
FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Stacks
Stack is an abstract data type with a bounded(predefined) capacity. It is a simple data structure that
allows adding and removing elements in a particular order. Every time an element is added, it goes on
the top of the stack, the only element that can be removed is the element that was at the top of the
stack, just like a pile of objects.

Basic features of Stack
1. Stack is an ordered list of similar data type.
2. Stack is a LIFO structure. (Last in First out).
3. push() function is used to insert new elements into the Stack and pop() is used to delete an

element from the stack. Both insertion and deletion are allowed at only one end of Stack
called Top.

4. Stack is said to be in Overflow state when it is completely full and is said to be
in Underflow state if it is completely empty.

Applications of Stack
The simplest application of a stack is to reverse a word. You push a given word to stack - letter by
letter - and then pop letters from the stack.
There are other uses also like : Parsing, Expression Conversion(Infix to Postfix, Postfix to Prefix
etc) and many more.

Implementation of Stack
Stack can be easily implemented using an Array or a Linked List. Arrays are quick, but are limited in
size and Linked List requires overhead to allocate, link, unlink, and deallocate, but is not limited in
size. Here we will implement Stack using array.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

/* Below program is written in C++ language */

Class Stack
{
 int top;
 public:
 int a[10]; //Maximum size of Stack
 Stack()
 {
 top = -1;
 }
};

void Stack::push(int x)
{
 if(top >= 10)
 {
 cout << "Stack Overflow";
 }
 else
 {
 a[++top] = x;
 cout << "Element Inserted";
 }
}

int Stack::pop()
{
 if(top < 0)
 {
 cout << "Stack Underflow";
 return 0;
 }
 else
 {
 int d = a[top--];
 return d;
 }
}

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

void Stack::isEmpty()
{
 if(top < 0)
 {
 cout << "Stack is empty";
 }
 else
 {
 cout << "Stack is not empty";
 }
}

Position of Top Status of Stack

-1 Stack is Empty

0 Only one element in Stack

N-1 Stack is Full

N Overflow state of Stack

Analysis of Stacks
Below mentioned are the time complexities for various operations that can be performed on the Stack
data structure.

 Push Operation : O(1)

 Pop Operation : O(1)

 Top Operation : O(1)

 Search Operation : O(n)

Queue Data Structures
Queue is also an abstract data type or a linear data structure, in which the first element is inserted
from one end called REAR(also called tail), and the deletion of exisiting element takes place from the
other end called as FRONT(also called head). This makes queue as FIFO data structure, which means
that element inserted first will also be removed first.
The process to add an element into queue is called Enqueue and the process of removal of an
element from queue is called Dequeue.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Basic features of Queue
1. Like Stack, Queue is also an ordered list of elements of similar data types.
2. Queue is a FIFO(First in First Out) structure.
3. Once a new element is inserted into the Queue, all the elements inserted before the new element

in the queue must be removed, to remove the new element.
4. peek() function is oftenly used to return the value of first element without dequeuing it.

Applications of Queue
Queue, as the name suggests is used whenever we need to have any group of objects in an order in
which the first one coming in, also gets out first while the others wait for there turn, like in the
following scenarios :
1. Serving requests on a single shared resource, like a printer, CPU task scheduling etc.
2. In real life, Call Center phone systems will use Queues, to hold people calling them in an order,

until a service representative is free.
3. Handling of interrupts in real-time systems. The interrupts are handled in the same order as they

arrive, First come first served.

Implementation of Queue
Queue can be implemented using an Array, Stack or Linked List. The easiest way of implementing a
queue is by using an Array. Initially the head(FRONT) and the tail(REAR) of the queue points at the
first index of the array (starting the index of array from 0). As we add elements to the queue, the tail
keeps on moving ahead, always pointing to the position where the next element will be inserted, while
the head remains at the first index.

When we remove element from Queue, we can follow two possible approaches (mentioned [A] and [B]
in above diagram). In [A] approach, we remove the element at head position, and then one by one

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

move all the other elements on position forward. In approach [B] we remove the element
from head position and then move head to the next position.
In approach [A] there is an overhead of shifting the elements one position forward every time we
remove the first element. In approach [B] there is no such overhead, but whener we move head one
position ahead, after removal of first element, the size on Queue is reduced by one space each time.
/* Below program is wtitten in C++ language */

