—9/
=

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

LINKED LISTS

In this chapter, the list data structure is presented. This structure can be used
as the basis for the implementation of other data structures (stacks, queues
etc.). The basic linked list can be used without modification in many programs.
However, some applications require enhancements to the linked list design.
These enhancements fall into three broad categories and yield variations on
linked lists that can be used in any combination: circular linked lists, double
linked lists and lists with header nodes.

Linked lists and arrays are similar since they both store collections of data. Array is the
most common data structure used to store collections of elements. Arrays are
convenient to declare and provide the easy syntax to access any element by its index
number. Once the array is set up, access to any element is convenient and fast. The
disadvantages of arrays are:

The size of the array is fixed. Most often this size is specified at compile
time. This makes the programmers to allocate arrays, which seems "large
enough" than required.

Inserting new elements at the front is potentially expensive because existing
elements need to be shifted over to make room.

Deleting an element from an array is not possible.

Linked lists have their own strengths and weaknesses, but they happen to be strong
where arrays are weak. Generally array's allocates the memory for all its elements in
one block whereas linked lists use an entirely different strategy. Linked lists allocate
memory for each element separately and only when necessary.

Here is a quick review of the terminology and rules of pointers. The linked list code
will depend on the following functions:

malloc() is a system function which allocates a block of memory in the "heap" and
returns a pointer to the new block. The prototype of malloc() and other heap functions
are in stdlib.h. malloc() returns NULL if it cannot fulfill the request. It is defined by:

void *malloc (number_of _bytes)
Since a void * is returned the C standard states that this pointer can be converted to
any type. For example,

char *cp;

cp = (char *) malloc (100);

Attempts to get 100 bytes and assigns the starting address to cp. We can also use the
sizeof() function to specify the number of bytes. For example,

int *ip;
ip = (int *) malloc (100*sizeof(int));

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

free() is the opposite of malloc(), which de-allocates memory. The argument to free()
is a pointer to a block of memory in the heap — a pointer which was obtained by a
malloc() function. The syntax is:

free (ptr);

The advantage of free() is simply memory management when we no longer need a
block.

Linked List Concepts:

A linked list is a non-sequential collection of data items. It is a dynamic data structure.
For every data item in a linked list, there is an associated pointer that would give the
memory location of the next data item in the linked list.

The data items in the linked list are not in consecutive memory locations. They may be
anywhere, but the accessing of these data items is easier as each data item contains
the address of the next data item.

Advantages of linked lists:
Linked lists have many advantages. Some of the very important advantages are:

Linked lists are dynamic data structures. i.e., they can grow or shrink during
the execution of a program.

Linked lists have efficient memory utilization. Here, memory is not pre-
allocated. Memory is allocated whenever it is required and it is de-allocated
(removed) when it is no longer needed.

Insertion and Deletions are easier and efficient. Linked lists provide flexibility
in inserting a data item at a specified position and deletion of the data item
from the given position.

Many complex applications can be easily carried out with linked lists.

Disadvantages of linked lists:
It consumes more space because every node requires a additional pointer to
store address of the next node.
Searching a particular element in list is difficult and also time consuming.
Types of Linked Lists:
Basically we can put linked lists into the following four items:

Single Linked List.

Double Linked List.
Circular Linked List.
Circular Double Linked List.

A single linked list is one in which all nodes are linked together in some sequential
manner. Hence, it is also called as linear linked list.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

A double linked list is one in which all nodes are linked together by multiple links which
helps in accessing both the successor node (next node) and predecessor node (previous
node) from any arbitrary node within the list. Therefore each node in a double linked
list has two link fields (pointers) to point to the left node (previous) and the right node

(next). This helps to traverse in forward direction and backward direction.

A circular linked list is one, which has no beginning and no end. A single linked list can
be made a circular linked list by simply storing address of the very first node in the link

field of the last node.

A circular double linked list is one, which has both the successor pointer and
predecessor pointer in the circular manner.

Comparison between array and linked list:

ARRAY

LINKED LIST

Size of an array is fixed

Size of a list is not fixed

Memory is allocated from stack

Memory is allocated from heap

It is necessary to specify the number of
elements during declaration (i.e., during
compile time).

It is not necessary to specify the
number of elements during declaration
(i.e., memory is allocated during run
time).

It occupies less memory than a linked
list for the same number of elements.

It occupies more memory.

Inserting new elements at the front is
potentially expensive because existing
elements need to be shifted over to
make room.

Inserting a new element at any position
can be carried out easily.

Deleting an element from an array is
not possible.

Deleting an element is possible.

Trade offs between linked lists and arrays:

FEATURE ARRAYS LINKED LISTS
Sequential access efficient efficient
Random access efficient inefficient
Resigning inefficient efficient
Element rearranging inefficient efficient
Overhead per elements | none 1 or 2 links

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

Applications of linked list:

Linked lists are used to represent and manipulate polynomial. Polynomials are
expression containing terms with non zero coefficient and exponents. For
example:

P(x) = a0 X" + a1 X" + .. +an-1 X + an

Represent very large numbers and operations of the large number such
as addition, multiplication and division.

Linked lists are to implement stack, queue, trees and graphs.

Implement the symbol table in compiler construction

Single Linked List:

A linked list allocates space for each element separately in its own block of memory
called a "node". The list gets an overall structure by using pointers to connect all its
nodes together like the links in a chain. Each node contains two fields; a "data" field to
store whatever element, and a "next" field which is a pointer used to link to the next
node. Each node is allocated in the heap using malloc(), so the node memory continues
to exist until it is explicitly de-allocated using free(). The front of the list is a pointer to
the “start” node.

A single linked list is shown in figure 3.2.1.

STACK HEAP

100 -
start
I—> 10 [200—» 20 |300+—Pt 30 |400+—P 40 X

\:/ : ., -
The start IOO‘EV _z; 200 300 400‘:’..
pointer holds Each - h -
the address || meen. node stores Stores Tt The next field of the
of the first last node is NULL.
node of
the list. .

Figure 3.2.1. Single Linked List

The beginning of the linked list is stored in a "start" pointer which points to the first
node. The first node contains a pointer to the second node. The second node contains a
pointer to the third node, ... and so on. The last node in the list has its next field set to
NULL to mark the end of the list. Code can access any node in the list by starting at the
start and following the next pointers.

The start pointer is an ordinary local pointer variable, so it is drawn separately on the

left top to show that it is in the stack. The list nodes are drawn on the right to show
that they are allocated in the heap.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Implementation of Single Linked List:

Before writing the code to build the above list, we need to create a start node, used to
create and access other nodes in the linked list. The following structure definition will
do (see figure 3.2.2):

Creating a structure with one data item and a next pointer, which will be
pointing to next node of the list. This is called as self-referential structure.

Initialise the start pointer to be NULL.

struct slinklist

{
int data; node: data | next
struct slinklist* next;

b

typedef struct slinklist node; start

Empty list: NULL

node *start = NULL;

Figure 3.2.2. Structure definition, single link node and empty list

The basic operations in a single linked list are:

Creation.
Insertion.
Deletion.

Traversing.

Creating a node for Single Linked List:

Creating a singly linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user, set next field to NULL and finally returns the
address of the node. Figure 3.2.3 illustrates the creation of a node for single linked list.

node* getnode()
{ newnode
node* newnode;
newnode = (node *) malloc(sizeof(node)); 10 X
printf("\n Enter data: "); 100
scanf("%d", &newnode -> data);
newnode -> next = NULL;
return newnode;

Figure 3.2.3. new node with a value of 10

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Creating a Singly Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:

Get the new node using getnode().
newnode = getnode();

If the list is empty, assign new node as start.
start = newnode;

If the list is not empty, follow the steps given below:

The next field of the new node is made to point the first node (i.e.
start node) in the list by assigning the address of the first node.

