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An example application

• An emergency room in a hospital measures 17 variables 
(e.g., blood pressure, age, etc) of newly admitted 
patients. 

• A decision is needed: whether to put a new patient in 
an intensive-care unit. 

• Due to the high cost of ICU, those patients who may 
survive less than a month are given higher priority. 

• Problem: to predict high-risk patients and discriminate 
them from low-risk patients. 
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Another application
• A credit card company receives thousands of applications 

for new cards. Each application contains information 
about an applicant, 

• age 

• Marital status

• annual salary

• outstanding debts

• credit rating

• etc. 

• Problem: to decide whether an application should 
approved, or to classify applications into two categories, 
approved and not approved. 
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Machine learning and our focus
• Like human learning from past experiences.

• A computer does not have “experiences”.

• A computer system learns from data, which represent 
some “past experiences” of an application domain. 

• Our focus: learn a target function that can be used to 
predict the values of a discrete class attribute, e.g., 
approve or not-approved, and high-risk or low risk. 

• The task is commonly called: Supervised learning, 
classification, or inductive learning.
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The data and the goal
• Data: A set of data records (also called examples, instances or cases) 

described by
• k attributes: A1, A2, … Ak. 

• a class: Each example is labelled with a pre-defined class. 

• Goal: To learn a classification model from the data that can be used to 
predict the classes of new (future, or test) cases/instances.
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An example: data (loan application)
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Approved or not



An example: the learning task

• Learn a classification model from the data 

• Use the model to classify future loan applications into 
• Yes (approved) and 

• No (not approved)

• What is the class for following case/instance?
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Supervised vs. unsupervised Learning
• Supervised learning: classification is seen as supervised learning from 

examples.
• Supervision: The data (observations, measurements, etc.) are labeled with pre-

defined classes. It is like that a “teacher” gives the classes (supervision). 

• Test data are classified into these classes too. 

• Unsupervised learning (clustering)
• Class labels of the data are unknown

• Given a set of data, the task is to establish the existence of classes or clusters in 
the data
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Supervised learning process: two steps
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 Learning (training): Learn a model using the 

training data

 Testing: Test the model using unseen test data

to assess the model accuracy
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What do we mean by learning?
• Given

• a data set D, 

• a task T, and 

• a performance measure M, 

a computer system is said to learn from D to perform the task T if after 
learning the system’s performance on T improves as measured by M. 

• In other words, the learned model helps the system to perform T better 
as compared to no learning. 
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An example
• Data: Loan application data

• Task: Predict whether a loan should be approved or not.

• Performance measure: accuracy.

No learning: classify all future applications (test data) to the majority class 
(i.e., Yes): 

Accuracy = 9/15 = 60%.

• We can do better than 60% with learning.

FB/IG/TW: @educlashco 12



Fundamental assumption of learning
Assumption: The distribution of training examples is identical to the 

distribution of test examples (including future unseen examples).

• In practice, this assumption is often violated to certain degree. 

• Strong violations will clearly result in poor classification accuracy. 

• To achieve good accuracy on the test data, training examples must be 
sufficiently representative of the test data. 
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Introduction
• Decision tree learning is one of the most widely used techniques for 

classification. 
• Its classification accuracy is competitive with other methods, and 

• it is very efficient. 

• The classification model is a tree, called decision tree. 

• C4.5 by Ross Quinlan is perhaps the best known system. It can be 
downloaded from the Web. 
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The loan data (reproduced)
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Approved or not



A decision tree from the loan data
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 Decision nodes and leaf nodes (classes)



Use the decision tree
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Is the decision tree unique?
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 No. Here is a simpler tree. 

 We want smaller tree and accurate tree.
 Easy to understand and perform better.

 Finding the best tree is 

NP-hard.

 All current tree building 

algorithms are heuristic 

algorithms



From a decision tree to a set of rules
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 A decision tree can 

be converted to a 

set of rules

 Each path from the 

root to a leaf is a 

rule.



Algorithm for decision tree learning
• Basic algorithm (a greedy divide-and-conquer algorithm)

• Assume attributes are categorical now (continuous attributes can be 
handled too)

• Tree is constructed in a top-down recursive manner

• At start, all the training examples are at the root

• Examples are partitioned recursively based on selected attributes

• Attributes are selected on the basis of an impurity function (e.g., 
information gain)

• Conditions for stopping partitioning
• All examples for a given node belong to the same class

• There are no remaining attributes for further partitioning – majority 
class is the leaf

• There are no examples left
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Decision tree learning algorithm
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Choose an attribute to partition data 

• The key to building a decision tree - which attribute to choose in order to 
branch. 

• The objective is to reduce impurity or uncertainty in data as much as 
possible.

• A subset of data is pure if all instances belong to the same class. 

• The heuristic in C4.5 is to choose the attribute with the maximum 
Information Gain or Gain Ratio based on information theory.
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The loan data (reproduced)
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Approved or not



Two possible roots, which is better?
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 Fig. (B) seems to be better. 



Information theory

• Information theory provides a mathematical basis for 
measuring the information content. 

• To understand the notion of information, think about 
it as providing the answer to a question, for example, 
whether a coin will come up heads.

• If one already has a good guess about the answer, then 
the actual answer is less informative. 

