
CHAPTER 6:

Dimensionality Reduction



Why Reduce Dimensionality?

 Reduces time complexity: Less computation

 Reduces space complexity: Less parameters

 Saves the cost of observing the feature

 Simpler models are more robust on small datasets

 More interpretable; simpler explanation

 Data visualization (structure, groups, outliers, etc) if plotted in 2 or 
3 dimensions
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Feature Selection vs Extraction

 Feature selection: Choosing k<d important features, ignoring the 
remaining d – k

Subset selection algorithms

 Feature extraction: Project the 

original xi , i =1,...,d dimensions to 

new k<d dimensions, zj , j =1,...,k

Principal components analysis (PCA), linear discriminant analysis 
(LDA), factor analysis (FA)
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Subset Selection

 There are 2d subsets of d features

 Forward search: Add the best feature at each step
 Set of features F initially Ø.

 At each iteration, find the best new feature

j = argmini E ( F  xi )
 Add xj to F if E ( F  xj ) < E ( F ) 

 Hill-climbing O(d2) algorithm

 Backward search: Start with all features and remove one at a time, if 
possible.

 Floating search (Add k, remove l)
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Principal Components Analysis (PCA)

 Find a low-dimensional space such that when x is projected there, 
information loss is minimized.

 The projection of x on the direction of w is: z = wTx

 Find w such that Var(z) is maximized

Var(z) = Var(wTx) = E[(wTx – wTμ)2] 

= E[(wTx – wTμ)(wTx – wTμ)]

= E[wT(x – μ)(x – μ)Tw]

= wT E[(x – μ)(x –μ)T]w = wT ∑ w

where Var(x)= E[(x – μ)(x –μ)T] = ∑
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 Maximize Var(z) subject to ||w||=1

∑w1 = αw1 that is, w1 is an eigenvector of ∑

Choose the one with the largest eigenvalue for Var(z) to be max

 Second principal component: Max Var(z2), s.t., ||w2||=1 and orthogonal 
to w1

∑ w2 = α w2 that is, w2 is another eigenvector of ∑

and so on.
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What PCA does

z = WT(x – m)

where the columns of W are the eigenvectors of ∑, and m is sample 
mean

Centers the data at the origin and rotates the axes
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How to choose k ?
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 Proportion of Variance (PoV) explained

when λi are sorted in descending order 

 Typically, stop at PoV>0.9

 Scree graph plots of PoV vs k, stop at “elbow”
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Factor Analysis

 Find a small number of factors z, which when combined generate x :

xi – µi = vi1z1 + vi2z2 + ... + vikzk + εi

where zj, j =1,...,k are the latent factors with 

E[ zj ]=0, Var(zj)=1, Cov(zi ,, zj)=0, i ≠ j , 

εi are the noise sources 

E[ εi ]= ψi, Cov(εi , εj) =0, i ≠ j, Cov(εi , zj) =0 ,

and vij are the factor loadings
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PCA vs FA

 PCA From x to z z = WT(x – µ)

 FA From z to x x – µ = Vz + ε
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Factor Analysis

 In FA, factors zj are stretched, rotated and translated to generate x
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Multidimensional Scaling
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 Given pairwise distances between N points, 

dij, i,j =1,...,N

place on a low-dim map s.t. distances are preserved.

 z = g (x | θ ) Find θ that min Sammon stress



Map of Europe by MDS
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Map from CIA – The World Factbook: http://www.cia.gov/



Linear Discriminant Analysis 

 Find a low-dimensional space 
such that when x is projected, 
classes are well-separated.

 Find w that maximizes
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 Between-class scatter:

 Within-class scatter:
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Fisher’s Linear Discriminant
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 Find w that max

 LDA soln:

 Parametric soln:
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 Within-class scatter: 

 Between-class scatter:

 Find W that max
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Isomap

 Geodesic distance is the distance along the manifold that the data 
lies in, as opposed to the Euclidean distance in the input space

FB/IG/TW: @educlashco 21



Isomap 

 Instances r and s are connected in the graph if 
||xr-xs||<e or if xs is one of the k neighbors of xr 

The edge length is ||xr-xs||

 For two nodes r and s not connected, the distance is equal 
to the shortest path between them

 Once the NxN distance matrix is thus formed, use MDS to 
find a lower-dimensional mapping
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Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html



Locally Linear Embedding

1. Given xr find its neighbors xs
(r)

2. Find Wrs that minimize

3. Find the new coordinates zr that minimize
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LLE on Optdigits
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Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html


