
INTRODUCTION

• In Centralized databases:

Data is located in one place (one server)

All DBMS functionalities are done by that server

Enforcing ACID properties of transactions

Concurrency control, recovery mechanisms

Answering queries

• In Distributed databases:

Data is stored in multiple places (each is running a DBMS)

New notion of distributed transactions

DBMS functionalities are now distributed over many machines

Revisit how these functionalities work in distributed environment
FB/IG/TW: @educlashco

WHY DISTRIBUTED DATABASES

• Data is too large

• Applications are by nature distributed

Bank with many branches

Chain of retail stores with many locations

Library with many branches

• Get benefit of distributed and parallel processing

Faster response time for queries

FB/IG/TW: @educlashco

PARALLEL VS. DISTRIBUTED DATABASES
• Distributed processing usually imply parallel processing (not vise versa)

Can have parallel processing on a single machine
• Assumptions about architecture
• Parallel Databases
-Machines are physically close to each other, e.g., same server room
-Machines connects with dedicated high-speed LANs and switches
-Communication cost is assumed to be small
-Can shared-memory, shared-disk, or shared-nothing architecture
• Distributed Databases
-Machines can far from each other, e.g., in different continent
-Can be connected using public-purpose network, e.g., Internet
-Communication cost and problems cannot be ignored
-Usually shared-nothing architecture

FB/IG/TW: @educlashco

WHY PARALLEL PROCESSING

FB/IG/TW: @educlashco

Ideal advantages of parallel systems

• High performance
• short response time or total time

• good load balancing among processors

• High availability
• handling failures of hardware elements

• redundancy and consistency

• Extensibility
• more processing and storage power can be added

FB/IG/TW: @educlashco

High availability

• While parallelism is motivated by performance
considerations, several distinct issues motivate data
distribution:

• 1. Increased Availability : If a site containing a relation
goes down, the relation continues to be available if a
copy is maintained at another site.

• 2. Distributed Access to Data : An organization may
have branches in several cities. Although analysts may
need to access data corresponding to different sites,
we usually find locality in the access patterns and this
locality can be exploited by distributing the data
accordingly.

FB/IG/TW: @educlashco

Cont…

• 3. Analysis of Distributed Data: Organizations want to examine all the
data available to them, even when it is stored across multiple sites
and on multiple database systems. Support for such integrated access
involves many issues.

FB/IG/TW: @educlashco

Extensibility

• Speed-Up
• More resources means

proportionally less time for
given amount of data.

• Scale-Up
• If resources increased in

proportion to increase in
data size, time is constant.

degree of ||-ism

X
ac

t/
se

c.
(t

h
ro

u
g

h
p

u
t)

Ideal

degree of ||-ism

se
c.

/
X

ac
t

(r
es

p
o

n
se

 t
im

e) Ideal

FB/IG/TW: @educlashco

Bottlenecks

• Start-up - many processors => long start-up time

• Interference - more processors => more communications

• Data skew - it makes data distribution difficult

FB/IG/TW: @educlashco

DIFFERENT ARCHITECTURE

FB/IG/TW: @educlashco

1- SHARED-MEMORY ARCHITECTURE

FB/IG/TW: @educlashco

Cont….

• Characteristics

• any CPU has access to any memory module or disk unit

• Advantages

• Simple implementation

• Establishes effective communication between processors through
single memory addresses space.

• Above point leads to less communication overhead.

FB/IG/TW: @educlashco

• Disadvantages

• Higher degree of parallelism (more number of concurrent operations in
different processors) cannot be achieved due to the reason that all the
processors share the same interconnection network to connect with
memory. This causes Bottleneck in interconnection network (Interference),
especially in the case of Bus interconnection network.

• Addition of processor would slow down the existing processors.

• Cache-coherency should be maintained. That is, if any processor tries to
read the data used or modified by other processors, then we need to
ensure that the data is of latest version.

• Degree of Parallelism is limited. More number of parallel processes might
degrade the performance.

FB/IG/TW: @educlashco

2- SHARED-DISK ARCHITECTURE

FB/IG/TW: @educlashco

Cont….

