
FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

CHAPTER 1

Introduction

One of the fundamental problem in computer science is how to store information so
that it can be searched and retrieved efficiently .We already have binary search trees
that support operation such as INSERT, DELETE and RETRIEVAL in O (n log (n))
expected time in operations. So in many applications where we need these operations
in that case hashing provides a way to reduce expected time to O (1).

The idea behind the hashing comes naturally if we approach the problem in the
straightforward fashion and then work around the memory problem. Hashing is the
most efficient scheme for locating and retrieving information‟s.

1.1 What is Hashing?

Hashing is a procedure that is used in sorting and retrieving the information about
the database. This information is associated with key properties and makes use of
individual character, numbers in the key itself. Hashing is a good technique for
implementation in keyed tables [1].

In hashing the transformation of a string of characters into a frequently shorter fixed-
length value or key that represents the original string is done. It‟s really tough to do
the work in a faster manner like to discover the item using the shorter hashed key
than to find it using the original value so for this reason hashing is very capable, so it
is used to locate and retrieve items in a database. Moreover, it is also used in many
encryption algorithms [2].

It is a technique used for storing and retrieving information (in main memory) as fast
as possible and also used in performing optimal searches and retrievals because it
increases speed, betters ease of transfer, get better retrieval, optimizes searching of
data, reduces overhead. The main benefit of hashing is to optimize disk accesses and
packing density. The packing density, approximately equal to a load factor. The main
motive of hashing is to reduce disk space and access time by inserting and retrieving a
record from the table in only one seeks. So for minimizing of this thing small hash
table size must be used (that should be less than 10) [2] [3].

Hashing is a scheme of sorting and indexing data when we think about the case of
databases. The hashing is mainly used to index the huge quantity of data using
keywords or keys commonly created by complex formulas. Using hashing large
amounts of information can be rapidly searched and listed.

When referring to security, hashing is a process of taking data, encrypting it, and
creating unpredictable, irreversible output. There are many different types of hashing
algorithms. MD2, MD5, SHA and SHA-1 are examples of hashing algorithms [4].

There are 4 key components involved in hashing:

1. Hash Table

2. Hashing and Hash Functions

3. Collisions

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

4. Collision Resolution Techniques.

The hash table is a storage location in memory or on disk that records the hashed
values shaped by the hashing algorithm. Some storing known type of data is wanted.
For creating a hash table certain number of buckets or storage locations.

Hashing is somewhat different from other type data structure such as binary trees,
stacks, or lists because the data in a hash table does not have to be reorganized before
being retrieved or inserted and in the other data structures, the items are stored
either in the form of lists or trees. For larger data sets it can be a big problem, where a
search and retrieval must travel through all nodes of a tree or all elements of a list.
With a hash table, the size is set, so inserting or searching for an item is limited. On
the other hand the time for storage and or retrieval with lists, trees or even stacks is
related to the size of the data set [5].

All the element of data can be hashed in hash table and its size plays an important
role in the efficiency of hash table. These tables contain a set number of buckets
(storage spaces) and are stored in memory or on disk.

Items either strings or integers which are inserted into the hash table will differ and
tackled in a diverse way. For example, if it is an integer it can be directly used by a
hashing method to find a key. Alternatively, string item, is first converted to an
integer value with the help of the ASCII conventions or some other consistently used
technique (this is called 'preconditioning').

Preconditioning: Transforming a string to an integer with the help of ASCII
conventions. String item has to be transformed to an integer prior to a key can be
found. This process is known as preconditioning. Normally, ASCII conventions for
transforming characters are used. ASCII values are assigned to the 26 letters starting
at 11 (numbers 0 to 10 are first). Thus, 'A' is 11, 'B' is 12, and „C‟ is 13, and so on until
'Z' is 36. The numbers 37 and up are assigned to 'special characters' such as +, -, =, /,
* and so on. For example, "Joe" is converted to

202515 using J=20, O=25 AND E=15.

A problem occurs in after preconditioning is that the consequential integer is too
large to be stored in a table. To resolve this trouble we can use one hash process to
attain a usable number and a second method to map the result to the table.

1.2 Features of Hashing

As hashing is the approach for storing and searching the data so the major working is
done with the data .So main description of hashing are:

 Randomising: The spreading the data or records randomly over whole
storage space.