#define SIZE 100
class Queue
{
 int a[100];
 int rear; //same as tail
 int front; //same as head

 public:
 Queue()
 {
 rear = front = -1;
 }
 void enqueue(int x); //declaring enqueue, dequeue and display functions
 int dequeue();
 void display();
}

void Queue :: enqueue(int x)
{
 if(rear = SIZE-1)
 {
 cout << "Queue is full";
 }
 else
 {
 a[++rear] = x;
 }
}

int queue :: dequeue()
{
 return a[++front]; //following approach [B], explained above
}

void queue :: display()
{
 int i;
 for(i = front; i <= rear; i++)
 {
 cout << a[i];
 }
}
To implement approach [A], you simply need to change the dequeue method, and include a for loop
which will shift all the remaining elements one position.
return a[0]; //returning first element
for (i = 0; i < tail-1; i++) //shifting all other elements
{
 a[i]= a[i+1];
 tail--;
}

Analysis of Queue

 Enqueue : O(1)

 Dequeue : O(1)

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 Size : O(1)

Queue Data Structure using Stack
A Queue is defined by its property of FIFO, which means First in First Out, i.e the element which is
added first is taken out first. Hence we can implement a Queue using Stack for storage instead of
array.
For performing enqueue we require only one stack as we can directly push data into stack, but to
perform dequeue we will require two Stacks, because we need to follow queue's FIFO property and if
we directly pop any data element out of Stack, it will follow LIFO approach(Last in First Out).

Implementation of Queue using Stacks
In all we will require two Stacks, we will call them InStack and OutStack.
class Queue {
 public:
 Stack S1, S2;
 //defining methods

 void enqueue(int x);

 int dequeue();
}

We know that, Stack is a data structure, in which data can be added using push() method and data
can be deleted using pop() method. To learn about Stack, follow the link : Stack Data Structure

Adding Data to Queue
As our Queue has Stack for data storage in place of arrays, hence we will be adding data to Stack,
which can be done using the push() method, hence :
void Queue :: enqueue(int x) {
 S1.push(x);
}

Removing Data from Queue
When we say remove data from Queue, it always means taking out the First element first and so on, as
we have to follow the FIFO approach. But if we simply perform S1.pop() in our dequeue method,
then it will remove the Last element first. So what to do now?

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
http://www.studytonight.com/data-structures/stack-data-structure
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

int Queue :: dequeue() {
 while(S1.isEmpty()) {
 x = S1.pop();
 S2.push();
 }

 //removing the element
 x = S2.pop();

 while(!S2.isEmpty()) {
 x = S2.pop();
 S1.push(x);
 }

 return x;
}

Introduction to Linked Lists

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Linked List is a linear data structure and it is very common data structure which consists of group of
nodes in a sequence which is divided in two parts. Each node consists of its own data and the address
of the next node and forms a chain. Linked Lists are used to create trees and graphs.

Advantages of Linked Lists

 They are a dynamic in nature which allocates the memory when required.

 Insertion and deletion operations can be easily implemented.

 Stacks and queues can be easily executed.

 Linked List reduces the access time.

Disadvantages of Linked Lists

 The memory is wasted as pointers require extra memory for storage.

 No element can be accessed randomly; it has to access each node sequentially.

 Reverse Traversing is difficult in linked list.

Applications of Linked Lists

 Linked lists are used to implement stacks, queues, graphs, etc.

 Linked lists let you insert elements at the beginning and end of the list.

 In Linked Lists we don’t need to know the size in advance.

Types of Linked Lists

 Singly Linked List : Singly linked lists contain nodes which have a data part as well as an
address part i.e. next, which points to the next node in sequence of nodes. The operations we can
perform on singly linked lists are insertion, deletion and traversal.

 Doubly Linked List : In a doubly linked list, each node contains two links the first link points to

the previous node and the next link points to the next node in the sequence.

 Circular Linked List : In the circular linked list the last node of the list contains the address of

the first node and forms a circular chain.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Linear Linked List
The element can be inserted in linked list in 2 ways :

 Insertion at beginning of the list.

 Insertion at the end of the list.
We will also be adding some more useful methods like :

 Checking whether Linked List is empty or not.

 Searching any element in the Linked List

 Deleting a particular Node from the List
Before inserting the node in the list we will create a class Node. Like shown below :
class Node {
 public:
 int data;
 //pointer to the next node
 node* next;

 node() {
 data = 0;
 next = NULL;
 }

 node(int x) {
 data = x;
 next = NULL;
 }
}
We can also make the properties data and next as private, in that case we will need to add the getter
and setter methods to access them. You can add the getters and setter like this :
int getData() {
 return data;
}

void setData(int x) {
 this.data = x;
}

node* getNext() {
 return next;
}

void setNext(node *n) {
 this.next = n;
}
Node class basically creates a node for the data which you enter to be included into Linked List. Once
the node is created, we use various functions to fit in that node into the Linked List.