• Characteristics
• any CPU has access to any disk unit but exclusive access to its main memory

Advantages Disadvantages

• Failure of any processors would not stop the
entire system (Fault tolerance)

• Interconnection to the memory is not a
bottleneck. (It was bottleneck in Shared
Memory architecture)

• Support larger number of processors (when
compared to Shared Memory architecture)

• Interconnection to the disk is bottleneck as all processors share
common disk setup.

• Inter-processor communication is slow. The reason is, all the
processors have their own memory. Hence, the communication
between processors need reading of data from other processors’
memory which needs additional software support.

FB/IG/TW: @educlashco

3- SHARED-NOTHING ARCHITECTURE

FB/IG/TW: @educlashco

Cont..

• Characteristics
• any CPU has only exclusive access to its main memory and disk

Advantages Disadvantages

• Number of processors used here is scalable.
That is, the design is flexible to add more
number of computers.

• Unlike in other two architectures, only the
data request which cannot be answered by
local processors need to be forwarded
through interconnection network.

• Non-local disk accesses are costly. That is, if one server receives
the request. If the required data not available, it must be routed to
the server where the data is available. It is slightly complex.

• Communication cost involved in transporting data among
computers.

FB/IG/TW: @educlashco

TYPES OF PARALLELISM

FB/IG/TW: @educlashco

Distributed database

• Communication Network- DBMS and Data at each node

•Users are unaware of
the distribution of the
data

Location

transparency

FB/IG/TW: @educlashco

Distributed Databases

• Data is stored at several sites, each managed by a
DBMS that can run independently.

• Following properties are desirable:

• Distributed Data Independence

Users should not have to know where data is
located (extends Physical and Logical Data
Independence principles)

• Distributed Transaction Atomicity

Users should be able to write Xacts accessing
multiple sites just like local Xacts

FB/IG/TW: @educlashco

Distributed Databases

• Advantages:
• Reliability

• Performance

• Growth (incremental)

• Local control

• Transparency

• Disadvantages:
• Complexity of:

• Query opt.

• Concurrency control

• Recovery

• Catalog management

FB/IG/TW: @educlashco

Distributed database

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 3

Recent Trends

Users have to be aware of where data is
located, i.e., Distributed Data Independence
and Distributed Transaction Atomicity are
not supported.

 These properties are hard to support
efficiently.

 For globally distributed sites, these properties
may not even be desirable due to
administrative overheads of making location
of data transparent.

FB/IG/TW: @educlashco

Distributed database

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 3

Recent Trends

Users have to be aware of where data is
located, i.e., Distributed Data Independence
and Distributed Transaction Atomicity are
not supported.

 These properties are hard to support
efficiently.

 For globally distributed sites, these properties
may not even be desirable due to
administrative overheads of making location
of data transparent.

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 4

Types of Distributed Databases

Homogeneous: Every site runs same type of
DBMS.

Heterogeneous: Different sites run different
DBMSs (different RDBMSs or even non-
relational DBMSs).

DBMS1 DBMS2 DBMS3

Gateway

FB/IG/TW: @educlashco

Homogeneous Distributed Database Systems

FB/IG/TW: @educlashco

Cont…
• A homogenous distributed database system is a network of two or more

Oracle databases that reside on one or more machines.
• A distributed system that connects three databases: hq, mfg, and sales. An

application can simultaneously access or modify the data in several
databases in a single distributed environment. For example, a single query
from a Manufacturing client on local database mfg can retrieve joined data
from the products table on the local database and the dept table on the
remote hq database.

• For a client application, the location and platform of the databases are
transparent. You can also create synonyms for remote objects in the
distributed system so that users can access them with the same syntax as
local objects. For example, if you are connected to database mfg but want
to access data on database hq, creating a synonym on mfg for the
remote dept table enables you to issue this query:

• SELECT * FROM dept;
• In this way, a distributed system gives the appearance of native data

access. Users on mfg do not have to know that the data they access resides
on remote databases.

FB/IG/TW: @educlashco

Heterogenous Distributed Database System
• In a heterogeneous distributed database system, at least one of the

databases is a non-Oracle system. To the application, the
heterogeneous distributed database system appears as a single, local,
Oracle database. The local Oracle database server hides the
distribution and heterogeneity of the data.