 Collision: When two different key hashes to the same address space. This

is the one major problem in hashing which will be discuses later chapter.

1.3 The Hash Table

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

The simplest way the hash table may be explained as a data structure that divides
every element into equal-sized categories, or buckets, to permit quick access to the
elements. The hash function finds that which element belongs to which bucket. A
hash table can also be definite as data structure those acquaintances keys with values.
The basic procedure is to support powerfully and finds the consequent value.

Basically it is the one-dimensional array indexed by an integer value computed by an
index function called a hash function. Hash tables are sometimes referred to as
scatter tables. Hash table are containers that represent a group of objects inserted at
computed index locations. Each object inserted in the hash table is related with a
hash index. The process of hashing involves the computation of an integer index (the
hash index) for a given object (such as a string). If calculated correctly, the hash
calculation (1) should be quick, and (2) when finished frequently for a set of keys to be
inserted in a hash table should create hash indices consistently spread crossways the
variety of index values designed for the hash table [6].

In algorithms a hash table or hash map is a data structure that uses a hash function to
efficiently map certain identifiers or keys (student name) to associated values (e.g.
that students enrolment no.).The hash function is used to transform the key into the
index (the hash) of an array element (the slot or bucket) where the corresponding
value is to be sought. Hash function are used to map each key to different address
space but practically its not possible to create such a hash function that is able to do
this and the problem called collision occurs. But still it is done up to greatest feasible
case so that the chances of collision should be kept minimum. In a well-dimensioned
hash table, the regular cost (number of instructions) for each lookup is self-
determining of the number of elements stored in the table [8] [17].

But still having all the problems hash table are much more proficient in many cases
comparative to all other data structures like search trees or any other table lookup
structure. That the reason behind using hash tables in all kinds of computer software,
particularly for associative arrays, database indexing, caches, and sets[8].

 Output

 Address Location 1

Input Hash

Data Function Address Location 2

Hash Key
Address Location 3

 Address Location 4

Address Location n

Figure 1.1.Hash functions and hash keys

When two different objects create the same hash index, it is referred as a collision.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Clearly the two objects cannot be located at the equivalent index position in the
table. A collision resolution algorithm must be calculated to place the second object
at a position separate from the first when their hash indices are alike.

The two primary problems associated with the creation of hash tables are:

1. The efficient hash function is designed so that it distributes the index values
of inserted objects uniformly across the table.

2. The efficient collision resolution algorithm is designed so that it computes

an alternative index for an object whose hash index corresponds to an object
previously inserted in the hash table [8].

A hash table is an array based structure used to store “key, information” pairs. To
accumulate an entry in a hash table, a hash function is functional to the key of the
item being stored; frequent an index within the range of the hash table. The item is
then stored in the table at that index position. Each index location in a hash table is
called a bucket. To retrieve an item in a hash table, the same method is followed as
used to store up the item.

Typical hash table operations are:

► Initialization.

► Insertion.

► Retrieval.

► Deletion.

1.3.1 Basic operation

Transforming the key into a hash, to situate the desired position by using a function,
does working of hash table. A number that is used as an index in an array ("bucket")
where the values should be. The number is transformed into the index by taking a
modulo. The optimal hash function can vary widely for any given use of a hash table,
however, depending on the nature of the key. Typical operations that can be done in
hash table are insertion, deletion and lookup (although some hash tables are pre
calculated so that no insertions or deletions, only lookups are done on a live system
[7].

Problems for Which Hash Tables are not suitable are:

1. Problems for which data ordering is required.

Certain operations are difficult and expensive to e implement because a hash
table is an unordered data structure. Only if the keys are copied into a sorted
data structure queries, proximity queries, sorted traversals and selection are
possible. There are hash table implementations that keep the keys in order,
but they are far from efficient.

2. Problems having multidimensional data.

3. Prefix searching especially if the keys are long and of variable-lengths.

4. Problems that have dynamic data:

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Since open addressed hash tables are 1 Dim array its very difficult to be resized
them, once they are allocated. Ahead of that implementing the table as a
dynamic array and rehash all of the keys on every occasion the size changes
can do it. This is an extremely luxurious operation. Separate-chained hash
tables or dynamic hashing can be used as an alternate.

5. Problems in which the data does not have unique keys.

If the data does not have unique keys open-addressed hash tables cannot be
used. An alternative is use separate-chained hash tables.