Linked List class
As we are following the complete OOPS methodology, hence we will create a separate class
for Linked List, which will have all its methods. Following will be the Linked List class :
class LinkedList {
 public:
 node *head;

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 //declaring the functions

 //function to add Node at front
 int addAtFront(node *n);
 //function to check whether Linked list is empty
 int isEmpty();
 //function to add Node at the End of list
 int addAtEnd(node *n);
 //function to search a value
 node* search(int k);
 //function to delete any Node
 node* deleteNode(int x);

 LinkedList() {
 head = NULL;
 }
}

Insertion at the Beginning
Steps to insert a Node at beginning :
1. The first Node is the Head for any Linked List.
2. When a new Linked List is instantiated, it just has the Head, which is Null.
3. Else, the Head holds the pointer to the first Node of the List.
4. When we want to add any Node at the front, we must make the head point to it.
5. And the Next pointer of the newly added Node, must point to the previous Head, whether it be

NULL(in case of new List) or the pointer to the first Node of the List.
6. The previous Head Node is now the second Node of Linked List, because the new Node is added

at the front.
int LinkedList :: addAtFront(node *n) {
 int i = 0;
 //making the next of the new Node point to Head
 n->next = head;
 //making the new Node as Head
 head = n;
 i++;
 //returning the position where Node is added
 return i;
}

Inserting at the End
Steps to insert a Node at the end :
1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.
2. If the Linked List is not empty then we find the last node, and make it' next to the new Node,

hence making the new node the last Node.
int LinkedList :: addAtEnd(node *n) {
 //If list is empty
 if(head == NULL) {
 //making the new Node as Head
 head = n;
 //making the next pointe of the new Node as Null
 n->next = NULL;
 }
 else {
 //getting the last node
 node *n2 = getLastNode();
 n2->next = n;
 }
}

node* LinkedList :: getLastNode() {
 //creating a pointer pointing to Head

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 node* ptr = head;
 //Iterating over the list till the node whose Next pointer points to null
 //Return that node, because that will be the last node.
 while(ptr->next!=NULL) {
 //if Next is not Null, take the pointer one step forward
 ptr = ptr->next;
 }
 return ptr;
}

Searching for an Element in the List
In searhing we do not have to do much, we just need to traverse like we did while getting the last node,
in this case we will also compare the data of the Node. If we get the Node with the same data, we will
return it, otherwise we will make our pointer point the next Node, and so on.
node* LinkedList :: search(int x) {
 node *ptr = head;
 while(ptr != NULL && ptr->data != x) {
 //until we reach the end or we find a Node with data x, we keep moving
 ptr = ptr->next;
 }
 return ptr;
}

Deleting a Node from the List
Deleting a node can be done in many ways, like we first search the Node with data which we want to
delete and then we delete it. In our approach, we will define a method which will take the data to be
deleted as argument, will use the search method to locate it and will then remove the Node from the
List.
To remove any Node from the list, we need to do the following :

 If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to
the next element from the Node to be deleted.

 If the Node is in the middle somewhere, then find the Node before it, and make the Node before it
point to the Node next to it.

node* LinkedList :: deleteNode(int x) {
 //searching the Node with data x
 node *n = search(x);
 node *ptr = head;
 if(ptr == n) {
 ptr->next = n->next;
 return n;
 }
 else {
 while(ptr->next != n) {
 ptr = ptr->next;
 }
 ptr->next = n->next;
 return n;
 }
}

Checking whether the List is empty or not
We just need to check whether the Head of the List is NULL or not.
int LinkedList :: isEmpty() {
 if(head == NULL) {
 return 1;
 }
 else { return 0; }
}

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Now you know a lot about how to handle List, how to traverse it, how to search an element. You can
yourself try to write new methods around the List.
If you are still figuring out, how to call all these methods, then below is how your main() method will
look like. As we have followed OOP standards, we will create the objects of LinkedList class to
initialize our List and then we will create objects of Node class whenever we want to add any new
node to the List.
int main() {
 LinkedList L;
 //We will ask value from user, read the value and add the value to our Node
 int x;
 cout << "Please enter an integer value : ";
 cin >> x;
 Node *n1;
 //Creating a new node with data as x
 n1 = new Node(x);
 //Adding the node to the list
 L.addAtFront(n1);
}
Similarly you can call any of the functions of the LinkedList class, add as many Nodes you want to
your List.

Circular Linked List is little more complicated linked data structure. In the circular linked list we can
insert elements anywhere in the list whereas in the array we cannot insert element anywhere in the list
because it is in the contiguous memory. In the circular linked list the previous element stores the
address of the next element and the last element stores the address of the starting element. The
elements points to each other in a circular way which forms a circular chain. The circular linked list
has a dynamic size which means the memory can be allocated when it is required.

Application of Circular Linked List

 The real life application where the circular linked list is used is our Personal Computers, where
multiple applications are running. All the running applications are kept in a circular linked list
and the OS gives a fixed time slot to all for running. The Operating System keeps on iterating over
the linked list until all the applications are completed.

