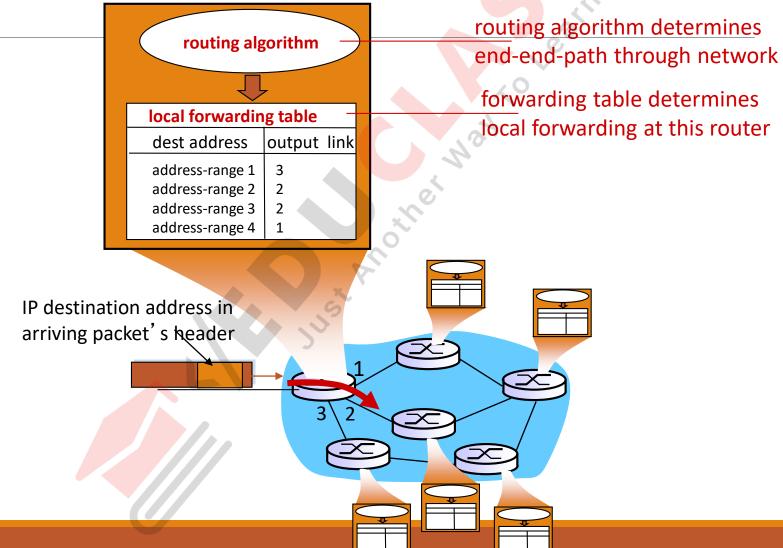
Network Layer Part 3

ROUTING ALGORITHMS – LINK STATE ROUTING (DIJKSTRA'S ALGORITHM)

Interplay between routing, forwarding



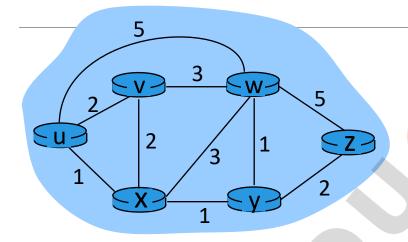
Graph abstraction f = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs



c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms

decentralized:

router knows physically-connected neighbors, link costs to neighbors

iterative process of computation, exchange of info with neighbors

"distance vector" algorithms

Q: static or dynamic?

static:

routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Q: load-sensitive or insensitive?

Based on the current level of congestion

A Link-State Routing Algorithm

net topology, link costs known to all nodes

- accomplished via "link state broadcast"
- all nodes have same info

computes least cost paths from one node ('source") to all other nodes

gives *forwarding table* for that node

iterative: after k iterations, know least cost path to k dest.' s

notation:

c(x,y): link cost from node x to y; = ∞ if not direct neighbors

D(v): current value of cost of path from source to dest. v

p(v): predecessor node along path from source to v

N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm **1** Initialization: $N' = \{A\}$ 2 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(A, v)6 else D(v) = ∞ 7 Loop find w not in N' such that D(w) is a minimum 9 10 add w to N' update D(v) for all v adjacent to w and not in N': 11 D(v) = min(D(v), D(w) + c(w,v))12

- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Dijkstra's Algorithm: Example

		D(v), D(v	/), D(x),	D(y),	D(z),	
Step) N'	p(v) p(w) p(x)	p(y)	p(z)	C C
0	u	7,u <u>3</u>	,u 5,u	8	8	
1	uw	6,w	5 ,u) 11,w	8	
2	uwx	6,w		11,W	14,x	20
3	uwxv			10,0	14,x	XY
4	uwxvy				12,y	9
5	uwxvyz				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

- U

JS L

4

3

≤\//

3

7

8

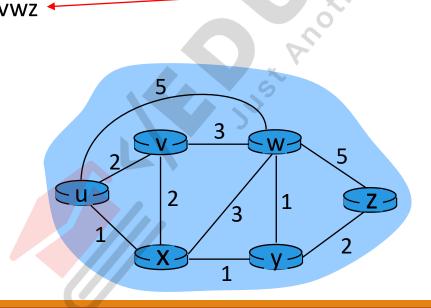
notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

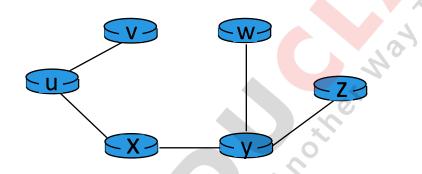
St	tep —	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z), p(z)
	0	u	2,u	5,u	1,u	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8
-	1	ux 🔶	2,u	4,x	70	2,x	∞
	2	uxy	2,u	З,у			4,y
	3	uxyv 🔶		З,у	2		4,y
	4	uxyvw 🔶			e l		4,y

5 uxyvwz



Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:



resulting forwarding table in u:

destination	destination		
	v	(u <i>,</i> v)	
	x	(u,x)	
	y	(u <i>,</i> x)	
	w	(u,x)	
	Z	(u.x)	

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

each iteration: need to check all nodes, w, not in N

- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic

