
Binary Trees
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Usage of binary trees

• Used for representing algebraic formulas.

• Used for searching large , dynamic lists.

• Iterative tree traversals



Terms used in trees

• Nodes:

– Finite set of elements.

• Branches:

– Finite set of directed lines.

• Degree :

– Number of branches associated with the node.

• Indegree:

– Branch directed towards the node.

• Outdegree:

– Branch directed away from the node.



Terms used in trees

• Degree of the node= indegree branches +

outdegree branches

• The first node is called as the root.

• The indegree of the root is always zero.

• All nodes other than the root must have 

an indegree of exactly one. i.e they may 

have exactly one predecessor.

• All nodes in the tree can have zero , one 

or more branches. i.e they may have 

outdegree of zero, one or more.



Terms used in trees

• Leaf node/Terminal Nodes:

– Any node with an outdegree zero. i.e a node 

with no successors.

• Internal  node:

– A node that is not a root or a leaf.

• Parent node:

– If a node has successor nodes. i.e if it has an 

outdegree greater than zero.

• Child node:

– If a node has a predecessor. i.e a child node 

has an indegree one.



Terms used in trees

• Siblings:

– Two or more nodes with the same parent.

• Ancestor:

– any node in the path from the root to the 

node.

• Descendant:

– All  nodes in the path from a given node to a 

leaf.



Terms used in  trees

• Path:

– Sequence of nodes in which each node is 

adjacent  to the next one.

• Level:

– Distance from the root.

– Level of the root is zero.

• Height of the tree/depth of the tree:

– Level of the leaf in the longest path from 

the root + 1

– Height of the empty tree is -1.



Terms used in  trees

• Size of the tree:

– Number of nodes in the tree.

• Examples:



Definition of a binary tree

• It is a tree in which nonode can have more 

than 2 subtrees.

• The maximum outdegree for a node is 

two.

• A node can have zero , one or two 

subtrees.



Other Definitions of Binary Tree

• A binary tree may also be defined as 

follows:-

– A binary tree is a empty tree

– A binary tree consists of a node called root, a 

left subtree and a right subtree both of which 

are binary trees once again.

• Examples



Properties of binary trees

• Maximum height:

Hmax = N where N = nodes in  binary tree.

• Minimum height:

Hmin = [ log2 N ] + 1

• Minimum nodes:
• Given the height of the binary tree, H

Nmin = H

• Maximum nodes:
• Given the height of the binary tree, H

Nmax = 2H -1



Properties of binary trees

• Balance factor of a binary tree:

– Difference in height between its left and right 

subtrees.

BF = HLeft – HRight

• In a Balanced binary tree, the height of its 

subtrees differs by no more than 1(i.e its 

balance factor is either -1,0,1)



General Trees

• A general tree(sometimes called as a tree) is defined as 

a non-empty finite set T of elements, called nodes such 

that:

– The tree contains the root node.

– The remaining nodes of the tree form an ordered collection of 

zero or more disjoint trees T1, T2….TM.

• Eg:



Converting a general tree to a binary tree

• Identify the branch from the parent to the 

first child.The branches from parent 

become the left pointer in the binary tree.

• Connect the siblings with far-left child.

• Remove all unneeded branches from the 

parent to its children



Strictly binary tree

• A binary tree where each node is 

– either a leaf or 

– is an internal node with exactly two non-empty 

children.

– i.e a node is allowed to have none or 2 

children

• A strictly binary tree with n leaves always 

contains 2n-1 nodes.

• Eg:



Complete Binary Trees

• A complete binary tree has the  maximum 

number of entries for its height.

• A complete binary tree of height h is a 

binary tree which contains exactly 2l nodes 

at  level l, 0 ≤ d ≤ h.

where l= level of the node N is the length of 

the node from the root to node N.

• A complete binary tree with L levels 

contains a total of (2h-1)nodes 

• Eg:



Nearly Complete Binary Trees

• A binary tree of level  L  is a almost 

complete/nearly complete binary tree if 

level 0 to L-2 are full and level L-1 is being 

filled from left to right

• An almost complete binary tree with N

leaves that is not strictly binary has 2N

nodes

• Eg:



Expression Trees

• An expression is a sequence of tokens

• A token is either an operand or an operator

• An expression tree is a binary tree with the following 
properties:

– Each leaf is an operand

– The root and the internal nodes are operators

– Subtrees are subexpressions with the root being the 
operator

• Egs



Expression tree traversals

• 3 standard traversals are as follows:

– Infix,

– Postfix and

– Prefix

• The inorder traversal produces infix expression , the postorder 

traversal produces postfix expression and the preorder 

traversal produces the prefix expression



Infix traversal algorithm

Algorithm infix(tree)

If (tree not empty)
a. if (tree token is an operand)

a. Display operand

b. else

a. Display open parenthesis

b. Infix(left subtree)

c. Display token

d. Infix(right subtree)

e. Display close parenthesis

c. endif

endif



Algorithm postfix(tree)

1. If (tree not empty)

1. postfix(left subtree)

2. postfix(right subtree)

3. Display token

2. End if

Algorithm prefix(tree)

1. If (tree not empty)

1. Display token

2. prefix(left subtree)

3. prefix(right subtree)

2. End if



Constructing an expression tree

• Converting a postfix expression to a expression tree:

– Read the expression one symbol at a time

– If the symbol is an operand, create a one-node tree and 
push a pointer to it onto a stack

– If the symbol is an operator, pop pointers to trees T1 and 
T2 from the stack (T1 popped first) and form a new tree 
whose root is the operator and whose left and right children 
point to T1 and T2 respectively. 