• If one already knows that the coin is rigged so that it will 
come with heads with probability 0.99, then a message 
(advanced information) about the actual outcome of a flip 
is worth less than it would be for a honest coin (50-50). 
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Information theory (cont …)

• For a fair (honest) coin, you have no information, 
and you are willing to pay more (say in terms of $) 
for advanced information - less you know, the 
more valuable the information. 

• Information theory uses this same intuition, but 
instead of measuring the value for information in 
dollars, it measures information contents in bits. 

• One bit of information is enough to answer a 
yes/no question about which one has no idea, 
such as the flip of a fair coin
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Information theory: Entropy measure

• The entropy formula,

• Pr(cj) is the probability of class cj in data set D

• We use entropy as a measure of impurity or disorder of 
data set D. (Or, a measure of information in a tree)
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Entropy measure: let us get a feeling
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 As the data become purer and purer, the entropy value 

becomes smaller and smaller. This is useful to us!



Information gain

• Given a set of examples D, we first compute its entropy:

• If we make attribute Ai, with v values, the root of the 
current tree, this will partition D into v subsets D1, D2 …, Dv

. The expected entropy if Ai is used as the current root:
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Information gain (cont …)

• Information gained by selecting attribute Ai to branch 
or to partition the data is 

• We choose the attribute with the highest gain to 
branch/split the current tree. 
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An example

Age Yes No entropy(Di)

young 2 3 0.971

middle 3 2 0.971

old 4 1 0.722
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 Own_house is the best 

choice for the root. 
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We build the final tree
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 We can use information gain ratio to evaluate the 

impurity as well (see the handout)



Handling continuous attributes
• Handle continuous attribute by splitting into two intervals (can be more) 

at each node. 

• How to find the best threshold to divide?
• Use information gain or gain ratio again

• Sort all the values of an continuous attribute in increasing order {v1, v2, …, vr}, 

• One possible threshold between two adjacent values vi and vi+1. Try all possible 
thresholds and find the one that maximizes the gain (or gain ratio). 
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An example in a continuous space
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Avoid overfitting in classification

• Overfitting:  A tree may overfit the training data
• Good accuracy on training data but poor on test data
• Symptoms: tree too deep and too many branches, some 

may reflect anomalies due to noise or outliers

• Two approaches to avoid overfitting 
• Pre-pruning: Halt tree construction early

• Difficult to decide because we do not know what may happen subsequently if we keep 
growing the tree. 

• Post-pruning: Remove branches or sub-trees from a “fully 
grown” tree.

• This method is commonly used. C4.5 uses a statistical method to estimates the errors at 
each node for pruning. 

• A validation set may be used for pruning as well.
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An example
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Likely to overfit the data



Other issues in decision tree learning

• From tree to rules, and rule pruning

• Handling of miss values

• Handing skewed distributions

• Handling attributes and classes with different costs. 

• Attribute construction

• Etc.
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Evaluating classification methods

• Predictive accuracy

• Efficiency
• time to construct the model 
• time to use the model

• Robustness: handling noise and missing values

• Scalability: efficiency in disk-resident databases 

• Interpretability: 
• understandable and insight provided by the model

• Compactness of the model: size of the tree, or the number of 
rules. 
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Evaluation methods
• Holdout set: The available data set D is divided into two 

disjoint subsets, 
• the training set Dtrain (for learning a model)

• the test set Dtest (for testing the model)

• Important: training set should not be used in testing and 
the test set should not be used in learning. 

• Unseen test set provides a unbiased estimate of accuracy. 

• The test set is also called the holdout set. (the examples in 
the original data set D are all labeled with classes.) 

• This method is mainly used when the data set D is large. 
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Evaluation methods (cont…)
• n-fold cross-validation: The available data is partitioned into 

n equal-size disjoint subsets. 

• Use each subset as the test set and combine the rest n-1 
subsets as the training set to learn a classifier. 

• The procedure is run n times, which give n accuracies. 

• The final estimated accuracy of learning is the average of 
the n accuracies. 

• 10-fold and 5-fold cross-validations are commonly used. 

• This method is used when the available data is not large. 
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Evaluation methods (cont…)
• Leave-one-out cross-validation: This method is used when the data set 

is very small. 

• It is a special case of cross-validation

• Each fold of the cross validation has only a single test example and all 
the rest of the data is used in training. 

• If the original data has m examples, this is m-fold cross-validation
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Evaluation methods (cont…)
• Validation set: the available data is divided into three 

subsets, 
• a training set, 

• a validation set and 

• a test set. 

• A validation set is used frequently for estimating 
parameters in learning algorithms. 

• In such cases, the values that give the best accuracy on the 
validation set are used as the final parameter values. 

• Cross-validation can be used for parameter estimating as 
well. 
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Classification measures
• Accuracy is only one measure (error = 1-accuracy).

• Accuracy is not suitable in some applications. 

• In text mining, we may only be interested in the 
documents of a particular topic, which are only a small 
portion of a big document collection.  

• In classification involving skewed or highly imbalanced 
data, e.g., network intrusion and financial fraud detections, 
we are interested only in the minority class. 

• High accuracy does not mean any intrusion is detected. 

• E.g., 1% intrusion. Achieve 99% accuracy by doing nothing. 

• The class of interest is commonly called the positive class, 
and the rest negative classes.
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Precision and recall measures

• Used in information retrieval and text classification. 