The start pointer is made to point the new node by assigning the
address of the new node.

Repeat the above steps 'n’ times.

Figure 3.2.4 shows 4 items in a single linked list stored at different locations in
memory.

start

100
—|—> 10 | 20— 20 | 300—» 30 | 400—P» 40 | X
100 200 300 400

Figure 3.2.4. Single Linked List with 4 nodes

The function createlist(), is used to create ‘n’ number of nodes:

vo id createlist(int n)
{
inti;
no de * new no
de; no de *tem p;
for(i=0;i<n;i+ +)
{
new no de = getno de();
if(start = = NULL)
{
start = new no de;
b
else
{
tem p = start;
w hile(tem p - > next !'= NULL)
tem p = tem p - > next;
tem p - > next = new no de;
b
v
¥

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Insertion of a Node:

One of the most primitive operations that can be done in a singly linked list is the
insertion of a node. Memory is to be allocated for the new node (in a similar way that is
done while creating a list) before reading the data. The new node will contain empty
data field and empty next field. The data field of the new node is then stored with the
information read from the user. The next field of the new node is assigned to NULL. The
new node can then be inserted at three different places namely:

Inserting a node at the beginning.

Inserting a node at the end.

Inserting a node at intermediate position.
Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

Get the new node using getnode().
newnode = getnode();

If the list is empty then start = newnode.
If the list is not empty, follow the steps given below:
newnode -> next = start;

start = newnode;

Figure 3.2.5 shows inserting a node into the single linked list at the beginning.

start
500 [)

i

I_

> 10 | 20— 20 | 30— 30 | 400—P 40 |X

100 200 300 400

L_p| 5 10

500

Figure 3.2.5. Inserting a node at the beginning

The function insert_at_beg(), is used for inserting a node at the beginning

void insert_at_beg()

{
node *newnode;
newnode = getnode();
if(start == NULL)
{

be

else

{
newnode -> next = start;
start = newnode;

b

start = newnode;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:

Get the new node using getnode()
newnode = getnode();

If the list is empty then start = newnode.

If the list is not empty follow the steps given below:
temp = start;
while(temp -> next !'= NULL)
temp = temp -> next;
temp -> next = newnode;

Figure 3.2.6 shows inserting a node into the single linked list at the end.

start

100

10 | 20— 20 | 30— 30 | 40G—p 40 |500
100 200 300 400

» 5o X

500

Figure 3.2.6. Inserting a node at the end.

The function insert_at_end(), is used for inserting a node at the end.

void insert_at_end()

{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{
start = newnode;
/i
else
{
temp = start;
while(temp -> next '= NULL)
temp = temp -> next;
temp -> next = newnode;
b
b

Inserting a node at intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

» Get the new node using getnode().
newnode = getnode();

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

After reaching the specified position, follow the steps given below:
prev -> next = newnode;
newnode -> next = temp;

Let the intermediate position be 3.

Figure 3.2.7 shows inserting a node into the single linked list at a specified intermediate
position other than beginning and end.

start prev temp
" K
100 200 300 400

|: 50 300

500 e new node

Figure 3.2.7. Inserting a node at an intermediate position.

The function insert_at_mid(), is used for inserting a node in the intermediate position.

void insert_at_mid()

{
node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > 1 && pos < nodectr)
{
temp = prev = start;
while(ctr < pos)
prev = temp;
temp = temp ->
next; ctr++;
b
prev -> next = newnode;
newnode -> next = temp;
b
else
{
printf("position %d is not a middle position", pos);
b
)

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deletion of a node:

Another primitive operation that can be done in a singly linked list is the deletion of a
node. Memory is to be released for the node to be deleted. A node can be deleted from
the list from three different places namely.

Deleting a node at the beginning.
Deleting a node at the end.

Deleting a node at intermediate position.

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:
If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:
temp = start;
start = start -> next;

free(temp);

Figure 3.2.8 shows deleting a node at the beginning of a single linked list.

start
200 ’
e I T T e

U
- 100 200 300 200

temp

Figure 3.2.8. Deleting a node at the beginning.

The function delete_at_beg(), is used for deleting the first node in the list.

void delete_at_beg()

{
node *temp;
if(start == NULL)
{
printf("\n No nodes are exist..");
return ;
b
else
{
temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");
b
b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:

If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:

temp = prev = start;

while(temp -> next '= NULL)

{

prev = temp;

temp = temp -> next;
b
prev -> next = NULL;
free(temp);

Figure 3.2.9 shows deleting a node at the end of a single linked list.

start

100
1 10 | 200——» 20

300

30

100 200 300 400

Figure 3.2.9. Deleting a node at the end.

The function delete_at_last(), is used for deleting the last node in the list.

void delete_at_last()

{

node *temp, *prev;
if(start == NULL)

{

else

printf("\n Empty ist..");
return ;

temp = start;
prev = start;
while(temp -> next = NULL)

{

prev = temp;

temp = temp -> next;
b
prev -> next = NULL;
free(temp);

printf("\n Node deleted ");

35 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

If list is empty then display ‘Empty List’ message

If the list is not empty, follow the steps given below.
if(pos > 1 && pos < nodectr)

{
temp = prev = start;
ctr=1;
while(ctr < pos)
prev = temp;
temp = temp -> next;
ctr++;
b
prev -> next = temp -> next;
free(temp);
printf("\n node deleted..");
b

Figure 3.2.10 shows deleting a node at a specified intermediate position other than
beginning and end from a single linked list.

start

100
1 10 30"‘/‘*: 20 :300*"/‘* 30 | 40— 40 | X
J 1

100 500" 300 400

Figure 3.2.10. Deleting a node at an intermediate position.

The function delete_at_mid(), is used for deleting the intermediate node in the list.

void delete_at_mid()

{
int ctr = 1, pos,
nodectr; node *temp,
*prev; if(start == NULL)

¢ printf("\n Empty
List.."); return ;

b

else

{

printf("\n Enter position of node to delete: ");
scanf("%d", &pos);

nodectr = countnode(start);

if(pos > nodectr)

{
b

printf("\nThis node doesnot exist");

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

-
= </EDUCLASH>
if(pos > 1 && pos < nodectr)
{
temp = prev = start;
while(ctr < pos)
prev = temp;
temp = temp ->
next; ctr ++;
b
prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");
b
else
{
printf("\n Invalid position..");
getch();
b
b
b

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse (move) a linked list, node by node
from the first node, until the end of the list is reached. Traversing a list involves the
following steps:

Assign the address of start pointer to a temp pointer.

Display the information from the data field of each node.

