Network Layer Part 5

HIERARCHICAL ROUTING

INTRA DOMAIN ROUTING (RIP, OSPF)

Hierarchical routing

our routing study thus far - idealization

- all routers identical
- network "flat"
- ... not true in practice

scale: with 600 million destinations:

can't store all dest's in routing tables!

routing table exchange would swamp links!

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network

Hierarchical routing

aggregate routers into regions, "autonomous systems" (AS)

routers in same AS run same routing protocol

- "intra-AS" routing protocol
- routers in different AS can run different intra-AS routing protocol

gateway router:

at "edge" of its own AS

has link to router in another

Interconnected ASes

- forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-AS sets entries for external dests

Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- 2. propagate this reachability info to all routers in AS1

job of inter-AS routing!

Example: setting forwarding table in router 1d

suppose AS1 learns (via inter-AS protocol) that subnet x reachable via AS3 (gateway 1c), but not via AS2

 inter-AS protocol propagates reachability info to all internal routers

router 1d determines from intra-AS routing info that its interface / is on the least cost path to 1c

installs forwarding table entry (x,I)

Example: choosing among multiple ASes

now suppose AS1 learns from inter-AS protocol that subnet *x* is reachable from AS3 *and* from AS2.

to configure forwarding table, router 1d must determine which gateway it should forward packets towards for dest x

this is also job of inter-AS routing protocol!

Example: choosing among multiple ASes

now suppose AS1 learns from inter-AS protocol that subnet *x* is reachable from AS3 *and* from AS2.

to configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x

this is also job of inter-AS routing protocol!

hot potato routing: send packet towards closest of two routers.

Routing in the Internet

Intra-AS Routing

Inter-AS Routing

Intra-AS Routing

- ❖also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol
 - OSPF: Open Shortest Path First
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)

RIP (Routing Information Protocol)

included in BSD-UNIX distribution in 1982

distance vector algorithm

- distance metric: # hops (max = 15 hops), each link has cost 1
- DVs exchanged with neighbors every 30 sec in response message (aka advertisement)
- each advertisement: list of up to 25 destination subnets (in IP addressing sense)

from router A to destination subnets:

<u>subnet</u>	<u>hops</u>
u	1
V	2
W	2
X	3
У	3
Z	2

RIP: example

routing table in router D

destination	subnet	next router	# hops to dest	
W	Α	2		
У	В	2		
Z	В	7		
X		1		
		••••		

RIP: example

routing table in router D

destination subnet	next router	# hops to dest
w A	2	
у В	2	A E
z B	7	A , 5
X	1	
	••••	

RIP: link failure, recovery

if no advertisement heard after 180 sec --> neighbor/link declared dead

- routes via neighbor invalidated
- new advertisements sent to neighbors
- neighbors in turn send out new advertisements (if tables changed)
- link failure info quickly (?) propagates to entire net
- poison reverse used to prevent ping-pong loops (infinite distance = 16 hops)

RIP table processing

- RIP routing tables managed by application-level process called route-d (daemon)
- *advertisements sent in UDP packets, periodically repeated

OSPF (Open Shortest Path First)

"open": publicly available

uses link state algorithm

- LS packet dissemination
- topology map at each node
- route computation using Dijkstra's algorithm

OSPF advertisement carries one entry per neighbor

advertisements flooded to *entire* AS

carried in OSPF messages directly over IP (rather than TCP or UDP)

IS-IS routing protocol: nearly identical to OSPF

OSPF "advanced" features (not in RIP)

security: all OSPF messages authenticated (to prevent malicious intrusion)

multiple same-cost paths allowed (only one path in RIP)

for each link, multiple cost metrics for different TOS (e.g., satellite link cost set "low" for best effort ToS; high for real time ToS)

integrated uni- and multicast support:

 Multicast OSPF (MOSPF) uses same topology data base as OSPF

hierarchical OSPF in large domains.

Hierarchical OSPF

two-level hierarchy: local area, backbone.

- link-state advertisements only in area
- each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.

area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.

backbone routers: run OSPF routing limited to backbone.

boundary routers: connect to other AS's.