• The Oracle database server accesses the non-Oracle system using
Oracle Heterogeneous Services in conjunction with an agent. If you
access the non-Oracle data store using an Oracle Transparent
Gateway, then the agent is a system-specific application. For example,
if you include a Sybase database in an Oracle distributed system, then
you need to obtain a Sybase-specific transparent gateway so that the
Oracle databases in the system can communicate with it.

• Alternatively, you can use generic connectivity to access non-Oracle
data stores so long as the non-Oracle system supports the ODBC or
OLE DB protocols.

FB/IG/TW: @educlashco

Distributed database Architechture

• 1. Client Server

• 2. Collaborating Server

• 3. Middleware

FB/IG/TW: @educlashco

Client Server Systems

• Server systems satisfy requests generated at m client
systems, whose general structure is shown below:

FB/IG/TW: @educlashco

Client Server Systems
• Database functionality can be divided into:

– Back-end: manages access structures, query evaluation and
optimization, concurrency control and recovery.

– Front-end: consists of tools such as forms, report-writers, and
graphical user interface facilities.

• The interface between the front-end and the back-end is through SQL or
through an application program interface.

FB/IG/TW: @educlashco

Collaborating Server Systems

• The client server architecture does not allow a single query
to span multiple servers because the client process would
have to be capable of breaking such a query into
appropriate sub queries to be executed at different sites and
then piecing together the answers to the sub queries.

• The client process would therefore be quite complex.

• The client process capabilities would begin to overlap with
the server due to which distinguishing between clients and
servers becomes harder.

FB/IG/TW: @educlashco

Collaborating Server Systems

• A query can span multiple sites or servers.

• We can have database servers, each capable of running
transactions

against local data, which

cooperatively execute

transactions spanning

multiple servers.

Server

Server

Server

Client

FB/IG/TW: @educlashco

Middleware Systems

• A software component that performs process management.

• Allow clients and servers to exist on different platforms.

• One database server capable of managing queries and
transactions spanning multiple servers.

• The remaining servers need to handle only local queries
and transactions.

• Allows servers to efficiently process messages from a large
number of clients.

• Often located on a dedicated computer.

FB/IG/TW: @educlashco

Client-Server Computing with Middleware

Middleware

FB/IG/TW: @educlashco

Distributed database

Database Management Systems, 2nd Edition. R. Ramakrishnan and Johannes Gehrke 6

Storing Data

 Fragmentation

– Horizontal: Usually disjoint.

– Vertical: Lossless-join; tids.

 Replication

– Gives increased availability.

– Faster query evaluation.

– Synchronous vs. Asynchronous.

Vary in how current copies are.

TID

t1

t2

t3
t4

R1

R1 R2

R3

SITE A

SITE B

FB/IG/TW: @educlashco

J.J.Bunn, Distributed Databases, 2001 35

ID #Particles Energy Event# Run# Date Time

… … … … … … …

10001 3 121.5 111 13120 3/1406 13:30:55.0001

10002 3 202.2 112 13120 3/1406 13:30:55.0001

10003 4 99.3 113 13120 3/1406 13:30:55.0001

10004 5 231.9 120 13120 3/1406 13:30:55.0001

10005 6 287.1 125 13120 3/1406 13:30:55.0001

10006 6 107.7 126 13120 3/1406 13:30:55.0001

10007 6 98.9 127 13120 3/1406 13:30:55.0001

10008 9 100.1 128 13120 3/1406 13:30:55.0001

… … … … … … …

Fragmentation

• Horizontal – “Row-wise”
• E.g. rows of the table make up one fragment

• Vertical – “Column-Wise”
• E.g. columns of the table make up one fragment

FB/IG/TW: @educlashco

Cont..

• When a relation is fragmentated, we must be able to
recover the original relation from the fragments:

• Horizontal Fragmentation: The union of the horizontal
fragments must be equal to the original relation.
Fragments are usually also required to be disjoint.

• Vertical Fragmentation: The collection of vertical
fragments should be a lossless-join decomposition.

FB/IG/TW: @educlashco

37

Replication
• It means that we store several copies of a relation

or relation fragment.

