1 Data Structures (CGBS) - TOPIC WISE LISTING

TOPIC WISE LISTING

S.No.	Implementation	Application
1.	SORTINGa) Bubble Sortb) Insertion Sortc) Selection Sortd) Shell Sorte) Quick Sortf) Radix Sort	a) Disk File Sort
2.	SEARCHING a) Sequential Search b) Binary Search	a) Disk File Searching
3.	STACKS a) Array implementation b) Linked List implementation	 a) Infix to postfix (not to be included in exam) b) Evaluation of postfix expression c) DFS d) Balancing of parenthesis
4.	QUEUESLinked List implementation ofa) Ordinary Queueb) Circular Queuec) Double ended Queue	a) BFS b) Priority Queues as a Linked List

5. LINKED LISTS

To be implemented on ONE list

- a) Singly Linked Lists
 - Insert, Display, Delete, Search, Count, Reverse, Sort
- b) Circular Linked List
 - Insert, Display, Delete, Search, Count, Reverse, Sort
- c) Doubly Linked Lists
 - Insert, Display, Delete, Search, Count, Reverse, Sort
- To be implemented on TWO lists
 - d) Singly Linked Lists
 - Merge, Append, Union, Intersection
 - e) Doubly Linked Lists
 - Merge, Append, Union, Intersection

6. BINARY SEARCH TREES

Operations to be implemented on a BST

- Insert
- Recursive Traversals postorder, inorder, preorder
- Delete
- Search
- Largest Node
- Smallest Node
- Count number of nodes

7.	HEAP a) MinHeap • reheapUp, reheapDown, Delete b) MaxHeap • reheapUp, reheapDown, Delete	 a) Heap Sort b) Select K (Example: Select 5 - to find the 5th largest element in a heap, perform 4 deletions on the heap and the element at the root will then be the 5th largest element)
8.	HASHING Methods for Hashing a) Direct b) Subtraction c) Modulo Division d) Digit Extraction e) Fold Shift f) Fold Boundary Method for Collision Resolution a) Linear Probe	Nat
9.	 GRAPHS a) Represent a graph using the Adjacency Matrix b) Find the Shortest Path in a Graph using Warshall's Algorithm c) Find the Minimum Spanning Tree (using ANY method Kruskal's Algorithm or Prim's Algorithm) 	