The function traverse() is used for traversing and displaying the information stored in
the list from left to right.

void traverse()
{
node *temp;
temp = start;
printf("\n The contents of List (Left to Right):
\n"); if(start == NULL)
printf("\n Empty List");
else
{
while (temp != NULL)
{
printf("%d ->", temp ->
data); temp = temp -> next;
b
}
printf("X");
b

Alternatively there is another way to traverse and display the information. That is in
reverse order. The function rev_traverse(), is used for traversing and displaying the
information stored in the list from right to left.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

vo id rev_traverse(no de *st)
{
if(st = = NULL)
{
return;
b
else
{
rev_traverse(st - > next);
printf("%d - >", st - > data);
b
¥

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list using recursion.

int co untno de(no de *st)
{
if(st = = NULL)
return O;
else
return(1 + co untno de(st - > next));
¥

Source Code for the Implementation of Single Linked List:

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

struct slinklist

{
int data;
struct slinklist *next;

i
typedef struct slinklist node;

node *start = NULL;

int menu()
{
int ch;
clrscr();
printf("\n 1.Create a list ");
PhINEGE@NN---------32=8=F -~~~ - - -~~~ ");

printf("\n 2.Insert a node at beginning ");
printf("\n 3.Insert a node at end");

printf("\n 4.Insert a node at middle");
printf("\n----=-=====mmmmmmee oo ");

printf("\n 5.Delete a node from beginning");
printf("\n 6.Delete a node from Last");
printf("\n 7.Delete a node from Middle");
pRINEEEN\N==----------- - ");

printf("\n 8.Traverse the list (Left to Right)");
printf("\n 9.Traverse the list (Right to Left)");

-- 38 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

EDUCLASH>
Just Another Way To Learn
printf("\n-------=------mmmme oo ";
printf("\n 10. Count nodes ");
printf("\n 11. Exit ");
printf("\n\n Enter your choice: ");
scanf("%d",&ch);
return ch;
)
node* getnode()
{
node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL; return
newnode;
b
int countnode(node *ptr)
{
int count=0;
while(ptr '= NULL)
{
count++;
ptr = ptr -> next;
b
return (count);
b
void createlist(int n)
{
inti;
node *newnode;
node *temp;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start == NULL)
{
start = newnode;
b
else
{
temp = start;
while(temp -> next != NULL)
temp = temp -> next;
temp -> next = newnode;
b
¥
b
void traverse()
{

node *temp;

temp = start;

printf("\n The contents of List (Left to Right): \n");
if(start == NULL)

{ printf("\n Empty List");
return;

b

else

{

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG:
é‘ </EDUCLASH> https://www.instagram.com/educlashco

Just Another Way To Learn

while(temp !'= NULL)

{
printf("%d-->", temp ->
data); temp = temp -> next;
b
b
printf(" X ");

b

void rev_traverse(node *start)

if(start == NULL)

{
return;
)
else
{
rev_traverse(start -> next);
printf("%d -->", start -> data);
b
b
void insert_at_beg()
{
node *newnode;
newnode = getnode();
if(start == NULL)
{
start = newnode;
b
else
{
newnode -> next =
start; start = newnode;
b
b
void insert_at_end()
{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{
start = newnode;
b
else
{
temp = start;
while(temp -> next !'= NULL)
temp = temp -> next;
temp -> next = newnode;
bs
bs

void insert_at_mid()

{
node *newnode, *temp, *prev;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

-
' < >
= /EJLEAnUothSkaQIémH
if(pos > 1 && pos < nodectr)
{
temp = prev = start;
while(ctr < pos)
prev = temp;
temp = temp ->
next; ctr++;
b
prev -> next = newnode;
newnode -> next = temp;
b
else
printf("position %d is not a middle position", pos);
b
void delete_at_beg()
{
node *temp;
if(start == NULL)
{
printf("\n No nodes are exist..");
return ;
b
else
{
temp = start;
start = temp -> next;
free(temp);
printf("\n Node deleted ");
b
b
void delete_at_last()
{
node *temp, *prev;
if(start == NULL)
{
printf("\n Empty
List.."); return ;
¥
else
{
temp = start;
prev = start;
while(temp -> next '= NULL)
{
prev = temp;
temp = temp -> next;
b
prev -> next = NULL;
free(temp);
printf("\n Node deleted ");
b
b
void delete_at_mid()
{

int ctr = 1, pos,
nodectr; node *temp,
*preyv; if(start == NULL)
{
printf("\n Empty List..");

-- 41 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

return ;
b
else
{
printf("\n Enter position of node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{
printf("\nThis node doesnot exist");
b
if(pos > 1 && pos < nodectr)
{
temp = prev = start;
while(ctr < pos)
prev = temp;
temp = temp ->
next; ctr ++;
b
prev -> next = temp -> next;
free(temp);
printf("\n Node deleted..");
b
else
{
printf("\n Invalid position..");
getch();
b
b

¥

void main(void)

int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1:
if(start == NULL)
{
printf("\n Number of nodes you want to create:
scanf("%d", &n);
createlist(n);
printf("\n List created..");
b
else
printf("\n List is already created..");
break;
case 2:
insert_at_beg();
break;
case 3:
insert_at_end();
break;
case 4:

insert_at_mid();
break;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

case 5:
delete_at_beg();
break;

case 6:
delete_at_last();
break;

case 7:
delete_at_mid();
break;

case 8:
traverse();
break;

case 9:
printf("\n The contents of List (Right to Left): \n");
rev_traverse(start);
printf(" X ");
break;

case 10:
printf("\n No of nodes : %d ", countnode(start));
break;

case 11 :
exit(0);

b
getch();

Using a header node:

A header node is a special dummy node found at the front of the list. The use of header
node is an alternative to remove the first node in a list. For example, the picture below
shows how the list with data 10, 20 and 30 would be represented using a linked list
without and with a header node:

sta rt
100 1
10 200 20 300—» 30 X
100 200 300
Single Linke d List w it ho ut a he a der no de
sta rt
400 1
100—» 10 200—» 20 30— 30 | X
400 100 200 300

Single Linke d List w it h he a der no de

Note that if your linked lists do include a header node, there is no need for the special
case code given above for the remove operation; node n can never be the first node in
the list, so there is no need to check for that case. Similarly, having a header node can
simplify the code that adds a node before a given node n.

- 43 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Note that if you do decide to use a header node, you must remember to initialize an
empty list to contain one (dummy) node, you must remember not to include the header
node in the count of "real" nodes in the list.

It is also useful when information other than that found in each node of the list is
needed. For example, imagine an application in which the number of items in a list is
often calculated. In a standard linked list, the list function to count the number of
nodes has to traverse the entire list every time. However, if the current length is
maintained in a header node, that information can be obtained very quickly.

Array based linked lists:

Another alternative is to allocate the nodes in blocks. In fact, if you know the maximum
size of a list a head of time, you can pre-allocate the nodes in a single array. The result
is a hybrid structure - an array based linked list. Figure 3.5.1 shows an example of null
terminated single linked list where all the nodes are allocated contiguously in an array.

start
100

a |(200—»| b 300
100 200 300 c

Conceptual structure d |;

Implementation

Y
o
b

Figure 3.5.1. An array based linked list

Double Linked List:

A double linked list is a two-way list in which all nodes will have two links. This helps in
accessing both successor node and predecessor node from the given node position. It
provides bi-directional traversing. Each node contains three fields:

Left link.
Data.
Right link.

The left link points to the predecessor node and the right link points to the successor
node. The data field stores the required data.

Many applications require searching forward and backward thru nodes of a list.
For example searching for a name in a telephone directory would need forward
and backward scanning thru a region of the whole list.

The basic operations in a double linked list are:
Creation.
Insertion.

Deletion.
Traversing.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG:
é‘ </E D U CL A S Hhttps://www.instagram.com/educlashco

Just Another Way To Learn

A double linked list is shown in figure 3.3.1.

STACK . HEAP
Stores the previous
100 node address.
. 7

i start *

v X 10 %00 <« 100 20 3004 200 30 X‘
The start 100 i 200 300 .
pointer holds v A £
the address Stores the data. Stores the next The right field of the
of the first node address. last node is NULL.
node of the
list.

Figure 3.3.1. Double Linked List

The beginning of the double linked list is stored in a "start" pointer which points to the
first node. The first node’s left link and last node’s right link is set to NULL.