– A pointer to this new tree is then pushed onto the stack

– Eg:



Forest

• Set of several trees not linked to each 

other in any way

• Steps in converting the forest as binary 

trees:

– Left most trees is represented as binary trees

– Second tree is made the right child of the root 

node of the first tree

– Third tree is made the right child of the root 

node of the second tree and so on….



Huffman Code

• The ASCII is a fixed length code.Each 

ASCII character is a 7 bit code. 

• Every character uses the maximum 

number of bits.

• Huffman code makes character storage 

more efficient.

• In Huffman coding ,shorter codes are 

assigned to characters that occur more 

frequently  and longer codes are 

assigned to characters that occur less 

frequently.



Huffman Code

• Example:

– E and T occur frequently.Therefore assign one 

bit each.

– A,O ,R and N occur less frequently than E 

and T. Therefore assign two bits each.

– U, I, D , M, C are next most frequent. 

Therefore assign three bits each and so on…



Fixed Length Code

Fixed-Length Code     a b c d e f         g

Frequency 37 18 29 13 30 17      6

Fixed-length              000      001      010      011      100      101 110

Total size is:

(37 + 18 + 29 + 13 + 30 + 17 + 6) x 3= 450 bits



Variable-Length Code

Fixed-Length Code    a      b c d e f         g

Frequency 37   18 29 13 30 17      6

Variable-lengthcode      10       011 111 1101 00 010 1100

Total size is:

37x2 + 18x3 + 29x3 + 13x4 + 30x2 + 17x3 + 6x4 = 402 bits

•A savings of approximately 11%



Huffman Code

• Usage:

– Used in a network transmission. The 

overall length of the transmission is 

shorter if Huffman encoded characters are 

transmitted rather than fixed-length 

encoding.Huffman code is therefore a 

popular data compression algorithm.

– Saves transmission time.



Huffman Code

• Assign each character a weight based on its 

frequency of use.

• Steps in building a tree based on 

Huffman coding.

1.Organize the entire character set into a row, 

ordered according to frequency from highest 

to lowest.Each character is now a node at 

the leaf level of a tree.

2. 



Huffman Code

2. Find the 2 nodes with the smallest 

combined frequency weights and join them 

to form a third node, resulting in a simple 

two-level tree.

sum(weights of two nodes 

chosen)<combination of any other possible 

choices

3. Repeat step 2 until all the nodes , on every 

level are combined into a single tree.



Binary Search Tree(BST)

• A Binary Search Tree(BST) is a binary 

tree with the following properties:-

– All items in the left subtree are less than the 

root.

– All items in the right subtree are greater than or 

equal to the root.

– Each subtree is itself a binary search tree.

– Eg:



Algorithms of Binary Search Tree



Insert node(Recursive) in a Binary Search Tree

struct bsttreenode * insert_bst(struct bsttreenode *t,int x)

1. if(t==NULL)

1. t=dynamically allocate memory

2. t->leftchild=NULL

3. t->info=x

4. t->rightchild=NULL

5. return(t)

2. if(x<= t->info)

t->leftchild=insert_bst(t->leftchild,x)

else

t->rightchild=insert_bst(t->rightchild,x)

return(t)



Delete node from BST

void delete_bst(struct bsttreenode

*t, int datatobedeleted)

1.[Declare]

found=0

struct bsttreenode *q,*parent, 

*x,*xsucc

2. if(t=NULL)

a. Display “TREE IS EMPTY"

b. return

3. [Initialize]

parent=x=NULL

q=t

4. Repeat a,b,c while(q!=NULL)

a.if(datatobedeleted=q->info)

1.found=1

2.x=q

break

b.parent=q

c. if(datatobedeleted<q->info)

1.q=q->leftchild

else

2.q=q->rightchild

5. if(found=0)

a. Display “DATA TO BE    

DELETED NOT FOUND"

b. return



Delete node from BST

6. //if data to be deleted has two 

children

1. if(x->leftchild!=NULL && 

x->rightchild!=NULL)

a. parent=x

b.xsucc=x->rightchild

c. Repeat while 1,2

(xsucc->leftchild   !=NULL)

1.parent=xsucc

2.xsucc=xsucc->leftchild

d. x->info=xsucc->info

e. x=xsucc

7.//if the node to be deleted has 

no child

1.if(x->leftchild==NULL &&

x->rightchild==NULL)

a. if(parent->rightchild=x)

