le t > info)
       t->leftchild=insert_bst(t->leftchild,x)
  else
       t->rightchild=insert_bst(t->rightchild,x)
  return(t)
```

Delete node from BST

```
4. Repeat a,b,c while(q!=NULL)
void delete_bst(struct bsttreenode
   *t, int datatobedeleted)
                                        a.if(datatobedeleted=q->info)
                                             1.found=1
1.[Declare]
                                             2.x=q
   found=0
                                             break
struct bsttreenode *q,*parent,
   *x,*xsucc
                                       b.parent=q
2. if(t=NULL)
                                        c. if(datatobedeleted<q->info)
   a. Display "TREE IS EMPTY"
                                                1.q=q->leftchild
   b.
        return
                                          else
3. [Initialize]
                                                 2.q=q->rightchild
   parent=x=NULL
                                     5.
                                         if(found=0)
        q=t
                                         a. Display "DATA TO BE
                                            DELETED NOT FOUND"
                                         b. return
```

Delete node from BST

- 6. //if data to be deleted has two children
 - if(x->leftchild!=NULL &&
 x->rightchild!=NULL)
 - a. parent=x
 - b.xsucc=x->rightchild
 - c. Repeat while 1,2 (xsucc->leftchild !=NULL)
 - 1.parent=xsucc
 - 2.xsucc=xsucc->leftchild
 - d. x->info=xsucc->info
 - e. x=xsucc

- 7.//if the node to be deleted has no child
 - 1.if(x->leftchild==NULL && x->rightchild==NULL)
 - a. if(parent->rightchild=x)
 - 1. parent->rightchild=NULL else
 - 2. parent->leftchild=NULL
 - b. free(x)
 - c. return

Delete node from BST

- 8. //if the node to be deleted has only right child
 - if(x->leftchild==NULL &&
 x->rightchild!=NULL)
 - a. if(parent->leftchild=x)
 - 1.parent->leftchild=
 x->rightchild
 - else
 - 2.parent->rightchild=
 x->rightchild
 - b.free(x)
 - c. return

- 9. //if the node to be deleted has only left child
 - if(x->leftchild!=NULL && x->rightchild==NULL)
 - a. if(parent->leftchild=x)
 - 1.parent->leftchild=
 - x->leftchild
 - else
 - 2.parent->rightchild= x->leftchild
 - b. free(x)
 - c. return

Search for a node in BST

```
int search_bst(
struct bsttreenode *t,
int targetkey)
```

- [Declare] & Initialize]
 struct bsttreenode *q
 found=0
 q=t
- 2. if(q=NULL)a. found=0b. return found

- 3. while(q!=NULL)
 - 1. if(q->info =targetkey)
 - a. found=1
 - b return found
 - 2.if(targetkey< q->info)
 - a. q=q->leftchild
 - 3.if(targetkey> q->info)
 - a. q=q->rightchild

return found

To find the smallest node in the BST

```
struct bsttreenode *
smallest_node_in_bst(struct bsttreenode *t)
```

- [Declare and Initialize]
 struct bsttreenode *q
 q=t
- 2. if(q->leftchild=NULL)
 - 1. Display "NO LEFT SUBTREE"
 - 2 return t
- 3. return smallest_node_in_bst(q->leftchild)

To find the largest node in the BST

struct bsttreenode *
largest_node_in_bst(struct bsttreenode *t)

- IDeclare and Initialize struct bsttreenode *q
 q=t
- 2. if(q->rightchild=NULL)
 - 1. Display "NO LEFT SUBTREE"
 - 2. return t
- 3. return largest_node_in_bst(q->rightchild)

Recursive Preorder traversal in a binary search tree

void preorder_display_bst(struct bsttreenode *t)

- 1. if(t!=NULL)
 - 1. Display the info contained in the root
 - 2. preorder_display_bst(t->leftchild)
 - 3. preorder_display_bst(t->rightchild)

Recursive Inorder traversal in a binary search tree

void inorder_display_bst(struct bsttreenode *t)

- 1. if(t!=NULL)
 - 1. inorder_display_bst(t->leftchild)
 - 2. Display the info contained in the root
 - 3. inorder_display_bst(t->rightchild)

Recursive postorder traversal in a binary search tree

void postorder_display_bst(struct bsttreenode *t)

- 1. if(t!=NULL)
 - postorder_display_bst(t->leftchild)
 - 2. postorder_display_bst(t->rightchild)
 - 3. Display the info contained in the root

Breadth First Traversal in a Binary Search Tree

```
void Breadth_first_Traversal_bst(struct bsttreenode *t)
1.[Declare and Initialize]
   struct bsttreenode *queue[100] = Initialize to 0
   size = 0
   queue_pointer = 0
```

- 2. Repeat 1 to 4 while(t)
 - Display t->info
 - if(t->left) 2.
 - a. queue[size++] = t->leftchild
 - 3. if(t->right)
 - a. queue[size++] = root->rightchild
 - 4. t = queue[queue_pointer++]

Inserting in a BST non recursively

```
Algorithm insert_into_non_rec_bst( struct bsttreenode *t,int v)
```

- 1.[Declare]
 struct bsttreenode *temp,*pr
- temp=Dynamically allocate memory temp->leftchild=NULL temp->info=v temp->rightchild=NULL

```
1. Repeat a and b
          while(t!=NULL)
   a. pr=t
   b. if(v<t->info)
       t=t->leftchild
       else
         t=t->rightchild
2. t=temp
3. if(v<pr->info)
   pr->leftchild=temp
 else
```

pr->rightchild=temp

Non-recursive preorder traversal

- 1. Do 1,2
 - Repeat 1 to 4 while(t!=NULL)
 - 1. Display t->info
 - 2. increment top
 - 3. stk[top]=t;
 - 4. t=t->leftchild
 - 2. if(top!=-1)
 - 1. t=stk[top]
 - 2. Decrement top
 - 3. t=t->rightchild

Non-recursive Inorder traversal

- 1. Do 1,2
 - 1. Repeat 1,2,3 while(t!=NULL)
 - 1. Increment top
 - 2.stk[top]=t
 - 3. t=t->leftchild
 - 2. if(top!=-1)
 - 1.t=stk[top]
 - 2. Decrement top
 - 3. Display t->info
 - 4. t=t->rightchild

while(t!=NULL || top!=-1)

Non-recursive Postorder traversal

Do 1,2

```
1. Repeat 1,2,3 while(t!=NULL)
   1. Increment top
   2. stk[top]=t
   3. t=t->leftchild
2. if(top!=-1)
   1.t=stk[top]
   2.if(t->rightchild != NULL && t->rightchild != non_rec_bst)
         1. t=t->rightchild
      else
         1. non_rec_bst=stk[top]
         2. Decrement top
         3. Display non_rec_bst->info
         4. t=NULL
while(t!=NULL | top!=-1)
```