1.3.2 How Hash Tables works?

A hash table works with transforming the key by means of a hash function into a
hash, a number that is used as an index in an array to position the desired location
where the values should be. Hash tables are generally used to implement many types
of in-memory tables.

Mainly the hash tables are efficient for insertion of new entries, in expected time.
Means it reduces the time for insertion. The main factor for the time spent in
searching or the other operations involved in this are firstly the hash function and
secondly the load on has table for both insertion and search approach time.

The most frequent operations on a hash table include insertion, deletion and lookup
but some hash tables are pre calculated so the operations like insertions or deletions
are not possible only lookups can be done on a live system. These operations are all
performed in amortized constant time, which makes maintaining and accessing a
huge hash table very efficient.

It is also likely to generate a hash table statically where for example there is a
moderately restricted rigid set of input values such as the value in a single byte or
perhaps two bytes from which an index can be constructed in a straight line. The hash
table can also be used concurrently for tests of authority on the values that are
disqualified.

Since two records cannot be stored in the same location so two keys hash cannot be
indexed to the same location, an alternate location must be determined because two
records cannot be stored in the same location .The process of finding an alternate
location is called collision resolution. A collision resolution strategy ensures future
key lookup operations that from no the query returns to the correct respective records
and the problem of finding the same record on one location is solved.

A significant fraction of any hash table is selecting a resourceful collision resolution
strategy. Consider the case imitative by means of the birthday paradox of a hash table
containing million indices. Although a hash function be to output arbitrary indices
homogeneously scattered over the array there is a 95% chance of a collision
happening before it contain 2500 records. There are a number of collision resolution

techniques but the mainly admired are open addressing and chaining which will be

discussed in chapter 2 [9].

1.3.3 Advantages

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 The main benefit of hash tables in excess of former table data structures is speed.
This benefit is additional capable when the data is large (thousands or more).
Hash tables becomes practically efficient when the greatest number of entries or
the size of data is recognized or can be predicted in move forwards, so that the
bucket array can be owed once with the most favourable size and there will be no
require to be resized.

 One benefit of hashing is with the purpose of no index storage space is necessary,

while inserting into other structures for instance trees does in general require an
index. Such an index could be in the variety of a queue. In addition, hashing
provides the advantage of rapid updates.

 The average lookup cost may reduce by a careful alternative of the hash function,

bucket table size, and internal data structures if the set of key-value pairs is
permanent and recognized earlier than instance (so insertions and deletions are
not allowed). In particular, one may be able to plan a hash function that is
collision-free, or even ideal. For this the keys need not be stored in the table [10]
[11].

1.3.4 Disadvantage

 Hash tables are trickier to execute as compared to the efficient search trees.
Choosing an effective hash function for a specific application is the mainly
significant in creating hash table. In open-addressed hash tables it is fairly easy to
create a poor hash function.

 Other problem in using hashing as an insert and retrieval tool is that it more often

than not lacks locality and chronological retrieval by key. As result the insertion
and retrieval becomes more indiscriminate.

 Another disadvantage is the inability to use duplicate keys. This is a problem

when key values are very small (i.e. one or two digits).

 Even though operations on a hash table obtain constant time on regular, the
charge of a good hash function be able to be considerably superior than the inner
loop of

the lookup algorithm for a in order list or search tree. Thus hash tables are not

efficient when the number of entries is very tiny.

 Hash tables may be less efficient than tries for certain string processing

applications, such as spell checking, Also, if every key is represented by a little
sufficient number of bits, then, as an alternative of a hash table, one might use the
key straight as the index into an array of values. Note that there are no collisions
in this case.

 The entries stored in a hash table in a number of pseudo-random order can be

enumerated powerfully. Therefore, there is no efficient way to efficiently situate
an entry whose key is adjacent to a given key. Generally for separate sorting is
required for catalogue all n entries in some specific order, whose cost is relative to
log (n) for each entry. In contrast, ordered search trees encompass lookup and
insertion cost proportional to log (n), but permit finding the adjacent key
regarding the identical cost, and ordered enumeration of all entries at steady cost
per entry. There may be no trouble-free approach to enumerate the keys, if the

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

keys are not stored (because the hash function is collision-free), that are present
in the table at any known instant [12].