The following code gives the structure definition:

struct dlinklist
{ node: | left I data |right |
struct dlinklist *left;
int data;
struct dlinklist *right;

+ start

typedef struct dlinklist node; Empty list: NULL
node *start = NULL;

Figure 3.4.1. Structure definition, double link node and empty list

Creating a node for Double Linked List:

Creating a double linked list starts with creating a node. Sufficient memory has to be
allocated for creating a node. The information is stored in the memory, allocated by
using the malloc() function. The function getnode(), is used for creating a node, after
allocating memory for the structure of type node, the information for the item (i.e.,
data) has to be read from the user and set left field to NULL and right field also set to
NULL (see figure 3.2.2).

node* getnode()

{
node* newnode;
newnode = (node *) malloc(sizeof(node)); newnode
printf("\n Enter data: "); X 10 X
scanf("%d", &newnode -> data); 100
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

Figure 3.4.2. new node with a value of 10

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Creating a Double Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:
Get the new node using getnode().
newnode =getnode();
If the list is empty then start = newnode.
If the list is not empty, follow the steps given below:
The left field of the new node is made to point the previous node.

The previous nodes right field must be assigned with address of the
new node.

Repeat the above steps 'n’ times.

The function createlist(), is used to create ‘n’ number of nodes:

void createlist(int n)
{
inti;
node * new node;
node *temp;
for(i=0;i<n; i+ +)
{
new node = getnode();
if(start = = NULL)
{
start = new no de;
b
else
{
tem p = start;
w hile(tem p - > right)
tem p = tem p - > right;
tem p - > right = new no de; new
no de - > left = tem p;
b
b
b

Figure 3.4.3 shows 3 items in a double linked list stored at different locations.

start

100 1
X 10 200"_. 100 20 3004) 200 30 X
100 200 300

Figure 3.4.3. Double Linked List with 3 nodes

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Inserting a node at the beginning:
The following steps are to be followed to insert a new node at the beginning of the list:
Get the new node using getnode().
newnode=getnode();
If the list is empty then start = newnode.
If the list is not empty, follow the steps given below:
newnode -> right = start;
start -> left = newnode;

start = newnode;

The function dbl_insert_beg(), is used for inserting a node at the beginning. Figure
3.4.4 shows inserting a node into the double linked list at the beginning.

start
400 "“/“;
\ 4
) 40d 10 200"_' 100 20 30C< » 200 30 X
100 200 300

400

Figure 3.4.4. Inserting a node at the beginning

Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:
Get the new node using getnode()
newnode=getnode();
If the list is empty then start = newnode.
If the list is not empty follow the steps given below:
temp = start;
while(temp -> right '= NULL)
temp = temp -> right;
temp -> right = newnode;

newnode -> left = temp;

The function dbl_insert_end(), is used for inserting a node at the end. Figure 3.4.5
shows inserting a node into the double linked list at the end.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

start

100
1 X 10 | 200 | 100| 20 30C< I 200 30 400<_‘

i

100 200 300

L’ 300 40| X

400

Figure 3.4.5. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

Get the new node using getnode().
newnode=getnode();

Ensure that the specified position is in between first hode and last node. If
not, specified position is invalid. This is done by countnode() function.

Store the starting address (which is in start pointer) in temp and prev
pointers. Then traverse the temp pointer upto the specified position followed
by prev pointer.

After reaching the specified position, follow the steps given below:

newnode -> left = temp;
newnode -> right = temp ->right;
temp -> right -> left = newnode;
temp -> right = newnode;

The function dbl_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.4.6 shows inserting a node into the double linked list at a specified
intermediate position other than beginning and end.

start

. 100| 40| 20d
‘I 400 400| 20 | 300
X| 10 | 400
200
100

L’ 200 30| X

300
Figure 3.4.6. Inserting a node at an intermediate position

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:
If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:
temp = start;
start = start -> right;
start -> left = NULL;

free(temp);

The function dbl_delete_beg(), is used for deleting the first node in the list. Figure
3.4.6 shows deleting a node at the beginning of a double linked list.

200
(| e e TE===="
I_,: | 10 | 200 LF X 20 | 300| » 500] 30| X
1
100 200 300

Figure 3.4.6. Deleting a node at beginning

Deleting a node at the end:

The following steps are followed to delete a node at the end of the list:
If list is empty then display ‘Empty List’ message

If the list is not empty, follow the steps given below:

temp = start;
while(temp -> right != NULL)

{

temp = temp -> right;
b
temp -> left -> right = NULL;
free(temp);

The function dbl_delete_last(), is used for deleting the last node in the list. Figure 3.4.7
shows deleting a node at the end of a double linked list.

start

100
1 X[10 200L—_> 100] 20 [X tz4P 003071 X

100 200 300

Figure 3.4.7. Deleting a node at the end

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two nodes).

If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:
Get the position of the node to delete.

Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

Then perform the following steps:
if(pos > 1 && pos < nodectr)

{
temp = start;
i=1;
while(i < pos)
temp = temp -> right;
i++;
b
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
ks

The function delete_at_mid(), is used for deleting the intermediate node in the list.
Figure 3.4.8 shows deleting a node at a specified intermediate position other than
beginning and end from a double linked list.

start

100
-zl ol il — o FE==="
L X 10 | 300 | 1000 20, 3oq 100 30| X
(PN . . S | R——
100 200 300

Figure 3.4.8 Deleting a node at an intermediate position

v

Traversal and displaying a list (Left to Right):

To display the information, you have to traverse the list, node by node from the first
node, until the end of the list is reached. The function traverse_left_right() is used for
traversing and displaying the information stored in the list from left to right.

The following steps are followed, to traverse a list from left to right:

If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:

- 50 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

temp = start;
while(temp = NULL)
{

print temp -> data;
temp = temp -> right;

Traversal and displaying a list (Right to Left):

To display the information from right to left, you have to traverse the list, node by node
from the first node, until the end of the list is reached. The function
traverse_right_left() is used for traversing and displaying the information stored in the

list from right to left. The following steps are followed, to traverse a list from right to
left:

If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:
temp = start;
while(temp -> right != NULL)
temp = temp -> right;
while(temp !'= NULL)
{
print temp -> data;
temp = temp -> left;

Counting the Number of Nodes:

The following code will count the number of nodes exist in the list (using recursion).

int co untno de(no de *start)
{
if(start = = NULL)
return O;
else
return(1 + co untno de(start - >right));
b

A Complete Source Code for the Implementation of Double Linked List:
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>

struct dlinklist

{
struct dlinklist *left;
int data;
struct dlinklist *right;
i

typedef struct dlinklist node;
node *start = NULL;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

node* getnode()

{
node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;
b

int countnode(node *start)

if(start == NULL)

return O;
else
return 1 + countnode(start -> right);
b
int menu()
{
int ch;
clrscr();
printf("\n 1.Create");
printf("\n----====-mmm oo ";
printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n-----=-----------cmmommom ")
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n--------=------mcommomee ")
printf("\n 8. Traverse the list from Left to Right
"); printf("\n 9. Traverse the list from Right to
Left "); printf("\n---=-=-=-=====mmmmmmmme e ");
printf("\n 10.Count the Number of nodes in the list");
printf("\n 11.Exit ");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;
b
void createlist(int n)
{
inti;
node *newnode;
node *temp;
for(i = 0; i< n; i++)
{
newnode = getnode();
if(start == NULL)
start = newnode;
else
{
temp = start;
while(temp -> right)
temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;
b
b
b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

void traverse_left_to_right()

{
node *temp;
temp = start;
printf("\n The contents of List:
"), if(start == NULL)

printf("\n Empty List");

else

while(temp !'= NULL)