• We use a confusion matrix to introduce them. 
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Precision and recall measures (cont…)
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 Precision p is the number of correctly classified 

positive examples divided by the total number of 

examples that are classified as positive. 

 Recall r is the number of correctly classified positive 

examples divided by the total number of actual 

positive examples in the test set. 
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An example

• This confusion matrix gives
• precision p = 100% and 

• recall r = 1% 

because we only classified one positive example correctly and no 
negative examples wrongly. 

• Note: precision and recall only measure classification on 
the positive class. 
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F1-value (also called F1-score)
• It is hard to compare two classifiers using two measures. F1 score 

combines precision and recall into one measure

• The harmonic mean of two numbers tends to be closer to the 
smaller of the two. 

• For F1-value to be large, both p and r much be large. 
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Receive operating characteristics curve

• It is commonly called the ROC curve.

• It is a plot of the true positive rate (TPR) against the false positive 
rate (FPR).

• True positive rate:

• False positive rate:
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Sensitivity and Specificity

• In statistics, there are two other evaluation measures:
• Sensitivity: Same as TPR

• Specificity: Also called True Negative Rate (TNR)

• Then we have
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Example ROC curves
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Area under the curve (AUC)

• Which classifier is better, C1 or C2? 
• It depends on which region you talk about.

• Can we have one measure?
• Yes, we compute the area under the curve (AUC)

• If AUC for Ci is greater than that of Cj, it is said that Ci is better than Cj. 
• If a classifier is perfect, its AUC value is 1

• If a classifier makes all random guesses, its AUC value is 0.5.
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Drawing an ROC curve
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Another evaluation method: 
Scoring and ranking

• Scoring is related to classification.

• We are interested in a single class (positive class), e.g., buyers class in a 
marketing database. 

• Instead of assigning each test instance a definite class, scoring assigns a 
probability estimate (PE) to indicate the likelihood that the example 
belongs to the positive class. 
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Ranking and lift analysis

• After each example is given a PE score, we can rank all 
examples according to their PEs. 

• We then divide the data into n (say 10) bins. A lift 
curve can be drawn according how many positive 
examples are in each bin. This is called lift analysis. 

• Classification systems can be used for scoring. Need 
to produce a probability estimate.

• E.g., in decision trees, we can use the confidence value at each 
leaf node as the score. 
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An example
• We want to send promotion materials to potential customers to sell a 

watch. 

• Each package cost $0.50 to send (material and postage). 

• If a watch is sold, we make $5 profit. 

• Suppose we have a large amount of past data for building a 
predictive/classification model. We also have a large list of potential 
customers.

• How many packages should we send and who should we send to?
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An example
• Assume that the test set has 10000 instances. Out of this, 500 are 

positive cases. 

• After the classifier is built, we score each test instance. We then rank the 
test set, and divide the ranked test set into 10 bins.

• Each bin has 1000 test instances.

• Bin 1 has 210 actual positive instances

• Bin 2 has 120 actual positive instances

• Bin 3 has 60 actual positive instances

• …

• Bin 10 has 5 actual positive instances
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Lift curve
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Summary
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Introduction
• We showed that a decision tree can be converted to a set of rules. 

• Can we find if-then rules directly from data for classification?

• Yes. 

• Rule induction systems find a sequence of rules (also called a decision 
list) for classification. 

• The commonly used strategy is sequential covering. 
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Sequential covering
• Learn one rule at a time, sequentially.

• After a rule is learned, the training examples covered by the rule are 
removed. 

• Only the remaining data are used to find subsequent rules. 

• The process repeats until some stopping criteria are met. 

Note: a rule covers an example if the example satisfies the conditions of 
the rule. 

• We introduce two specific algorithms. 
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Algorithm 1: ordered rules
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 The final classifier:

<r1, r2, …, rk, default-class> 



Algorithm 2: ordered classes
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 Rules of the same class are together. 



Algorithm 1 vs. Algorithm 2
• Differences: 

• Algorithm 2: Rules of the same class are found together. The classes are ordered. 
Normally, minority class rules are found first. 

• Algorithm 1: In each iteration, a rule of any class may be found. Rules are 
ordered according to the sequence they are found. 

• Use of rules: the same. 
• For a test instance, we try each rule sequentially. The first rule that covers the 

instance classifies it. 

• If no rule covers it, default class is used, which is the majority class in the data.
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Learn-one-rule-1 function
• Let us consider only categorical attributes

• Let attributeValuePairs contains all possible attribute-value pairs (Ai = ai) 
in the data. 

• Iteration 1: Each attribute-value is evaluated as the condition of a rule. 
I.e., we compare all such rules Ai = ai  cj and keep the best one,

• Evaluation: e.g., entropy

• Also store the k best rules for beam search (to search more space). Called new 
candidates. 
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Learn-one-rule-1 function (cont …)
• In iteration m, each (m-1)-condition rule in the new candidates set is 

expanded by attaching each attribute-value pair in attributeValuePairs as 
an additional condition to form candidate rules. 

• These new candidate rules are then evaluated in the same way as 1-
condition rules. 