 Although the standard cost per operation is stable and moderately small but still

the cost of a single operation could be rather high. Specifically an insertion or
deletion operation might infrequently get time comparative to the number of
entries, if the hash table uses dynamic resizing. This becomes a chief negative
aspect in real-time or interactive applications [10].

 For the reason that hash tables cause access patterns that jump around, this be

able to trigger microprocessor cache misses that cause elongated delays.
Consequently in general hash tables demonstrate poor locality of orientation to be
precise, the data to be accessed is scattered apparently at arbitrary in memory.
Compact data structures for example arrays, searched with linear search, may
possibly be faster if the table is moderately small and keys are integers or other
small strings.

 Hash tables develop into quite inefficient when there are many collisions. While

extremely uneven hash distributions are extremely unlikely to arise by chance, can
cause excessive collisions, which may result in very poor performance (i.e., a
denial of service attack) [13].

1.4 Hash Functions

Hash function is mathematical function or a process, which transform a huge,
possibly variable-sized amount of data into a small, usually fixed-sized. The values get
back by a hash function are called hash values or simply hashes, and usually take the
form of a single integer represented in hexadecimal. Hash functions are most
commonly used to speed up table lookup or data comparison tasks such as finding
items in a database, detecting duplicated or similar records in a large file [7].

1.4.1 Choice of Hash Function

Choice of hash function is obviously is the matter of choice the need of problem
means there are many parameters for choosing the hash function. But its not possible
to choose exactly the perfect one because many problems are faced in selecting the
hash function during the choice of hash function. So there may be three possible ways
for it.

 Perfect Hash Function: There is no feasibility for this type of hash function if the
data is large because practically it is not possible for huge data.

 Desirable Hash Function: For these hash function the address space should be

small and collision should be kept very less or minimum.

 Trade-Off: But for above a tradeoffs should be maintained because for the larger
data sets its very easy to avoid collision but the storage utilization becomes worst.

So it‟s very important to maintain tradeoffs between them.

1.4.2 Choosing Hash Keys

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

One significant thought in selecting a hash key is the query design. In the predicates
of queries there should be an EQUAL factor for each key column that will use the
hash structure.

The subsequently significant concern is the allocation of key values. The most
excellent key marks in a set of hash values that are consistently dispersed between the
primary pages existing. The worst key marks in hash values that gather strongly in a
fine range of primary pages, leaving others empty [7].

The next significant concern is that a key have to be unique. It possibly will be a
unique single column value or a unique combination. Intended for constructing a key
to be unique a hash key have to be non-volatile. when a key is need to be modified
necessary only DELETE can be followed by an INSERT ,because the UPDATE
statement can‟t be used by means of a hash key column. a range of columns can as
well be used to generate a unique key, as in the subsequent example:

CREATE PUBLIC TABLE PurchDB.OrderItems

OrderNumber INTEGER NOT NULL,

ItemNumber INTEGER NOT NULL,

VendPartNumber CHAR(16),

PurchasePrice DECIMAL(10,2) NOT NULL,

OrderQty SMALLINT,

ItemDueDate CHAR(8),

ReceivedQty SMALLINT

UNIQUE HASH ON (OrderNumber, VendPartNumber) PAGES=101 IN OrderFS

For any hash table, the selected hash function has to be choosing for quick lookup,
and it have to cause as minimum number of collision as it can. And if the keys are
chosen in such a fashion that it is possible to get zero collisions this is called perfect
hashing. Otherwise, the best you can do is to map an equal number of keys to each
possible hash value and make sure that similar keys are not unusually likely to map to
the same value.

1.4.3 Perfect Hashing

The hashing which ensures to get no more collisions at all is called as Perfect
Hashing. A hash function that is injective that is, maps each valid input to a different
hash values is said to be perfect. With such a function one can directly locate the
desired entry in a hash table, without any additional searching.

The problem with perfect hash functions is that it is useful only in conditions
anywhere the inputs are fixed and completely recognized in advance, such as mapping
month names to the integers 0 to 11, or words to the entries of a dictionary. For the
use in a hash table a suitable perfect function for a known set of n keys, can be
establish in time relative to n, can be represented in less than 3n bits, and could be
evaluated in a stable number of operations. Optimized executable code are emitted by
the generators to estimate a perfect hash designed for a given input set .