1. parent->rightchild=NULL

else

2. parent->leftchild=NULL

b. free(x)

c. return



Delete node from BST

8. //if the node to be deleted has 

only right child

1. if(x->leftchild==NULL  &&

x->rightchild!=NULL)

a. if(parent->leftchild=x)

1.parent->leftchild=

x->rightchild

else

2.parent->rightchild=

x->rightchild

b.free(x)

c.return

9. //if the node to be deleted has 

only left child

1. if(x->leftchild!=NULL &&

x->rightchild==NULL)

a. if(parent->leftchild=x)

1.parent->leftchild=

x->leftchild

else

2.parent->rightchild=

x->leftchild

b. free(x)

c. return



Search for a node in BST

int search_bst(

struct bsttreenode *t,

int targetkey)

1. [Declare] & Initialize]

struct bsttreenode *q

found=0

q=t

2. if(q=NULL)

a. found=0

b. return found

3. while(q!=NULL)

1. if(q->info =targetkey)

a. found=1

b return found

2.if(targetkey< q->info)

a.  q=q->leftchild

3.if(targetkey> q->info)

a. q=q->rightchild

return found



To find the smallest node in the BST

struct bsttreenode * 

smallest_node_in_bst(struct bsttreenode *t)

1. [Declare and Initialize]

struct bsttreenode *q

q=t

2. if(q->leftchild=NULL)

1. Display “ NO LEFT SUBTREE"

2. return t

3. return smallest_node_in_bst(q->leftchild)



To find the largest node in the BST

struct bsttreenode * 

largest_node_in_bst(struct bsttreenode *t)

1. [Declare and Initialize]

struct bsttreenode *q

q=t

2. if(q->rightchild=NULL)

1. Display “ NO LEFT SUBTREE"

2. return t

3. return largest_node_in_bst(q->rightchild)



Recursive Preorder traversal in a binary 

search tree

void preorder_display_bst(struct bsttreenode *t)

1. if(t!=NULL)

1. Display the info contained in the root

2. preorder_display_bst(t->leftchild)

3. preorder_display_bst(t->rightchild)



Recursive Inorder traversal in a binary 

search tree

void inorder_display_bst(struct bsttreenode *t)

1. if(t!=NULL)

1. inorder_display_bst(t->leftchild)

2. Display the info contained in the root

3. inorder_display_bst(t->rightchild)



Recursive postorder traversal in a binary 

search tree

void postorder_display_bst(struct bsttreenode *t)

1. if(t!=NULL)

1. postorder_display_bst(t->leftchild)

2. postorder_display_bst(t->rightchild)

3. Display the info contained in the root



Breadth First Traversal in a Binary Search Tree

void Breadth_first_Traversal_bst(struct bsttreenode *t)

1.[Declare and Initialize]

struct bsttreenode *queue[100] = Initialize to 0

size = 0

queue_pointer = 0

2. Repeat 1 to 4 while(t)

1.    Display t->info

2.     if(t->left)

a. queue[size++] = t->leftchild

3.   if(t->right)

a. queue[size++] = root->rightchild

4.  t = queue[queue_pointer++]   



Algorithms to implement non-recursive

insertion, preorder, inorder and 

postorder

traversal in a BST



Inserting in a BST non recursively

Algorithm 
insert_into_non_rec_bst(

struct bsttreenode *t,int v)

1.[Declare]

struct bsttreenode *temp,*pr

2. temp=Dynamically allocate 
memory

temp->leftchild=NULL

temp->info=v

temp->rightchild=NULL

3. if(non_rec_bst==NULL)

non_rec_bst=temp

else

1. Repeat a and b 

while(t!=NULL)

a. pr=t

b. if(v<t->info)

t=t->leftchild

else

t=t->rightchild

2. t=temp

3.  if(v<pr->info)

pr->leftchild=temp

else

pr->rightchild=temp



Non-recursive preorder traversal

1. Do 1,2 

1. Repeat 1 to 4 while(t!=NULL)

1. Display t->info

2. increment top

3. stk[top]=t;

4. t=t->leftchild

2. if(top!=-1)

1. t=stk[top]

2. Decrement top

3. t=t->rightchild

while(t!=NULL || top!=-1)



Non-recursive Inorder traversal

1. Do 1,2

1. Repeat  1,2,3 while(t!=NULL)

1. Increment top

2.stk[top]=t

3. t=t->leftchild

2. if(top!=-1)

1.t=stk[top]

2. Decrement top

3. Display t->info

4. t=t->rightchild

while(t!=NULL || top!=-1)



Non-recursive Postorder traversal

Do 1,2
1. Repeat  1,2,3 while(t!=NULL)

1. Increment top

2. stk[top]=t

3. t=t->leftchild

2.  if(top!=-1)

1.t=stk[top]

2.if(t->rightchild !=NULL && t->rightchild != non_rec_bst)

1. t=t->rightchild

else

1. non_rec_bst=stk[top]

2. Decrement  top

3.  Display non_rec_bst->info

4.  t=NULL

while(t!=NULL || top!=-1)


