
AVL TREES

AVL Tree

• Two Russian Mathematicians , G.M Adelson-Velskii and

E.M. Landis created the balanced tree known as the

AVL tree.

• An AVL tree is a search tree in which the heights of the

subtrees differ by no more than 1.

• It is thus a balanced tree.

• An AVL tree is a binary tree that is

– Either empty or

– Consists of 2 AVL subtrees TL and TR whose

heights differ by no more than 1

| HL and HR | <=1

Where HL: height of the left subtree and

HR : height of the right subtree

Difference between Binary Search Tree and

AVL Tree

• The BST is not a

balanced tree

• The search effort is

O(n)

• The AVL tree is a

balanced tree

• The search effort is

O(logn)

Example:

Descriptive identifiers for the balance factors

• LH : Left High(+1) :

– Indicates that the left subtree is higher than

the right subtree

• EH:Even High(0):

– Indicates that the left subtree is equal to the

right subtree

• RH: Right High(-1):

– Indicates that the left subtree is Shorter

than the right subtree

Balancing Trees

• Whenever a node is inserted/deleted

into/from a tree respectively, the resulting

tree may become unbalanced.

• Therefore we need to rebalance it.

• Basic Balancing Algorithms:

4 cases that require rebalancing

• Left of Left:

– A subtree of a tree that is left high has also become

left high

• Right of Right:

– A subtree of a tree that is right high has also

become right high

• Right of left:

– A subtree of a tree that is left high has become right

high

• Left of right:

– A subtree of a tree that is right high has become left

high

Left of Left: When a out-of-balance condition has been created by a left

high subtree, balance the tree by rotating the out-of-balance node to

the right.

Algorithm rotateRight(root)

1. set left subtree = right

subtree of left subtree

2. Make left subtree new

root

AVLNode *

rotateRight(AVLNode

*root)

AVLNode *tempptr

tempptr=root->left

root->left= tempptr->right

tempptr->right=root

root=tempptr

returnExample : 1.Simple right rotation

2. Complex right rotation

Right of right: When a out-of-balance condition has been created by a

right high subtree, balance the tree by rotating the out-of-balance

node to the left.

Algorithm rotateLeft(root)

set right subtree = left

subtree of right subtree

Make right subtree new

root

AVLNode *

rotateLeft(AVLNode *root)

AVLNode *tempptr

tempptr=root->right

root->right= tempptr->left

tempptr->left=root

return

Example : 1.Simple left rotation

2. Complex left rotation

Right of left: when a out-of-balance condition is created in

which the root is left high and the left subtree is right

high,first rotate the left subtree to the left and then

rotate the root to the right, making the left node the

new root

Pseudocode for balancing left high

Algorithm leftBalance(root)

left_subtree=root->left

If(left_subtree high)

1. rotateRight(root)

else

1. rotateLeft(left_subtree)

2. rotateRight(root)

Examples:

Left of right: when a out-of-balance condition is created in

which the root is right high and the right subtree is left

high,first rotate the right subtree to the right and then

rotate the root to the left, making the right node the

new root

Pseudocode for balancing right high

Algorithm rightBalance(root)

right_subtree=root->right

If(right_subtree high)

1. rotateLeft(root)

else

1. rotateRight(right_subtree)

2. rotateLeft(root)

Examples:

• Note: the Search and retrieval

algorithms are the same for any binary

tree.

• Algorithm :Insert into AVL Tree

Insert into AVL tree

Algorithm AVLInsert(

root, newData)

1. if(subtree empty)

1. Insert newdata at

root

2. return root

2. If(newdata<root)

1. AVLInsert(

left_subtree,newdata)

2. If(left_subtree taller)

1. leftBalance(root)

else

1. AVLInsert(

right_subtree,newdata)

2. If(right_subtree taller)

1. rightBalance(root)

3. return root

leftBalance algorithm

Algorithm leftBalance

(AVLNode *root)

1. leftTree=root->left

2. If(leftTree left-high)

//case 1:Left of left

1. rotateRight(root)

2. Adjust balance

factors

else

1. rightTree=

leftTree->right

2. Adjust balance factors

3

3. rotateLeft(root)

4. rotateRight(root)

