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Motivation for Support Vector 
Machines

• The problem to be solved is one of the supervised binary 
classification. That is, we wish to categorize new unseen 
objects into two separate groups based on their properties 
and a set of known examples, which are already 
categorized. 

• A good example of such a system is classifying a set of new 
documents into positive or negative sentiment groups, 
based on other documents which have already been 
classified as positive or negative. 

• Similarly, we could classify new emails into spam or non-
spam, based on a large corpus of documents that have 
already been marked as spam or non-spam by humans. 
SVMs are highly applicable to such situations.
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Motivation for Support Vector 
Machines

• A Support Vector Machine models the situation by creating 
a feature space, which is a finite-dimensional vector space, each 
dimension of which represents a "feature" of a particular object. 
In the context of spam or document classification, each "feature" 
is the prevalence or importance of a particular word.

• The goal of the SVM is to train a model that assigns new unseen 
objects into a particular category. 

• It achieves this by creating a linear partition of the feature space 
into two categories. 

• Based on the features in the new unseen objects (e.g. 
documents/emails), it places an object "above" or "below" the 
separation plane, leading to a categorization (e.g. spam or non-
spam). This makes it an example of a non-probabilistic linear 
classifier. It is non-probabilistic, because the features in the new 
objects fully determine its location in feature space and there is 
no stochastic element involved.
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OBJECTIVES
• Support vector machines (SVM) are supervised 

learning models with associated 
learning algorithms that analyze data used for 
classification and regression analysis.

• It is a machine learning approach.

• They analyze the large amount of data to 
identify patterns from them.

• SVMs are based on the idea of finding a 
hyperplane that best divides a dataset into two 
classes, as shown in the image below.
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Support Vectors
• Support Vectors are simply the co-ordinates of individual 

observation. Support Vector Machine is a frontier which best 
segregates the two classes (hyper-plane/ line).

• Support vectors are the data points that lie closest to the 
decision surface (or hyperplane) 

• They are the data points most difficult to classify 
• They have direct bearing on the optimum location of the 

decision surface
• We can show that the optimal hyperplane stems from the 

function class with the lowest “capacity” (VC dimension).
• Support vectors are the data points nearest to the hyperplane, 

the points of a data set that, if removed, would alter the position 
of the dividing hyperplane. Because of this, they can be 
considered the critical elements of a data set.

6FB/IG/TW: @educlashco



What is a hyperplane?

• As a simple example, for a classification task with only 
two features, you can think of a hyperplane as a line 
that linearly separates and classifies a set of data.

• Intuitively, the further from the hyperplane our data 
points lie, the more confident we are that they have 
been correctly classified. We therefore want our data 
points to be as far away from the hyperplane as 
possible, while still being on the correct side of it.

• So when new testing data are added, whatever side of 
the hyperplane it lands will decide the class that we 
assign to it.
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How do we find the right hyperplane?

• How do we best segregate the two classes 
within the data?

• The distance between the hyperplane and the 
nearest data point from either set is known as 
the margin. The goal is to choose a hyperplane
with the greatest possible margin between the 
hyperplane and any point within the training 
set, giving a greater chance of new data being 
classified correctly. There will never be any 
data point inside the margin.
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But what happens when there is no 
clear hyperplane?

• Data are rarely ever as clean as our simple example above. 
A dataset will often look more like the jumbled balls below 
which represent a linearly non separable dataset.

• In order to classify a dataset like the one above it’s 
necessary to move away from a 2d view of the data to a 
3d view. Explaining this is easiest with another simplified 
example. Imagine that our two sets of colored balls above 
are sitting on a sheet and this sheet is lifted suddenly, 
launching the balls into the air. While the balls are up in 
the air, you use the sheet to separate them. This ‘lifting’ of 
the balls represents the mapping of data into a higher 
dimension. This is known as kernelling.
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Identify the right hyperplane 
(Scenario-1):

• Here, we have three hyperplanes (A, B and C). Now, 
identify the right hyperplane to classify star and circle.

• Hyperplane “B” has excellently performed this job.
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Identify the right hyperplane 
(Scenario-2):

• Here, we have three hyperplanes (A, B and C) 
and all are segregating the classes well. Now, 
how can we identify the right hyperplane?

Here, maximizing the 
distances between nearest 
data point (either class) 
and hyperplane will help us 
to decide the right 
hyperplane. 

12FB/IG/TW: @educlashco



Scenario-2

This distance is called as Margin. Let’s look at the 
below snapshot:

We can see that the margin 
for hyperplane C is high as 
compared to both A and B. 
Hence, we name the right 
hyperplane as C. Another 
lightning reason for selecting 
the hyperplane with higher 
margin is robustness. If we 
select a hyperplane having 
low margin then there is high 
chance of missclassification.
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d+

d-

Definitions
Define the hyperplane H such that:
xi•w+b  +1 when yi =+1 
xi•w+b  -1 when yi =-1

d+ = the shortest distance to the closest positive point

d- = the shortest distance to the closest negative point

The margin of a separating hyperplane is d+ + d-.

H

H1 and H2 are the planes:
H1: xi•w+b = +1 
H2: xi•w+b = -1
The points on the planes H1 
and H2 are the Support 
Vectors

H1

H2
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Maximizing the margin

d+

d-

We want a classifier with as big margin as possible. 

Recall the distance from a point(x0,y0) to a line:
Ax+By+c = 0 is|A x0 +B y0 +c|/sqrt(A2+B2)

The distance between H and H1 is:
|w•x+b|/||w||=1/||w||

The distance between H1 and H2 is: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the 
condition that there are no datapoints between H1 and H2:
xi•w+b  +1 when yi =+1 
xi•w+b  -1 when yi =-1       

H1

H2

H
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• w: decision hyperplane normal vector

• xi: data point i

• yi: class of data point i (+1 or -1)     NB: Not 1/0

• Classifier is: f(xi) = sign(wTxi + b)

• Functional margin of xi is: yi (w
Txi + b)

– But note that we can increase this margin simply by scaling w, b….

• Functional margin of dataset is twice the minimum 
functional margin for any point

– The factor of 2 comes from measuring the whole width of the 
margin

Maximum Margin: Formalization

Sec. 15.1
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