• Update the best rule

• Update the k-best rules

• The process repeats unless stopping criteria are met. 
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Learn-one-rule-1 algorithm
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Learn-one-rule-2 function
• Split the data:

• Pos -> GrowPos and PrunePos

• Neg -> GrowNeg and PruneNeg

• Grow sets are used to find a rule (BestRule), and the Prune sets are used 
to prune the rule. 

• GrowRule works similarly as in learn-one-rule-1, but the class is fixed in 
this case. Recall the second algorithm finds all rules of a class first (Pos) 
and then moves to the next class. 
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Learn-one-rule-2 algorithm
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Rule evaluation in learn-one-rule-2
• Let the current partially developed rule be:

R: av1, .., avk  class
• where each avj is a condition (an attribute-value pair). 

• By adding a new condition avk+1, we obtain the rule 

R+: av1, .., avk, avk+1 class. 

• The evaluation function for R+ is the following 
information gain criterion (which is different from the 
gain function used in decision tree learning).

• Rule with the best gain is kept for further extension.
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Rule pruning in learn-one-rule-2

• Consider deleting every subset of conditions from the 
BestRule, and choose the deletion that maximizes the 
function: 

where p (n) is the number of examples in PrunePos 
(PruneNeg) covered by the current rule (after a deletion). 
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Discussions
• Accuracy: similar to decision tree

• Efficiency: Run much slower than decision tree induction 
because

• To generate each rule, all possible rules are tried on the data (not 
really all, but still a lot).

• When the data is large and/or the number of attribute-value pairs 
are large. It may run very slowly. 

• Rule interpretability: Can be a problem because each rule 
is found after data covered by previous rules are removed. 
Thus, each rule may not be treated as independent of 
other rules. 
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Three approaches

• Three main approaches of using association rules for classification.
• Using class association rules to build classifiers

• Using class association rules as attributes/features

• Using normal association rules for classification
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Using Class Association Rules
• Classification: mine a small set of rules existing in the data to form a 

classifier or predictor.
• It has a target attribute: Class attribute

• Association rules: have no fixed target, but we can fix a target.

• Class association rules (CAR): has a target class attribute. E.g.,

Own_house = true  Class =Yes  [sup=6/15, conf=6/6]
• CARs can obviously be used for classification.
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Decision tree vs. CARs

• The decision tree below generates the following 3 rules.

Own_house = true  Class =Yes [sup=6/15, conf=6/6]

Own_house = false, Has_job = true  Class=Yes  [sup=5/15, conf=5/5]

Own_house = false, Has_job = false  Class=No  [sup=4/15, conf=4/4]
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 But there are many other 

rules that are not found by 

the decision tree



There are many more rules

• CAR mining finds all of 
them. 

• In many cases, rules not in 
the decision tree (or a rule 
list) may perform 
classification better. 

• Such rules may also be 
actionable in practice
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Decision tree vs. CARs (cont …)
• Association mining require discrete attributes. Decision tree learning 

uses both discrete and continuous attributes.
• CAR mining requires continuous attributes discretized. There are several such 

algorithms. 

• Decision tree is not constrained by minsup or minconf, and thus is able 
to find rules with very low support. Of course, such rules may be pruned 
due to the possible overfitting.
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Considerations in CAR mining

• Multiple minimum class supports
• Deal with imbalanced class distribution, e.g., some class is rare, 98% 

negative and 2% positive.

• We can set the minsup(positive) = 0.2% and minsup(negative) = 2%. 

• If we are not interested in classification of negative class, we may not want 
to generate rules for negative class. We can set minsup(negative)=100% or 
more.

• Rule pruning may be performed. 
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Building classifiers
• There are many ways to build classifiers using CARs. Several existing 

systems available.

• Strongest rules: After CARs are mined, do nothing.
• For each test case, we simply choose the most confident rule that covers the test 

case to classify it. Microsoft SQL Server has a similar method. 

• Or, using a combination of rules.

• Selecting a subset of Rules
• used in the CBA system.

• similar to sequential covering. 
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CBA: Rules are sorted first

Definition: Given two rules, ri and rj, ri  rj (also called ri precedes rj or ri
has a higher precedence than rj) if 

• the confidence of ri is greater than that of rj, or

• their confidences are the same, but the support of ri is greater than that of rj, or 

• both the confidences and supports of ri and rj are the same, but ri is generated 
earlier than rj.

A CBA classifier L is of the form: 

L = <r1, r2, …, rk, default-class> 
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Classifier building using CARs

• This algorithm is very inefficient

• CBA has a very efficient algorithm (quite sophisticated) that scans 
the data at most two times. 
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Using rules as features

• Most classification methods do not fully explore multi-
attribute correlations, e.g., naïve Bayesian, decision 
trees, rules induction, etc. 

• This method creates extra attributes to augment the 
original data by 

• Using the conditional parts of rules

• Each rule forms an new attribute

• If a data record satisfies the condition of a rule, the attribute 
value is 1, and 0 otherwise

• One can also use only rules as attributes
• Throw away the original data
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Using normal association rules for 
classification

• A widely used approach 

• Main approach: strongest rules

• Main application
• Recommendation systems in e-commerce Web site (e.g., 

amazon.com). 

• Each rule consequent is the recommended item. 

• Major advantage: any item can be predicted.

• Main issue: 
• Coverage: rare item rules are not found using classic algo.

• Multiple min supports and support difference constraint help a 
great deal. 