{
printf("\t %d ", temp -> data);
temp = temp -> right;

b
)
void traverse_right_to_left()
{
node *temp;
temp = start;
printf("\n The contents of List:
"); if(start == NULL)
printf("\n Empty List");
else
{
while(temp -> right '= NULL)
temp = temp -> right;

b

while(temp '= NULL)

{
printf("\t%d", temp ->
data); temp = temp -> left;

b

b
void dll_insert_beg()
{
node *newnode;
newnode = getnode();
if(start == NULL)
start = newnode;
else
{
newnode -> right = start;
start -> left = newnode;
start = newnode;

b

void dll_insert_end()
{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
start = newnode;
else
{
temp = start;
while(temp -> right '= NULL)
temp = temp -> right;
temp -> right = newnode;
newnode -> left = temp;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

void dll_insert_mid()

{
node *newnode,*temp;
int pos, nodectr, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos - nodectr >= 2)
{
printf("\n Position is out of range..");
return;
b
if(pos > 1 && pos < nodectr)
{
temp = start;
while(ctr < pos - 1)
{
temp = temp -> right;
ctr++;
b
newnode -> left = temp; newnode
-> right = temp -> right; temp ->
right -> left = newnode; temp ->
right = newnode;
}
else
printf("position %d of list is not a middle position ", pos);
b
void dll_delete_beg()
{
node *temp;
if(start == NULL)
{
printf("\n Empty
list"); getch();
return ;
b
else
{
temp = start;
start = start -> right;
start -> left = NULL;
free(temp);
bs
bs

void dll_delete_last()
{

node *temp;
if(start == NULL)

{
printf("\n Empty
list"); getch();
return ;

b

else

{

temp = start;
while(temp -> right '= NULL)

-- 54 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

-
E</EDUCLASH>
temp = temp -> right;
temp -> left -> right = NULL;
free(temp);
temp = NULL;
b
b
void dll_delete_mid()
{
int i = 0, pos, nodectr;
node *temp;
if(start == NULL)
{
printf("\n Empty List");
getch();
return;
b
else
{
printf("\n Enter the position of the node to delete: ");
scanf("%d", &pos);
nodectr = countnode(start);
if(pos > nodectr)
{
printf("\nthis node does not
exist"); getch();
return;
b
if(pos > 1 && pos < nodectr)
{
temp =
start; i = 1;
while(i < pos)
temp = temp -> right;
i++;
b
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
b
else
i
printf("\n It is not a middle position..");
getch();
b
b
b
void main(void)
{
int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1:

printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
createlist(n);

-- 55 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

printf("\n List
created.."); break;

case 2 :
dll_insert_beg();
break;

case 3 :
dll_insert_end();
break;

case 4 :
dll_insert_mid();
break;

case 5 :
dll_delete_beg();
break;

case 6 : dll_delete_last();
break;

case 7 :
dll_delete_mid();
break;

case 8 :
traverse_left_to_right();
break;

case 9 :
traverse_right_to_left();
break;

case 10 :
printf("\n Number of nodes: %d", countnode(start));
break;

case 11:
exit(0);

b
getch();

Circular Single Linked List:

It is just a single linked list in which the link field of the last node points back to the
address of the first node. A circular linked list has no beginning and no end. It is
necessary to establish a special pointer called start pointer always pointing to the first
node of the list. Circular linked lists are frequently used instead of ordinary linked list
because many operations are much easier to implement. In circular linked list no null
pointers are used, hence all pointers contain valid address.

A circular single linked list is shown in figure 3.6.1.

start
100

- p]
>

10 | 20— 20 | 30— 30 | 40— 40 [100
100 200 300 400

Figure 3.6.1. Circular Single Linked List

- 56 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

The basic operations in a circular single linked list are:
Creation.
Insertion.
Deletion.
Traversing.
Creating a circular single Linked List with ‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:
Get the new node using getnode().
newnode = getnode();
If the list is empty, assign new node as start.
start = newnode;
If the list is not empty, follow the steps given below:
temp = start;
while(temp -> next '= NULL)
temp = temp -> next;
temp -> next = newnode;
Repeat the above steps 'n’ times.

newnode -> next = start;

The function createlist(), is used to create ‘n” number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the
circular list:

Get the new node using getnode().
newnode = getnode();
If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

If the list is not empty, follow the steps given below:

last = start;

while(last -> next != start)
last = last -> next;

newnode -> next = start;

start = newnode;

last -> next = start;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashca | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

The function cll_insert_beg(), is used for inserting a node at the beginning. Figure 3.6.2
shows inserting a node into the circular single linked list at the beginning.

start
5 =1
0 L
I_
> 10 | 206—» 20 | 30— 30 | 40G—» 40 [500
100 200 300 400
—p 5 10
500

Figure 3.6.2. Inserting a node at the beginning
Inserting a node at the end:
The following steps are followed to insert a new node at the end of the list:
Get the new node using getnode().
newnode = getnode();
If the list is empty, assign new node as start.

start = newnode;
newnode -> next = start;

If the list is not empty follow the steps given below:
temp = start;
while(temp -> next != start)
temp = temp -> next;
temp -> next = newnode;
newnode -> next = start;

The function cll_insert_end(), is used for inserting a node at the end.

Figure 3.6.3 shows inserting a node into the circular single linked list at the end.

start
100
10 | 200—»{ 20 | 30— 30 | 40— 40 [500
100 200 300 400
L’ 50 | 100
500

Figure 3.6.3 Inserting a node at the end.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:
If the list is empty, display a message ‘Empty List'.
If the list is not empty, follow the steps given below:
last = temp = start;
while(last -> next != start)
last = last -> next;
start = start -> next;
last -> next = start;

After deleting the node, if the list is empty then start = NULL.

The function cll_delete_beg(), is used for deleting the first node in the list. Figure 3.6.4
shows deleting a node at the beginning of a circular single linked list.

start
200
: N Y
ol 10 | 200-/----= 20 | 30d——p| 30 | 40d » 40 | 200
L T et —P
-==='750 200 300 400 “
temp

Figure 3.6.4. Deleting a node at beginning.

Deleting a node at the end:
The following steps are followed to delete a node at the end of the list:
If the list is empty, display a message ‘Empty List’.
If the list is not empty, follow the steps given below:
temp = start;
prev = start;

while(temp -> next != start)
{

prev = temp;

temp = temp -> next;
b

prev -> next = start;
After deleting the node, if the list is empty then start = NULL.

The function cll_delete_last(), is used for deleting the last node in the list.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

Figure 3.6.5 shows deleting a node at the end of a circular single linked list.

start

300—p 30 100
100 200 300 —‘

100
Ay W g -~
V 10 | 200! 20 T ' :

Figure 3.6.5. Deleting a node at the end.