 Another example can be Multiplayer games. All the Players are kept in a Circular Linked List and
the pointer keeps on moving forward as a player's chance ends.

 Circular Linked List can also be used to create Circular Queue. In a Queue we have to keep two
pointers, FRONT and REAR in memory all the time, where as in Circular Linked List, only one
pointer is required.

Implementing Circular Linked List
Implementing a circular linked list is very easy and almost similar to linear linked list
implementation, with the only difference being that, in circular linked list the last Node will have
it's next point to the Head of the List. In Linear linked list the last Node simply holds NULL in it's
next pointer.
So this will be oue Node class, as we have already studied in the lesson, it will be used to form the List.
class Node {
 public:
 int data;
 //pointer to the next node
 node* next;

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 node() {
 data = 0;
 next = NULL;
 }

 node(int x) {
 data = x;
 next = NULL;
 }
}

Circular Linked List
Circular Linked List class will be almost same as the Linked List class that we studied in the previous
lesson, with a few difference in the implementation of class methods.
class CircularLinkedList {
 public:
 node *head;
 //declaring the functions

 //function to add Node at front
 int addAtFront(node *n);
 //function to check whether Linked list is empty
 int isEmpty();
 //function to add Node at the End of list
 int addAtEnd(node *n);
 //function to search a value
 node* search(int k);
 //function to delete any Node
 node* deleteNode(int x);

 CircularLinkedList() {
 head = NULL;
 }
}

Insertion at the Beginning
Steps to insert a Node at beginning :
1. The first Node is the Head for any Linked List.
2. When a new Linked List is instantiated, it just has the Head, which is Null.
3. Else, the Head holds the pointer to the fisrt Node of the List.
4. When we want to add any Node at the front, we must make the head point to it.
5. And the Next pointer of the newly added Node, must point to the previous Head, whether it be

NULL(in case of new List) or the pointer to the first Node of the List.
6. The previous Head Node is now the second Node of Linked List, because the new Node is added

at the front.
int CircularLinkedList :: addAtFront(node *n) {
 int i = 0;
 /* If the list is empty */
 if(head == NULL) {
 n->next = head;
 //making the new Node as Head
 head = n;
 i++;
 }
 else {
 n->next = head;
 //get the Last Node and make its next point to new Node
 Node* last = getLastNode();
 last->next = n;
 //also make the head point to the new first Node
 head = n;

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 i++;
 }
 //returning the position where Node is added
 return i;
}

Insertion at the End
Steps to insert a Node at the end :
1. If the Linked List is empty then we simply, add the new Node as the Head of the Linked List.
2. If the Linked List is not empty then we find the last node, and make it' next to the new Node, and

make the next of the Newly added Node point to the Head of the List.
int CircularLinkedList :: addAtEnd(node *n) {
 //If list is empty
 if(head == NULL) {
 //making the new Node as Head
 head = n;
 //making the next pointer of the new Node as Null
 n->next = NULL;
 }
 else {
 //getting the last node
 node *last = getLastNode();
 last->next = n;
 //making the next pointer of new node point to head
 n->next = head;
 }
}

Searching for an Element in the List
In searhing we do not have to do much, we just need to traverse like we did while getting the last node,
in this case we will also compare the data of the Node. If we get the Node with the same data, we will
return it, otherwise we will make our pointer point the next Node, and so on.
node* CircularLinkedList :: search(int x) {
 node *ptr = head;
 while(ptr != NULL && ptr->data != x) {
 //until we reach the end or we find a Node with data x, we keep moving
 ptr = ptr->next;
 }
 return ptr;
}

Deleting a Node from the List
Deleting a node can be done in many ways, like we first search the Node with data which we want to
delete and then we delete it. In our approach, we will define a method which will take the data to be
deleted as argument, will use the search method to locate it and will then remove the Node from the
List.
To remove any Node from the list, we need to do the following :

 If the Node to be deleted is the first node, then simply set the Next pointer of the Head to point to
the next element from the Node to be deleted. And update the next pointer of the Last Node as
well.

 If the Node is in the middle somewhere, then find the Node before it, and make the Node before it
point to the Node next to it.

 If the Node is at the end, then remove it and make the new last node point to the head.
node* CircularLinkedList :: deleteNode(int x) {
 //searching the Node with data x
 node *n = search(x);
 node *ptr = head;
 if(ptr == NULL) {
 cout << "List is empty";
 return NULL;
 }

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 else if(ptr == n) {
 ptr->next = n->next;
 return n;
 }
 else {
 while(ptr->next != n) {
 ptr = ptr->next;
 }
 ptr->next = n->next;
 return n;
 }
}

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