FB/IG/TW: @educlashco 85



Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Bayesian classification

• Probabilistic view:  Supervised learning can naturally be 
studied from a probabilistic point of view. 

• Let A1 through Ak be attributes with discrete values. The 
class is C. 

• Given a test example d with observed attribute values a1

through ak.

• Classification is basically to compute the following 
posteriori probability. The prediction is the class cj such 
that 

is maximal
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Apply Bayes’ Rule
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Computing probabilities

• The denominator P(A1=a1,...,Ak=ak) is irrelevant for decision making since it 
is the same for every class. 

• We only need P(A1=a1,...,Ak=ak | C=ci), which can be written as 

Pr(A1=a1|A2=a2,...,Ak=ak, C=cj)* Pr(A2=a2,...,Ak=ak |C=cj)

• Recursively, the second factor above can be written in the same way, and 
so on.

• Now an assumption is needed. 
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Conditional independence assumption

• All attributes are conditionally independent given the class C = cj.

• Formally, we assume,

Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj)

and so on for A2 through A|A|. I.e., 
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Final naïve Bayesian classifier

• We are done!

• How do we estimate P(Ai = ai| C=cj)? Easy!. 
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Classify a test instance
• If we only need a decision on the most probable class for the test 

instance, we only need the numerator as its denominator is the same for 
every class. 

• Thus, given a test example, we compute the following to decide the 
most probable class for the test instance 
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An example
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An Example (cont …)

• For C = t, we have 

• For class C = f, we have

• C = t is more probable. t is the final class. 
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Additional issues 
• Numeric attributes: Naïve Bayesian learning assumes that all attributes 

are categorical. Numeric attributes need to be discretized.

• Zero counts: An particular attribute value never occurs together with a 
class in the training set. We need smoothing.

• Missing values: Ignored 
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On naïve Bayesian classifier

• Advantages: 
• Easy to implement

• Very efficient

• Good results obtained in many applications

• Disadvantages
• Assumption: class conditional independence, therefore loss of accuracy 

when the assumption is seriously violated (those highly correlated data 
sets)
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Text classification/categorization
• Due to the rapid growth of online documents in 

organizations and on the Web, automated document 
classification has become an important problem. 

• Techniques discussed previously can be applied to text 
classification, but they are not as effective as the next 
three methods. 

• We first study a naïve Bayesian method specifically 
formulated for texts, which makes use of some text 
specific features. 

• However, the ideas are similar to the preceding method. 
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Probabilistic framework
• Generative model: Each document is generated by a parametric 

distribution governed by a set of hidden parameters. 

• The generative model makes two assumptions
• The data (or the text documents) are generated by a mixture model, 

• There is one-to-one correspondence between mixture components and 
document classes. 
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Mixture model
• A mixture model models the data with a number of statistical 

distributions. 
• Intuitively, each distribution corresponds to a data cluster and the parameters of 

the distribution provide a description of the corresponding cluster. 

• Each distribution in a mixture model is also called a mixture component. 

• The distribution/component can be of any kind 
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An example
• The figure shows a plot of the probability density function of a 1-

dimensional data set (with two classes) generated by 
• a mixture of two Gaussian distributions, 

• one per class, whose parameters (denoted by i) are the mean (i) and the standard 
deviation (i), i.e., i = (i, i). 
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Mixture model (cont …)
• Let the number of mixture components (or distributions) in a mixture 

model be K. 

• Let the jth distribution have the parameters j. 

• Let  be the set of parameters of all components,  = {1, 2, …, K, 1, 
2, …, K}, where j is the mixture weight (or mixture probability) of the 
mixture component j and j is the parameters of component j. 

• How does the model generate documents?
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Document generation
• Due to one-to-one correspondence, each class 

corresponds to a mixture component. The mixture weights 
are class prior probabilities, i.e., j = Pr(cj|). 

• The mixture model generates each document di by:
• first selecting a mixture component (or class) according to class 

prior probabilities (i.e., mixture weights), j = Pr(cj|). 

• then having this selected mixture component (cj) generate a 
document di according to its parameters, with distribution Pr(di|cj; 
) or more precisely Pr(di|cj; j).  
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Model text documents
• The naïve Bayesian classification treats each document as a “bag of 

words”. The generative model makes the following further assumptions:
• Words of a document are generated independently of context given the class 

label. The familiar naïve Bayes assumption used before.  

• The probability of a word is independent of its position in the document. The 
document length is chosen independent of its class. 
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Multinomial distribution 

• With the assumptions, each document can be regarded as generated by 
a multinomial distribution. 

• In other words, each document is drawn from a multinomial distribution 
of words with as many independent trials as the length of the document. 

• The words are from a given vocabulary V = {w1, w2, …, w|V|}. 

FB/IG/TW: @educlashco 105



Use probability function of multinomial 
distribution 

where Nti is the number of times that word wt occurs 
in document di and 
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Parameter estimation 
• The parameters are estimated based on empirical counts. 

• In order to handle 0 counts for infrequent occurring words 
that do not appear in the training set, but may appear in 
the test set, we need to smooth the probability. Lidstone
smoothing, 0    1
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Parameter estimation (cont …)
• Class prior probabilities, which are mixture weights j, can be easily 

estimated using training data 
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Classification
• Given a test document di, from Eq. (23) (27) and (28)
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Discussions
• Most assumptions made by naïve Bayesian learning are violated to some 

degree in practice. 