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

CHAPTER 2

Problems in Hashing: Collision

2.1 Collision

Collision is the condition where two records are stored in the same location. But two
records cannot be stored in same memory addresses; the process of finding an
alternate location is called collision resolution. The impact of collisions depends on
the application. For avoiding the collision hash functions should be choose cleverly.

 Checksums are the one that are designed to minimize the probability of collisions
between similar inputs, without regard for collisions between very different inputs
[14].

2.1.1 Hash collision

It is a condition in which a hash function gives the same hash code or hash table
location for two different keys. Consider a case where two passwords encrypt to same
value - thus there are two passwords that can be used to enter the system. Suppose
there are numbers of forms that needs to be placed in sorted order by first letter of
their surname. But if there are many people that have their names starts with same
letter, then there will be more than one paper that needs to be stored in piles. In this
case, the hashing system needs to cope with the hash collision described above. The
first solution can be sorting them using second letter of the surname. Again there's a
1/26 possibility that there's more than one with same second letter.

2.1.2 Load factor

The presentation of Collision resolution methods does not depend openly on the
number n of stored entries, but also dependent relative on the table's load factor. The
load factor is the ratio n/s between n and the size s of its bucket array. The standard
cost of lookup through a good quality hash function, is practically constant as the load
factor increases from 0 up to 0.7 or so. Further than these points, the likelihood of
collisions and their cost as well for handling them, both increase

As the load factor approaches zero, the size of the hash table increases with little
improvement in the search cost, and memory is wasted.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Figure 2.1 This graph compares the average number of cache misses required to
lookup elements in tables with chaining and linear probing. As the table passes the
80%-full mark, linear probing performance drastically degrades [6].

2.2 Resolving Collisions

In collision resolution strategy algorithms and data structures are used to handle two
hash keys that hash to the same hash keys. There are a number of collision resolution
techniques, but the most popular are open addressing and chaining.

 Chaining: An array of link list application
o Separate chaining

o Coalesced chaining

 Open Addressing: Array based

implementation o Linear probing (linear
search)

o Quadratic probing (non linear search)

o Double hashing (use two hash functions)

2.2.1 By Chaining
Occasionally the chaining is also known as direct chaining; in its simplest form this
procedure has a linked list of inserted records at every slot in the array references.

 Separate Chaining

Every linked list has each element that collides to the similar slot. Insertion need to
locate the accurate slot, and appending to any end of the list in that slot wherever,
deletion needs searching the list and removal.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Figure 2.2: Separate Chaining

 Coalesced Chaining

Coalesced hashing is a scheme of collision resolution and it is a mix form of separate
chaining and open addressing in a hash table. In a separately chaining a great
quantity of recollection get wasted as in its hash table, items that hash to the same
index are located on a list at that index, because the table itself have to be great
enough to preserve a load factor that performs well (typically twice the expected
number of items), and additional memory have to be used for all but the first item in a
chain (unless list headers are used, in which case extra memory must be used for all
items in a chain).

For example for a given sequence of randomly generated three character long strings,
the following table would be generated with a table of size 10:

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Figure 2.3 (a): Coalesced chaining

Hop

Int

Bee

Ana

Joe

Cop

Dine

Fim

Gib

Ele

Figure 2.3 (b): Coalesced chaining

This scheme is successful, proficient, and very simple to put into practice. though,
sometimes the additional memory employ might be a problem but an additional
frequently used option is there, that is open addressing. It has a drawback that
degrades the performance. Actually more specifically, open addressing has the

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

difficulty of primary and secondary clustering, where there are long sequences of used

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

buckets, and extra time is needed to calculate the next open bucket for a collision
resolution.

Coalesced hashing is the one resolution to the clustering. A similar technique is used
here as used in separate chaining, but as an alternative of locating a new nodes for the
linked list, buckets are used in the table. The initial unfilled bucket in the table is
called a collision bucket. When somewhere in the table collision occurs, the item is
located in the collision bucket and a link is made connecting the colliding index and
the collision bucket. After that to provide the next collision bucket, the next unfilled
bucket is searched. As of this the consequence of primary and secondary clustering is
minimized, and search times stay on well-organized. As the collision bucket moves in
a expected prototype distinct to how the keys are hashed.