Traversing a circular single linked list from left to right:

The following steps are followed, to traverse a list from left to right:
If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:

temp = start;

do

{
printf("%d ", temp -> data);
temp = temp -> next;

} while(temp != start);

Source Code for Circular Single Linked List:

include <stdio.h>
include <conio.h>
include <stdlib.h>

struct cslinklist

{

int data;
struct cslinklist *next;

i

typedef struct cslinklist node;
node *start = NULL;

int nodectr;

node* getnode()

{
node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> next = NULL; return
newnode;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

int menu()
{
int ch;
clrscr();
printf("\n 1. Create a list ");
printf("\n\n---------------cmmoooooo- ");

printf("\n 2. Insert a node at beginning ");
printf("\n 3. Insert a node at end");
printf("\n 4. Insert a node at middle");
printf("\n\n------------------oooo--- "),
printf("\n 5. Delete a node from beginning");
printf("\n 6. Delete a node from Last");
printf("\n 7. Delete a node from Middle");
printf("\n\n-----==----m-mmmm oo ");
printf("\n 8. Display the list");

printf("\n 9. Exit");
printf("\n\n------------------oooo--- "),
printf("\n Enter your choice:

"); scanf("%d", &ch);

return ch;
¥
void createlist(int n)
{
inti;
node *newnode;
node *temp;
nodectr = n;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start == NULL)
{
start = newnode;
b
else
{
temp = start;
while(temp -> next !'= NULL)
temp = temp -> next;
temp -> next = newnode;
b
b
newnode ->next = start; /* last node is pointing to starting node */
b

void display()
{

node *temp;
temp = start;
printf("\n The contents of List (Left to Right): ");
if(start == NULL)
printf("\n Empty List");

else
{
do
{
printf("\t %d ", temp -> data);
temp = temp -> next;
} while(temp !=
start); printf(" X ");
b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

void cll_insert_beg()
{
node *newnode, *last;
newnode = getnode();
if(start == NULL)
{
start = newnode; newnode
-> next = start;

else

last = start;

while(last -> next != start)
last = last -> next;

newnode -> next =

start; start = newnode;

last -> next = start;

b
printf("\n Node inserted at beginning..");
nodectr++;

b

void cll_insert_end()
{
node *newnode, *temp;
newnode = getnode();
if(start == NULL)
{
start = newnode; newnode
-> next = start;

else

temp = start;

while(temp -> next != start)
temp = temp -> next;

temp -> next = newnode;

newnode -> next = start;

b
printf("\n Node inserted at end..");
nodectr++;

b

void cll_insert_mid()

{
node *newnode, *temp, *prev;
int i, pos ;
newnode = getnode(); printf("\n
Enter the position: ");
scanf("%d", &pos);
if(pos > 1 && pos < nodectr)

{

temp =

start; prev =

temp; i = 1;

while(i < pos)

{
prev = temp;
temp = temp ->
next; i++;

b

prev -> next = newnode;
newnode -> next = temp;

- 62 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG:
é‘ </EDUCLASH> https://www.instagram.com/educlashco

Just Another Way To Learn

nodectr++;
printf("\n Node inserted at middle..");
b
else
{
printf("position %d of list is not a middle position ", pos);
b
b
void cll_delete_beg()
{
node *temp, *last;
if(start == NULL)
{
printf("\n No nodes
exist.."); getch();
return ;
b
else
{
last = temp = start;
while(last -> next != start)
last = last -> next;
start = start -> next;
last -> next = start;
free(temp);
nodectr--;
printf("\n Node deleted..");
if(nodectr == 0)
start = NULL;
b
b
void cll_delete_last()
{
node *temp,*prev;
if(start == NULL)
{
printf("\n No nodes
exist.."); getch();
return ;
b
else
{
temp = start;
prev = start;
while(temp -> next != start)
{
prev = temp;
temp = temp -> next;
b
prev -> next = start;
free(temp); nodectr-
if(nodectr == 0) start
= NULL;
printf("\n Node deleted..");
b
b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

void cll_delete_mid()

{
inti =0, pos;
node *temp, *prev;
if(start == NULL)
{
printf("\n No nodes
exist.."); getch();
return ;
b
else
{
printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)
{
printf("\nThis node does not
exist"); getch();
return;
¥
if(pos > 1 && pos < nodectr)
{
temp=start;
prev = start;
i =0;
while(i < pos - 1)
{
prev = temp;
temp = temp -> next ;
i++;
b
prev -> next = temp -> next;
free(temp);
nodectr--;
printf("\n Node Deleted..");
b
else
{
printf("\n It is not a middle position..");
getch();
¥
b
¥
void main(void)
{
int result;
int ch, n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1 :
if(start == NULL)
{
printf("\n Enter Number of nodes to create:
scanf("%d", &n);
createlist(n);
printf("\nList created..");
b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

else
printf("\n List is already Exist..");

break;

case 2 :
cll_insert_beg();
break;

case 3 :
cll_insert_end();
break;

case 4 :
cll_insert_mid();
break;

case 5 :
cll_delete_beg();
break;

case 6 : cll_delete_last();
break;

case 7 :
cll_delete_mid();
break;

case 8 :
display();
break;

case 9 :
exit(0);

b
getch();

Circular Double Linked List:

A circular double linked list has both successor pointer and predecessor pointer in
circular manner. The objective behind considering circular double linked list is to
simplify the insertion and deletion operations performed on double linked list. In
circular double linked list the right link of the right most node points back to the start
node and /eft link of the first node points to the last node. A circular double linked list is
shown in figure 3.8.1.

100 J
start |—>_ 300 10 | 200+—»| 100 20 | 300—» 200/ 30 | 100
> < <

100 200 300 \‘

Figure 3.8.1. Circular Double Linked List

The basic operations in a circular double linked list are:

Creation.
Insertion.
Deletion.
Traversing.

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Creating a Circular Double Linked List with '‘n’ number of nodes:
The following steps are to be followed to create ‘n’ number of nodes:

Get the new node using getnode().
newnode = getnode();

If the list is empty, then do the following
start = newnode;
newnode -> left = start;
newnode ->right = start;

If the list is not empty, follow the steps given below:
newnode -> left = start -> left;
newnode -> right = start;
start -> left->right = newnode;
start -> left = newnode;

Repeat the above steps ‘n’ times.
The function cdll_createlist(), is used to create ‘n’ number of nodes:

Inserting a node at the beginning:

The following steps are to be followed to insert a new node at the beginning of the list:

Get the new node using getnode().
newnode=getnode();

If the list is empty, then
start = newnode;
newnode -> left = start;
newnode -> right = start;

« If the list is not empty, follow the steps given below:
newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;
start = newnode;

The function cdll_insert_beg(), is used for inserting a node at the beginning. Figure
3.8.2 shows inserting a node into the circular double linked list at the beginning.

start

400 |

4000 10 zod‘__’ 100| 20 | 300|g » 200| 30 | 400 [4
100 200 300

40 100/¢

30d
I 400

- 66 --

Figure 3.8.2. Inserting a node at the beginning

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Inserting a node at the end:

The following steps are followed to insert a new node at the end of the list:

Get the new node using getnode()
newnode=getnode();

If the list is empty, then
start = newnode;
newnode -> left = start;
newnode -> right = start;

« If the list is not empty follow the steps given below:
newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;

The function cdll_insert_end(), is used for inserting a node at the end. Figure 3.8.3
shows inserting a node into the circular linked list at the end.

start

100 |

| 400 10 200"_> 100| 20 300'4_’. 200| 30 | 400
100 200 300

L 4

I

30(40 | 100

400 ﬂ‘

Figure 3.8.3. Inserting a node at the end

Inserting a node at an intermediate position:

The following steps are followed, to insert a new node in an intermediate position in the
list:

Get the new node using getnode().
newnode=getnode();

Ensure that the specified position is in between first node and last node. If
not, specified position is invalid. This is done by countnode() function.

Store the starting address (which is in start pointer) in temp. Then traverse
the temp pointer upto the specified position.