• Despite such violations, researchers have shown that naïve Bayesian 
learning produces very accurate models. 

• The main problem is the mixture model assumption. When this assumption is 
seriously violated, the classification performance can be poor.

• Naïve Bayesian learning is extremely efficient.  
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Introduction
• Support vector machines were invented by V. Vapnik and 

his co-workers in 1970s in Russia and became known to 
the West in 1992. 

• SVMs are linear classifiers that find a hyperplane to 
separate two class of data, positive and negative. 

• Kernel functions are used for nonlinear separation.

• SVM not only has a rigorous theoretical foundation, but 
also performs classification more accurately than most 
other methods in applications, especially for high 
dimensional data. 

• It is perhaps the best classifier for text classification. 
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Basic concepts

• Let the set of training examples D be 

{(x1, y1), (x2, y2), …, (xr, yr)}, 

where xi = (x1, x2, …, xn) is an input vector in a real-valued 
space X  Rn and yi is its class label (output value), yi  {1, 
-1}. 

1: positive class and -1: negative class. 

• SVM finds a linear function of the form (w: weight vector) 

f(x) = w  x + b
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The hyperplane
• The hyperplane that separates positive and negative 

training data is

w  x + b = 0 

• It is also called the decision boundary (surface).

• So many possible hyperplanes, which one to choose?
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Maximal margin hyperplane
• SVM looks for the separating hyperplane with the largest margin. 

• Machine learning theory says this hyperplane minimizes the error 
bound
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Linear SVM: separable case
• Assume the data are linearly separable. 

• Consider a positive data point (x+, 1) and a negative (x-, -1) 
that are closest to the hyperplane

<w  x> + b = 0. 

• We define two parallel hyperplanes, H+ and H-, that pass 
through x+ and x- respectively. H+ and H- are also parallel 
to <w  x> + b = 0. 

FB/IG/TW: @educlashco 116



Compute the margin
• Now let us compute the distance between the two margin 

hyperplanes H+ and H-. Their distance is the margin (d+ + 
d in the figure). 

• Recall from vector space in algebra that the 
(perpendicular) distance from a point xi to the hyperplane 
w  x + b = 0 is:

where ||w|| is the norm of w,  
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Compute the margin (cont …)
• Let us compute d+. 

• Instead of computing the distance from x+ to the 
separating hyperplane w  x + b = 0, we pick up any point 
xs on w  x + b = 0 and compute the distance from xs to 
w  x+ + b = 1 by applying the distance Eq. (36) and 
noticing w  xs + b = 0, 
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A optimization problem!

Definition (Linear SVM: separable case): Given a set of linearly 
separable training examples, 

D = {(x1, y1), (x2, y2), …, (xr, yr)}

Learning is to solve the following constrained minimization 
problem, 

summarizes

w  xi + b  1     for yi = 1
w  xi + b  -1 for yi = -1.
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Solve the constrained minimization
• Standard Lagrangian method

where i  0 are the Lagrange multipliers.

• Optimization theory says that an optimal solution to (41) must satisfy 
certain conditions, called Kuhn-Tucker conditions, which are necessary
(but not sufficient)

• Kuhn-Tucker conditions play a central role in constrained optimization. 
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Kuhn-Tucker conditions

• Eq. (50) is the original set of constraints. 
• The complementarity condition (52) shows that only those data 

points on the margin hyperplanes (i.e., H+ and H-) can have i > 0 
since for them yi(w  xi + b) – 1 = 0. 

• These points are called the support vectors, All the other 
parameters i = 0.
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Solve the problem
• In general, Kuhn-Tucker conditions are necessary for an 

optimal solution, but not sufficient. 

• However, for our minimization problem with a convex 
objective function and linear constraints, the Kuhn-Tucker 
conditions are both necessary and sufficient for an 
optimal solution.

• Solving the optimization problem is still a difficult task due 
to the inequality constraints. 

• However, the Lagrangian treatment of the convex 
optimization problem leads to an alternative dual 
formulation of the problem, which is easier to solve than 
the original problem (called the primal). 
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Dual formulation
• From primal to a dual: Setting to zero the partial derivatives of the 

Lagrangian (41) with respect to the primal variables (i.e., w and b), and 
substituting the resulting relations back into the Lagrangian. 

• I.e., substitute (48) and (49), into the original Lagrangian (41) to eliminate the 
primal variables 
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Dual optimization prolem
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 This dual formulation is called the Wolfe dual. 

 For the convex objective function and linear constraints of 

the primal, it has the property that the maximum of LD

occurs at the same values of w, b and i, as the minimum 

of LP (the primal). 

 Solving (56) requires numerical techniques and clever 

strategies, which are beyond our scope.



The final decision boundary
• After solving (56), we obtain the values for i, which are 

used to compute the weight vector w and the bias b using 
Equations (48) and (52) respectively. 

• The decision boundary

• Testing: Use (57). Given a test instance z, 

• If (58) returns 1, then the test instance z is classified as 
positive; otherwise, it is classified as negative. 
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Linear SVM: Non-separable case

• Linear separable case is the ideal situation. 

• Real-life data may have noise or errors. 
• Class label incorrect or randomness in the application domain. 