Coalesced chaining provides a good effort to avoiding the effects of primary and
secondary clustering, and as a result can take advantage of the efficient search
algorithm for separate chaining. For short chain, this strategy is very efficient and can
be highly condensed, memory-wise [14].

2.2.2 Open Addressing

Open addressing hash tables be used to stock up the records straight inside the array.
This approach is also known as closed hashing. This procedure is based on probing. A
hash collision is resolute by probing, or searching through interchange locations in
the array (the probe sequence) awaiting either the target record is establish, or an
vacant array slot is establish, that‟s the sign of that there is no such key in the table
[7].

Well known probe sequences include:

► Linear probing in which the interval between probes is fixed often at 1.

► Quadratic Probing in which the interval between probes increases proportional

to the hash value (the interval thus increasing linearly and the indices are
described by a quadratic function).

► Double Hashing in which the interval between probes is computed by another

hash function.

The major tradeoffs between these methods are that linear probing has the best cache
performance but is mainly responsive to clustering, even as double hashing has poor
cache performance but exhibits nearly no clustering; quadratic probing cascade in-
between in both areas. More computation is require in double hashing than other
forms of probing.

A major influence open addressing hash table‟s performance is the load factor; that
is, the proportion of the slots in the array that are used. As the load factor increases
towards 100%, the number of probes that may be required to find or insert a given
key raises abruptly. Probing algorithms may even fail to terminate, if once the table
becomes full. Even with good hash functions, load factors are normally limited to
80%. A poor hash function can exhibit poor performance even at very low load factors
by generating significant clustering. So both the load factor and hash function play
important role here [7] [15].

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

 Linear Probing

Linear probing method is used for resolving hash collisions of values of hash
functions by sequentially searching the hash table for a free location. This method‟s
performance is more sensitive to the input distribution as compare to other methods
like double hashing which will be discussed later.

The item will be stored in the next available slot in the table in linear probing also an

assumption is made that the table is not already full. This is implemented via a linear
search for an empty slot, from the point of collision. If the physical end of table is
reached during the linear search, the search will again get start around to the
beginning of the table and continue from there. The table is considered as full, if an
empty slot is not found before reaching the point of collision,

Figure 2.4: Linear Probing

Limitation:

A problem with the linear probe method is primary clustering. In primary clustering
blocks of data may possibly be able to form collision. Several attempts may be
required by any key that hashes into the cluster to resolve the collision.

 Quadratic Probing

To resolve the primary clustering problem, quadratic probing can be used.

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Figure 2.5: Quadratic Probing

19

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Limitation:

Maximum half of the table can be used as substitute locations to resolve collisions.

Once the table gets more than half full, it‟s really hard to locate an unfilled spot. This
new difficulty is recognized as secondary clustering because elements that hash to the
same hash key will always probe the identical substitute cells.

 Double Hashing

Double hashing uses the idea of applying a second hash function to the key when a
collision occurs. The result of the second hash function will be the numbers of
positions from the point of collision to insert. There are some requirements for the
second function:

1. It must never evaluate to zero

2. Must make sure that all cells can be probed

A popular second hash function is: Hash2 (key) = R – (key mod R) where R is a

Prime number smaller than the size of the table.

Figure 2.6 (a): Double Hashing

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

FB: https://www.facebook.com/groups/educlashco | IG: https://www.instagram.com/educlashco

FB/IG/TW: @educlashco

Figure 2.6 (b): Double Hashing

An efficient collision resolution strategy is an important part of any hash table. Regard as the
subsequent case, derived using the birthday paradox, of a hash table containing 1 million
indices. Although a hash function were to output random indices uniformly distributed over
the array, there is a 95% chance of a collision occurring before it contains 2500 records [15].

2.2.3 Advantages over Open Addressed hash tables

The elimination function is straightforward and resizing the table can be delayed for a
greatly longer time because performance degrade more gracefully even when every slot is
used this is a chief benefit of chained hash tables above open addressed hash tables in that.
In addition numerous chaining hash tables might not need resizing at all because
performance degradation is linear as the table fills.

But besides that chained hash tables inherit the disadvantages of linked lists. When storing
small records, the overhead of the linked list can be important. Traversing a linked list has
poor cache performance is one more extra disadvantage of it

https://www.facebook.com/groups/educlashco
https://www.instagram.com/educlashco
https://www.mcaclash.com
https://www.mcaclash.com