After reaching the specified position, follow the steps given below:
newnode -> left = temp; newnode
-> right = temp -> right; temp ->
right -> left = newnode; temp ->
right = newnode; nodectr++;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

The function cdll_insert_mid(), is used for inserting a node in the intermediate position.
Figure 3.8.4 shows inserting a node into the circular double linked list at a specified
intermediate position other than beginning and end.

start

) 100 40 20(0
100 |
400

304) 10 | 400 t 400 20| 300
100 200 <§|

’ 200 30 | 100
300 T

Figure 3.8.4. Inserting a node at an intermediate position

Deleting a node at the beginning:
The following steps are followed, to delete a node at the beginning of the list:
If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:
temp = start;
start = start -> right;
temp -> left -> right = start;

start -> left = temp -> left;

The function cdll_delete_beg(), is used for deleting the first node in the list. Figure
3.8.5 shows deleting a node at the beginning of a circular double linked list.

start
pJo 1 S E— ¢
I"Y"l' ----- ===
i I 173 e —P
i 300 10, 200% 300/ 20| 300 21 200| 30 | 200
100 200 300

Figure 3.8.5. Deleting a node at beginning

Deleting a node at the end:
The following steps are followed to delete a node at the end of the list:
If list is empty then display ‘Empty List’ message

If the list is not empty, follow the steps given below:

- 68 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

temp = start;
while(temp -> right != start)
{

b
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;

temp = temp -> right;

The function cdll_delete_last(), is used for deleting the last node in the list. Figure 3.8.6
shows deleting a node at the end of a circular double linked list.

start

100 ﬁ

> 47771 500 | :
200 10(200 d 100 20 100 : 200 : :
oo | — L 3
‘_» 100 200 §| 300

Figure 3.8.6. Deleting a node at the end

Deleting a node at Intermediate position:

The following steps are followed, to delete a node from an intermediate position in the
list (List must contain more than two node).

If list is empty then display ‘Empty List’ message.
If the list is not empty, follow the steps given below:
Get the position of the node to delete.

Ensure that the specified position is in between first node and last
node. If not, specified position is invalid.

Then perform the following steps:

if(pos > 1 && pos < nodectr)
{

temp = start;
i=1;
while(i < pos)
{
temp = temp -> right ;
i++;
b
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;

b

The function cdll_delete_mid(), is used for deleting the intermediate node in the list.

- 69 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

Figure 3.8.7 shows deleting a node at a specified intermediate position other than
beginning and end from a circular double linked list.

start

100 j

v

r r
1 |] !
30(1 30 < :__199.}___%9_3__3:0_9: 100 30 | 100

100 200 300

Figure 3.8.7. Deleting a node at an intermediate position

Traversing a circular double linked list from left to right:
The following steps are followed, to traverse a list from left to right:
If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:
temp = start;
Print temp -> data;
temp = temp -> right;
while(temp != start)
{
print temp -> data;
temp = temp -> right;
b

The function cdll_display_left _right(), is used for traversing from left to right.

Traversing a circular double linked list from right to left:
The following steps are followed, to traverse a list from right to left:
If list is empty then display ‘Empty List’ message.

If the list is not empty, follow the steps given below:
temp = start;
do
{
temp = temp -> left;
print temp -> data;
} while(temp !'= start);

The function cdll_display_right_left(), is used for traversing from right to left.

Source Code for Circular Double Linked List:
#include <stdio.h>

#include <stdlib.h>
#include <conio.h>

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

struct cdlinklist

{

struct cdlinklist

*left; int data;

struct cdlinklist *right;
3

typedef struct cdlinklist
node; node *start = NULL;
int nodectr;

node* getnode()
{
node * newnode;
newnode = (node *) malloc(sizeof(node));
printf("\n Enter data: ");
scanf("%d", &newnode -> data);
newnode -> left = NULL;
newnode -> right = NULL;
return newnode;

be

int menu()

{
int ch;
clrscr();
printf("\n 1. Create ");
printf("\n\n------------------ocoo--- ");
printf("\n 2. Insert a node at Beginning");
printf("\n 3. Insert a node at End");
printf("\n 4. Insert a node at Middle");
printf("\n\n-------------c-moooo ");
printf("\n 5. Delete a node from Beginning");
printf("\n 6. Delete a node from End");
printf("\n 7. Delete a node from Middle");
printf("\n\n------=-==--n-cmommoeeoo ;
printf("\n 8. Display the list from Left to Right");
printf("\n 9. Display the list from Right to Left");
printf("\n 10.Exit");
printf("\n\n Enter your choice: ");
scanf("%d", &ch);
return ch;

b

void cdll_createlist(int n)
{
inti;
node *newnode, *temp;
if(start == NULL)
{
nodectr = n;
for(i=0;i<n;i++)
{
newnode = getnode();
if(start == NULL)

{
start = newnode;
newnode -> left = start;
newnode ->right = start;

b

else

{

newnode -> left = start -> left;

-- 71 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

newnode -> right = start; start
-> left->right = newnode;
start -> left = newnode;

b
b
b
else
printf("\n List already exists..");
b
void cdll_display_left_right()
{
node *temp;
temp = start;
if(start == NULL)
printf("\n Empty List");
else
{
printf("\n The contents of List:
"); printf(" %d ", temp -> data);
temp = temp -> right;
while(temp != start)
{
printf(" %d ", temp -> data);
temp = temp -> right;
b
b
b
void cdll_display_right_left()
{
node *temp;
temp = start;
if(start == NULL)
printf("\n Empty List");
else
{
printf("\n The contents of List:
"); do
{
temp = temp -> left;
printf("\t%d", temp -> data);
} while(temp != start);
b
b

void cdll_insert_beg()
{

node *newnode;

newnode = getnode();

nodectr++;

if(start == NULL)

{
start = newnode;
newnode -> left = start;
newnode -> right = start;

else
newnode -> left = start -> left;
newnode -> right = start;

start -> left -> right = newnode;
start -> left = newnode;

-- 72 --

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

-
' < >
= /EJLEAnUothSkaQIémH
start = newnode;
b
b
void cdll_insert_end()
{
node *newnode,*temp;
newnode = getnode();
nodectr++;
if(start == NULL)
{
start = newnode;
newnode -> left = start;
newnode -> right = start;
b
else
{
newnode -> left = start -> left;
newnode -> right = start;
start -> left -> right = newnode;
start -> left = newnode;
b
printf("\n Node Inserted at End");
b
void cdll_insert_mid()
{
node *newnode, *temp, *prev;
int pos, ctr = 1;
newnode = getnode();
printf("\n Enter the position: ");
scanf("%d", &pos);
if(pos - nodectr >= 2)
{
printf("\n Position is out of range..");
return;
b
if(pos > 1 && pos <= nodectr)
{
temp = start;
while(ctr < pos - 1)
{
temp = temp -> right;
ctr++;
b
newnode -> left = temp; newnode
-> right = temp -> right; temp ->
right -> left = newnode; temp ->
right = newnode; nodectr++;
printf("\n Node Inserted at Middle.. ");
b
else
printf("position %d of list is not a middle position", pos);
b
b
void cdll_delete_beg()
{

node *temp;
if(start == NULL)
{

printf("\n No nodes exist..");

- 73 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

-
< >
ZE</EDUCLASH
getch();
return ;
b
else
{
nodectr--;
if(nodectr == 0)
{
free(start);
start = NULL;
b
else
{
temp = start;
start = start -> right;
temp -> left -> right = start;
start -> left = temp -> left;
free(temp);
b
printf("\n Node deleted at Beginning..");
b
b
void cdll_delete_last()
{
node *temp;
if(start == NULL)
{
printf("\n No nodes
exist.."); getch();
return;
b
else
{
nodectr--;
if(nodectr == 0)
{
free(start);
start = NULL;
b
else
{
temp = start;
while(temp -> right != start)
temp = temp -> right;
temp -> left -> right = temp -> right;
temp -> right -> left = temp -> left;
free(temp);
b
printf("\n Node deleted from end ");
b
b
void cdll_delete_mid()
{

int ctr = 1, pos;
node *temp;
if(start == NULL)