• Recall in the separable case, the problem was

• With noisy data, the constraints may not be satisfied. 
Then, no solution!
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Relax the constraints 

• To allow errors in data, we relax the margin constraints by introducing 
slack variables, i ( 0) as follows: 

w  xi + b  1  i for yi = 1

w  xi + b  1 + i for yi = -1.

• The new constraints:

Subject to: yi(w  xi + b)  1  i, i =1, …, r,

i  0, i =1, 2, …, r.
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Geometric interpretation

• Two error data points xa and xb (circled) in wrong regions 
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Penalize errors in objective function
• We need to penalize the errors in the objective function. 

• A natural way of doing it is to assign an extra cost for errors to change 
the objective function to 

• k = 1 is commonly used, which has the advantage that neither i nor its 
Lagrangian multipliers appear in the dual formulation. 
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New optimization problem

• This formulation is called the soft-margin SVM. The primal Lagrangian is

where i, i  0 are the Lagrange multipliers
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Kuhn-Tucker conditions 
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From primal to dual

• As the linear separable case, we transform the primal to a dual by 
setting to zero the partial derivatives of the Lagrangian (62) with respect 
to the primal variables (i.e., w, b and i), and substituting the resulting 
relations back into the Lagrangian. 

• Ie.., we substitute Equations (63), (64) and (65) into the primal 
Lagrangian (62). 

• From Equation (65), C  i  i = 0, we can deduce that i  C because i 
 0. 
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Dual 

• The dual of (61) is 

• Interestingly, i and its Lagrange multipliers i are not in 
the dual. The objective function is identical to that for the 
separable case.

• The only difference is the constraint i  C. 
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Find primal variable values

• The dual problem (72) can be solved numerically. 

• The resulting i values are then used to compute w and b. 
w is computed using Equation (63) and b is computed using 
the Kuhn-Tucker complementarity conditions (70) and (71). 

• Since no values for i, we need to get around it. 
• From Equations (65), (70) and (71), we observe that if 0 < i < C 

then both i = 0 and yiw  xi + b – 1 + i = 0. Thus, we can use any 
training data point for which 0 < i < C and Equation (69) (with i = 
0) to compute b.
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(65), (70) and (71) in fact tell us more 

• (74) shows a very important property of SVM. 
• The solution is sparse in i. Many training data points are outside 

the margin area and their i’s in the solution are 0. 

• Only those data points that are on the margin (i.e., yi(w  xi + b) = 1, 
which are support vectors in the separable case), inside the margin 
(i.e., i = C and yi(w  xi + b) < 1), or errors are non-zero. 

• Without this sparsity property, SVM would not be practical for large 
data sets. 
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The final decision boundary
• The final decision boundary is (we note that many i’s are 

0)

• The decision rule for classification (testing) is the same as 
the separable case, i.e., 

sign(w  x + b). 

• Finally, we also need to determine the parameter C in the 
objective function. It is normally chosen through the use 
of a validation set or cross-validation.
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How to deal with nonlinear separation?

• The SVM formulations require linear separation. 

• Real-life data sets may need nonlinear separation. 

• To deal with nonlinear separation, the same formulation 
and techniques as for the linear case are still used. 

• We only transform the input data into another space 
(usually of a much higher dimension) so that 

• a linear decision boundary can separate positive and negative 
examples in the transformed space, 

• The transformed space is called the feature space. The 
original data space is called the input space. 
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Space transformation
• The basic idea is to map the data in the input space X to a feature space 

F via a nonlinear mapping , 

• After the mapping, the original training data set {(x1, y1), (x2, y2), …, (xr, 
yr)} becomes: 

{((x1), y1), ((x2), y2), …, ((xr), yr)} 
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Geometric interpretation
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 In this example, the transformed space is 

also 2-D. But usually, the number of 

dimensions in the feature space is much 

higher than that in the input space



Optimization problem in (61) becomes 
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An example space transformation
• Suppose our input space is 2-dimensional, and we choose the following 

transformation (mapping) from 2-D to 3-D: 

• The training example ((2, 3), -1) in the input space is transformed to the 
following in the feature space: 

((4, 9, 8.5), -1) 
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Problem with explicit transformation

• The potential problem with this explicit data 
transformation and then applying the linear SVM is that it 
may suffer from the curse of dimensionality. 

• The number of dimensions in the feature space can be 
huge with some useful transformations even with 
reasonable numbers of attributes in the input space. 

• This makes it computationally infeasible to handle.

• Fortunately, explicit transformation is not needed. 
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Kernel functions
• We notice that in the dual formulation both 

• the construction of the optimal hyperplane (79) in F and 

• the evaluation of the corresponding decision function (80)

only require dot products (x)  (z) and never the mapped vector 
(x) in its explicit form. This is a crucial point. 

• Thus, if we have a way to compute the dot product (x) 
(z) using the input vectors x and z directly, 

• no need to know the feature vector (x) or even  itself.

• In SVM, this is done through the use of kernel functions, 
denoted by K, 

K(x, z) = (x)  (z)
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An example kernel function

• Polynomial kernel
K(x, z) = x  zd

• Let us compute the kernel with degree d = 2 in a 2-
dimensional space: x = (x1, x2) and z = (z1, z2).