• Make synchronised or asynchronised copies of
data at servers
• Synchronised: data are always current, updates are

constantly shipped between replicas

• Asynchronised: good for read-only data

FB/IG/TW: @educlashco

• The motivation for replication is two fold:

1. Increased Availability of Data

2. Faster Query Evaluation

FB/IG/TW: @educlashco

Structured Data type

• A structured data type is a user defined data type with elements that
are not atomic rather they are divisible and can be used either
separately or as a single unit as per requirements.

• It is a form of user defined object that contains a sequence of
attributes, each of which has a data type.

• An attribute is a property that helps to describe an instance of a
particular type.

• for example if we want to define a structured type called address to
store addresses, in which city might be one of the attributes of this
structured type.

FB/IG/TW: @educlashco

Cont..
• A structured data type can be used as the type for a column in a

regular table, the type for an entire table or as an attribute of another
structured type. When used as the type for a table, the table is known
as typed table.

• CREATE TYPE statement is used to create a structured data type and
DROP statement is used to delete the structured data type.

• Consider ‘Emp-Dept’ schema discussed previously. In this schema,
table ‘Emp ‘ is created with four column namely EmpNo, it is system
generated identity column, Name contains name of the employee,
Address which is used to hold the address of employee, it is a
structured type column of type ‘ADDRESS-T’ and ProjNo which is a list
that stores project number of project taken by employee and eImage
that will contain images of an employee.

FB/IG/TW: @educlashco

Cont..

• CREATE TYPE ADDRESS-T as Row (street varchar (12), city varchar
(12), state varchar (12),postal code varchar (12))
Now, the ‘Emp’ table is created having ‘ADDRESS-T’ data type of
Address field and jpeg-image as data type of eimage as shown below:

• CREATE TABLE EMP (Empno integer system generated, Name varchar
(12),Address ADDRESS-T,Proj-no set of (varchar 12),Eimage jpeg-
image);

FB/IG/TW: @educlashco

Structured types in SQL 1999

• Structured types available in SQL 1999 are
ROW (f1t1,f2t2…….fntn)–
1. It represents a row, or a tuple of fields f1,f2,…..fn of types t1,t2,..tn
respectively. ‘ROW’ data type specifies every table as a collection of
rows or every table as set of rows or multi-set of rows for example,
the ‘address-t’ is declared as of ROW data type as shown below which
contains area, city and state as its components :-
CREATE TYPE address-t
AS ROW (area: varchar (20),city: varchar (20), state : varchar (20))

FB/IG/TW: @educlashco

Cont…

• 2. ARRAY [i] : It represents an array of ‘i’ items of ‘base’ type for
example, the ‘objects’ field of CLIP table used an array of 10 objects,
each of which is of varchar (20) type.

• A multidimensional array can not be created in SQL 99.

• An array can be used as component in ROW type as shown but not in
array type :-

• ROW (pno : integer, object : varchar (20) ARRAY [10])

FB/IG/TW: @educlashco

• 3. list of (base) : It represents a list of all items of ‘base’ type,

• for example,
PROJECT (Projno : integer, Pname: varchar (25), Emp no: list of
(integer))

• 4. set of (base) : It represents a set of ‘base’ type items. A set does
not contain duplicate elements unlike lists otherwise it is used in the
same manner as list.

FB/IG/TW: @educlashco

• 5. bag of (base) : It represents a bag or a multi-set of base type items.
Collection type or build data types are types using list of, set of, bag of
and ARRAY.

• But SQL does not provide any efficient method for manipulation of
these collection type objects.

• So now we will discuss how these data types can be manipulated and
also discuss the operations which can be applied on these data types.

FB/IG/TW: @educlashco

Company database
• all the tables regarding ‘company’ database is created by using DDL

statements shown in below :
CREATE TABLE PROJECT
(Projno integer, Pname varchar (20),
Location REF (address-t) SCOPE LOCS,
Empno set of (integer));
CREATE TABLE LOCS OF ADDRESS-T REF is locid system generated.
CREATE TABLE DEPT
(Deptno integer, Dname varchar (20),
Dlocation REF (address-t) SCOPE LOCS,
Projno set of (integer));
CREATE TABLE CLIPS
(clipno integer, Cname varchar (20),
Objects varchar (20) ARRAY [20],
Budget float,
Projno integer Ctime time);

FB/IG/TW: @educlashco

http://www.netnic.org/ddl/

Operation on Structured Data
• 1. Operations on Arrays

Array is used in the same manner as in traditional RDBMS. ‘Array
index’ method is used to return the number of elements in the array
for example. Suppose we want to find those projects whose clips
contain more than 10 items or objects then following query can be
used :
SELECT P.Pname, P.Projno
FROM project P, Clip C
WHERE CARDINALITY (C.Objects)>10 AND C.Projno = P.Projno
The above query select project name and projectno from “PROJECT”
whose clips contain more then 10 items which can calculated by using
CARDINALITY operation.