{
printf("\n No nodes
exist.."); getch();
return;

b

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: htps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

else
{
printf("\n Which node to delete: ");
scanf("%d", &pos);
if(pos > nodectr)
{
printf("\nThis node does not
exist"); getch();
return;
b
if(pos > 1 && pos < nodectr)
{
temp = start;
while(ctr < pos)
{
temp = temp -> right ;
ctr++;
b
temp -> right -> left = temp -> left;
temp -> left -> right = temp -> right;
free(temp);
printf("\n node deleted..");
nodectr--;
b
else
{
printf("\n It is not a middle position..");
getch();
b
b
b
void main(void)
{
int ch,n;
clrscr();
while(1)
{
ch = menu();
switch(ch)
{
case 1 :
printf("\n Enter Number of nodes to create: ");
scanf("%d", &n);
cdll_createlist(n);
printf("\n List
created.."); break;
case 2 : cdll_insert_beg();
break;
case 3 : cdll_insert_end();
break;
case 4 :
cdll_insert_mid();
break;
case 5 : cdll_delete_beg();
break;
case 6 :
cdll_delete_last();
break;
75

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

—9/
=

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

EDUCLASH>

Just Another Way To Learn

case 7 :
cdll_delete_mid();
break;

case 8 :
cdll_display_left_right();
break;

case 9 :
cdll_display_right_left();
break;

case 10:
exit(0);

b
getch();

Comparison of Linked List Variations:

The major disadvantage of doubly linked lists (over singly linked lists) is that they
require more space (every node has two pointer fields instead of one). Also, the code to
manipulate doubly linked lists needs to maintain the prev fields as well as the next
fields; the more fields that have to be maintained, the more chance there is for errors.

The major advantage of doubly linked lists is that they make some operations (like the
removal of a given node, or a right-to-left traversal of the list) more efficient.

The major advantage of circular lists (over non-circular lists) is that they eliminate
some extra-case code for some operations (like deleting last node). Also, some
applications lead naturally to circular list representations. For example, a computer
network might best be modeled using a circular list.

3.10. Polynomials:

A polynomial is of the form: cx !

Where, i is the coefficient of the ith term and
n is the degree of the polynomial

Some examples are:

5x2 + 3x + 1
12x3 - 4x

5x% - 8x3 + 2x2 + 4x! + 9xO

It is not necessary to write terms of the polynomials in decreasing order of degree. In
other words the two polynomials 1 + x and x + 1 are equivalent.

The computer implementation requires implementing polynomials as a list of pairs of

coefficient and exponent. Each of these pairs will constitute a structure, so a polynomial
will be represented as a list of structures. A linked list structure that represents

polynomials 5x* - 8x3 + 2x% + 4x! + 9xY illustrates in figure 3.10.1.

76

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

=<EDUCLASH>

Just Another Way To Learn

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

start

500

Coefficient Exponent

'Y

It

5 4 10q¥ -8 200 2 2| 300 4| 1| 400 9| O

()

500 100 200 300 400

Figure 3.10.1. Single Linked List for the polynomial F(x) = 5x* - 8x3 + 2x? + 4x! + 9x

0

Source code for polynomial creation with help of linked list:

#include <conio.h>
#include <stdio.h>
#include <malloc.h>

struct link

¥

float coef;
int expo;
struct link *next;

typedef struct link node;
node * getnode()

{

¥

node *tmp;

tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin); scanf("%f",&tmp-
>coef);

printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);

tmp->next = NULL;

return tmp;

node * create_poly (node *p)

{

char ch;

node *temp,*newnode;

while(1)

{
printf ("\n Do U Want polynomial node (y/n):
"); ch = getche();

if(ch == 'n")
break;
newnode = getnode();
if(p == NULL)
p = newnode;
else
{
temp = p; while(temp-
>next '= NULL)
temp = temp->next;
temp->next = newnode;
b
b
return p;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlasheao | IG: https://www.instagram.com/educlashco

=<EDUCLASH>

Just Another Way To Learn

void display (node *p)
{
node *t = p;
while (t I= NULL)
{
printf("+ %.2f", t -> coef);
printf("X~ %d", t -> expo);
t =t -> next;

b

void main()

{
node *polyl = NULL ,*poly2 = NULL,*poly3=NULL;
clrscr();
printf("\nEnter First Polynomial..(in ascending-order of exponent)");
polyl = create_poly (polyl);
printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);
clrscr();
printf("\n Enter Polynomial 1:
"); display (poly1);
printf("\n Enter Polynomial 2:
"); display (poly2);
getch();

Addition of Polynomials:

To add two polynomials we need to scan them once. If we find terms with the same
exponent in the two polynomials, then we add the coefficients; otherwise, we copy the
term of larger exponent into the sum and go on. When we reach at the end of one of
the polynomial, then remaining part of the other is copied into the sum.

To add two polynomials follow the following steps:
Read two polynomials.
Add them.
Display the resultant polynomial.

Source code for polynomial addition with help of linked list:

#include <conio.h>
#include <stdio.h>
#include <malloc.h>

struct link

{
float coef;
int expo;

struct link *next;

b
typedef struct link node;
node * getnode()

{

node *tmp;

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: hitps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

-
= </EDUCLASH>
tmp =(node *) malloc(sizeof(node));
printf("\n Enter Coefficient : ");
fflush(stdin); scanf("%f",&tmp-
>coef);
printf("\n Enter Exponent : ");
fflush(stdin);
scanf("%d",&tmp->expo);
tmp->next = NULL;
return tmp;
b
node * create_poly (node *p)
{
char ch;
node *temp,*newnode;
while(1)
{
printf ("\n Do U Want polynomial node (y/n):
"); ch = getche();
if(ch =="n")
break;
newnode = getnode();
if(p == NULL)
p = newnode;
else
{
temp = p; while(temp-
>next != NULL)
temp = temp->next;
temp->next = newnode;
b
}
return p;
}

void display (node *p)

node *t = p;
while (t '= NULL)

¢ printf("+ %.2f", t -> coef);
printf("X~ %d", t -> expo);
t =t -> next;
hs
bs
void add_poly(node *p1,node *p2)
{
node *newnode;
while(1)
{

if(p1 == NULL || p2 == NULL
) break;
if(pl->expo == p2->expo)

printf("+ %.2f X ~"%d",p1->coef+p2->coef,pl->expo);
pl = pl->next; p2 = p2->next;

else

if(pl->expo < p2->expo)

- 79 -

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

=<EDUCLASH>

Just Another Way To Learn

FB: htps://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

{
printf("+ %.2f X ~%d",p1->coef,pl->expo);
pl = pl->next;

b

else

{
printf(" + %.2f X ~%d",p2->coef,p2-
>expo); p2 = p2->next;

b

b
while(p1 !'= NULL)

printf("+ %.2f X ~%d",p1->coef,pl->expo);
pl = pl->next;

while(p2 '= NULL)

{

b

{

b
b
void main()
b

printf("+ %.2f X ~"%d",p2->coef,p2->expo);
p2 = p2->next;

node *polyl = NULL ,*poly2 = NULL,*poly3=NULL;

clrscr();

printf("\nEnter First Polynomial..(in ascending-order of exponent)");
polyl = create_poly (polyl);

printf("\nEnter Second Polynomial..(in ascending-order of exponent)");
poly2 = create_poly (poly2);

clrscr();

printf("\n Enter Polynomial 1:

"); display (poly1);

printf("\n Enter Polynomial 2:

"); display (poly2);

printf("\n Resultant Polynomial :

"); add_poly(polyl, poly2);

display (poly3);

getch();

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