• This shows that the kernel x  z2 is a dot product in a 
transformed feature space 
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Kernel trick
• The derivation in (84) is only for illustration purposes. 

• We do not need to find the mapping function. 

• We can simply apply the kernel function directly by 
• replace all the dot products (x)  (z) in (79) and (80) with the kernel function 

K(x, z) (e.g., the polynomial kernel x  zd in (83)). 

• This strategy is called the kernel trick.
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Is it a kernel function?

• The question is: how do we know whether a function is a kernel without 
performing the derivation such as that in (84)? I.e, 

• How do we know that a kernel function is indeed a dot product in some feature 
space?

• This question is answered by a theorem called the Mercer’s theorem, 
which we will not discuss here. 
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Commonly used kernels
• It is clear that the idea of kernel generalizes the dot 

product in the input space. This dot product is also a 
kernel with the feature map being the identity 
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Some other issues in SVM
• SVM works only in a real-valued space. For a categorical 

attribute, we need to convert its categorical values to 
numeric values. 

• SVM does only two-class classification. For multi-class 
problems, some strategies can be applied, e.g., one-
against-rest, and error-correcting output coding. 

• The hyperplane produced by SVM is hard to understand by 
human users. The matter is made worse by kernels. Thus, 
SVM is commonly used in applications that do not 
required human understanding.
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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k-Nearest Neighbor Classification (kNN)
• Unlike all the previous learning methods, kNN does not build model from 

the training data. 

• To classify a test instance d, define k-neighborhood P as k nearest 
neighbors of d

• Count number n of training instances in P that belong to class cj

• Estimate Pr(cj|d) as n/k

• No training is needed. Classification time is linear in training set size for 
each test case. 
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kNNAlgorithm
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 k is usually chosen empirically via a validation 

set or cross-validation by trying a range of k

values. 

 Distance function is crucial, but depends on 

applications. 



Example: k=6 (6NN)
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Discussions
• kNN can deal with complex and arbitrary decision boundaries.

• Despite its simplicity, researchers have shown that the classification 
accuracy of kNN can be quite strong and in many cases as accurate as 
those elaborated methods.

• kNN is slow at the classification time

• kNN does not produce an understandable model 
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Ensemble methods: Bagging and Boosting

• Summary
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Combining classifiers
• So far, we have only discussed individual classifiers, i.e., how to build 

them and use them.

• Can we combine multiple classifiers to produce a better classifier?

• Yes, sometimes

• We discuss two main algorithms: 
• Bagging

• Boosting
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Bagging

 Breiman, 1996

 Bootstrap Aggregating = Bagging

 Application of bootstrap sampling

 Given: set D containing m training examples

 Create a sample S[i] of D by drawing m examples at 

random with replacement from D

 S[i] of size m: expected to leave out 0.37 of examples 

from D
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Bagging (cont…)

 Training

 Create k bootstrap samples S[1], S[2], …, S[k]

 Build a distinct classifier on each S[i] to produce k

classifiers, using the same learning algorithm.

 Testing

 Classify each new instance by voting of the k

classifiers (equal weights)



Bagging Example

Original 1 2 3 4 5 6 7 8

Training set 1 2 7 8 3 7 6 3 1

Training set 2 7 8 5 6 4 2 7 1

Training set 3 3 6 2 7 5 6 2 2

Training set 4 4 5 1 4 6 4 3 8
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Bagging (cont …)

• When does it help?

• When learner is unstable
• Small change to training set causes large change in the output classifier

• True for decision trees, neural networks; not true for k-nearest neighbor, naïve Bayesian, 
class association rules

• Experimentally, bagging can help substantially for unstable learners, may 
somewhat degrade results for stable learners
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Boosting
• A family of methods: 

• We only study AdaBoost (Freund & Schapire, 1996)

• Training
• Produce a sequence of classifiers (the same base learner)
• Each classifier is dependent on the previous one, and focuses on the previous 

one’s errors
• Examples that are incorrectly predicted in previous classifiers are given higher 

weights

• Testing
• For a test case, the results of the series of classifiers are combined to determine 

the final class of the test case.
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AdaBoost
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Weighted

training set

(x1, y1, w1)

(x2, y2, w2)

…

(xn, yn, wn)

Non-negative weights

sum to 1

 Build a classifier ht

whose accuracy on 

training set > ½ 
(better than random)

Change weights

called a weaker classifier



AdaBoost algorithm
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Bagging, Boosting and C4.5
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Does AdaBoost always work?

• The actual performance of boosting depends on the data and the base 
learner. 

• It requires the base learner to be unstable as bagging.

• Boosting seems to be susceptible to noise.
• When the number of outliners is very large, the emphasis placed on the hard 

examples can hurt the performance.
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Road Map
• Basic concepts

• Decision tree induction

• Evaluation of classifiers

• Rule induction

• Classification using association rules

• Naïve Bayesian classification

• Naïve Bayes for text classification

• Support vector machines

• K-nearest neighbor

• Summary
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Summary
• Applications of supervised learning are in almost any field 

or domain. 

• We studied 8 classification techniques.

• There are still many other methods, e.g., 
• Bayesian networks

• Neural networks

• Genetic algorithms

• Fuzzy classification

This large number of methods also show the importance of 
classification and its wide applicability. 

• It remains to be an active research area. 
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