FB/IG/TW: @educlashco

Cont…

• 2. Operations on Rows
Row type is a collection of fields values whose each fields can be accessed by the same
traditional notation.

• for example, address-t.city specify the attribute ‘city’ of the type address-t. When
operation is applied on collection of rows then result obtained is also a collection of
values.

• If a column or field whose type is ROW (f1t1, f2t2,…….fntn) and c1 fk gives us a list of
values whose type is tk. If c1 is a set of rows or a bag of rows then c1 fk give us a set of
values of type tk.
Consider ‘Emp-Dept’ schema in which we have to find the names of those employees
who resides in ‘Malviya Nagar’ of ‘New Delhi’.
SELECT E Empno,E.Name
FROM Emp E
WHERE E.Address.area =’Malviya Nagar’ AND E.Address.city=’New Delhi’;

FB/IG/TW: @educlashco

• 3. Operations on Sets and Multi-sets
Set and multisets are used in the traditional manner by using =,<,>,>,<
comparison operators.

• An item of a set can be compared by other items using E (belongs to)
relation.

• Two set objects can create a new object using U, (Union Operation).

• They can also create a new object by subtracting a set of elements from
other set by using ‘-‘ (set difference operator).

• Multi-set also uses the same operations as used by the sets but the
operations are applied on the number of copies of element into account.

FB/IG/TW: @educlashco

• 4. Operations on Lists
List includes operations like ‘append’, ‘concatenate’, ‘head’, ‘tail’ etc.
to manipulate the items of list for example, ‘concatenate’ or ‘append’
appends one list to another, ‘head’ returns the first element of list,
‘tail’ returns the list after removing the first element.

FB/IG/TW: @educlashco

Objects, OIDS, and Reference Types

• In object database systems, data objects can be given an object
identifier, which is unique in the database across time.

• All tuples stored in any table are objects and automatically assigned
unique oids.

• An object oid can be used to refer to it from elsewhere in the data.

• REF types have values that are unique identifiers or oids.

FB/IG/TW: @educlashco

Objects, OIDS, and Reference Types

• E.g a column theater of type REF(theater_t). The scope
clause specifies that items in this column are references to
rows in the theater table.

• Dereferencing Reference types:

• To access the value associated with object oid we use
DEREF() method which is provided along with the REF type.

• E.g. from Nowshowing table, one can access the name field
of the referenced theater_t object

Nowshowing.deref(theater).name

FB/IG/TW: @educlashco

Object Relational DBMS Object Oriented DBMS

The features of these DBMS include:

• Support for complex data types

• Powerful query languages support through SQL

• Good protection of data against programming errors

The features of these DBMS include:

• Supports complex data types,

• Very high integration of database with the programming

language,

• Very good performance

• But not as powerful at querying as Relational

One of the major assets here is SQL. Although, SQL is not as

powerful as a Programming Language, but it is none-the less

essentially a fourth generation language, thus, it provides

excellent protection of data from the Programming errors

It is based on object oriented programming languages, thus,

are very strong in programming, however, any error of a data

type made by a programmer may effect many users

The relational model has a very rich foundation for query

optimisation, which helps in reducing the time taken to

execute a query.

These databases are still evolving in this direction. They have

reasonable systems in place.

These databases make the querying as simple as in

relational even, for complex data types and multimedia data

The querying is possible but somewhat difficult to get.

Although the strength of these DBMS is SQL, it is also one of

the major weaknesses from the performance point of view

in memory application

Some applications that are primarily run in the RAM and

require a large number of database accesses with high

performance may find such DBMS more suitable. This is

because of rich programming interface provided by such

DBMS. However, such applications may not support very

strong query capabilities. A typical example of one such

application is databases required for CAD.
FB/IG/TW: @educlashco

