Dimensionality Reduction

Why Reduce Dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- Saves the cost of observing the feature
- Simpler models are more robust on small datasets
- More interpretable; simpler explanation
- Data visualization (structure, groups, outliers, etc) if plotted in 2 or 3 dimensions

/TW: @educlashco

Feature Selection vs Extraction

• Feature selection: Choosing k < d important features, ignoring the remaining d - k

Subset selection algorithms

Feature extraction: Project the original x_i, i =1,...,d dimensions to new k<d dimensions, z_i, j =1,...,k

Principal components analysis (PCA), linear discriminant analysis (LDA), factor analysis (FA)

IG/TW: @educlashco

Subset Selection

- There are 2^d subsets of d features
- Forward search: Add the best feature at each step
 - Set of features F initially \emptyset .
 - At each iteration, find the best new feature $j = \operatorname{argmin}_{i} E(F \cup X_{i})$
 - Add x_i to F if $E(F \cup x_i) < E(F)$
- Hill-climbing O(d²) algorithm
- Backward search: Start with all features and remove one at a time, if possible.
- Floating search (Add k, remove I)

Principal Components Analysis (PCA)

- Find a low-dimensional space such that when x is projected there, information loss is minimized.
- The projection of x on the direction of w is: $z = w^T x$
- Find w such that Var(z) is maximized

$$Var(z) = Var(\mathbf{w}^{T}\mathbf{x}) = E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})^{2}]$$

$$= E[(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})(\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\boldsymbol{\mu})]$$

$$= E[\mathbf{w}^{T}(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}\mathbf{w}]$$

$$= \mathbf{w}^{T} E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}]\mathbf{w} = \mathbf{w}^{T} \sum \mathbf{w}$$
where $Var(\mathbf{x}) = E[(\mathbf{x} - \boldsymbol{\mu})(\mathbf{x} - \boldsymbol{\mu})^{T}] = \sum$

B/IG/TW: @educlashco

5

• Maximize Var(z) subject to ||w||=1

$$\max_{\mathbf{w}_1} \mathbf{w}_1^\mathsf{T} \Sigma \mathbf{w}_1 - \alpha \left(\mathbf{w}_1^\mathsf{T} \mathbf{w}_1 - 1 \right)$$

 $\sum w_1 = \alpha w_1$ that is, w_1 is an eigenvector of \sum Choose the one with the ways regest (we gently a be (we gently a be well as $y_1 = \alpha w_1$) to be max

• Second principal component: Max $Var(z_2)$, s.t., $||w_2||=1$ and orthogonal to w_1

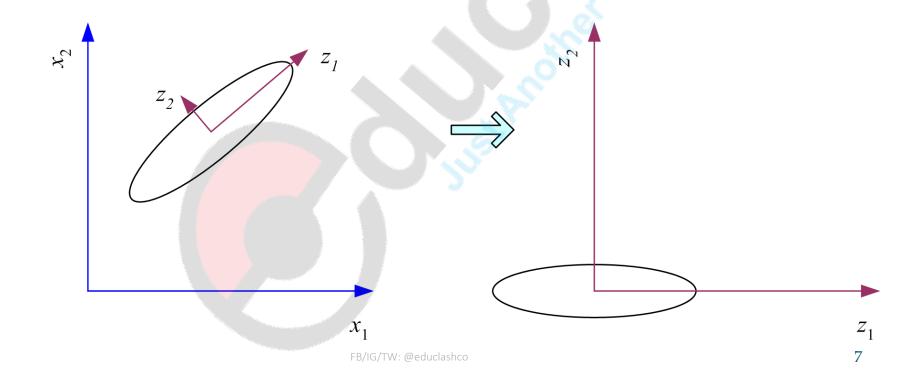
 $\sum w_2 = \alpha w_2$ that is, w_2 is another eigenvector of \sum and so on.

What PCA does

$$z = \mathbf{W}^{\mathsf{T}}(\mathbf{x} - \mathbf{m})$$

where the columns of W are the eigenvectors of Σ , and m is sample mean

Centers the data at the origin and rotates the axes



How to choose k?

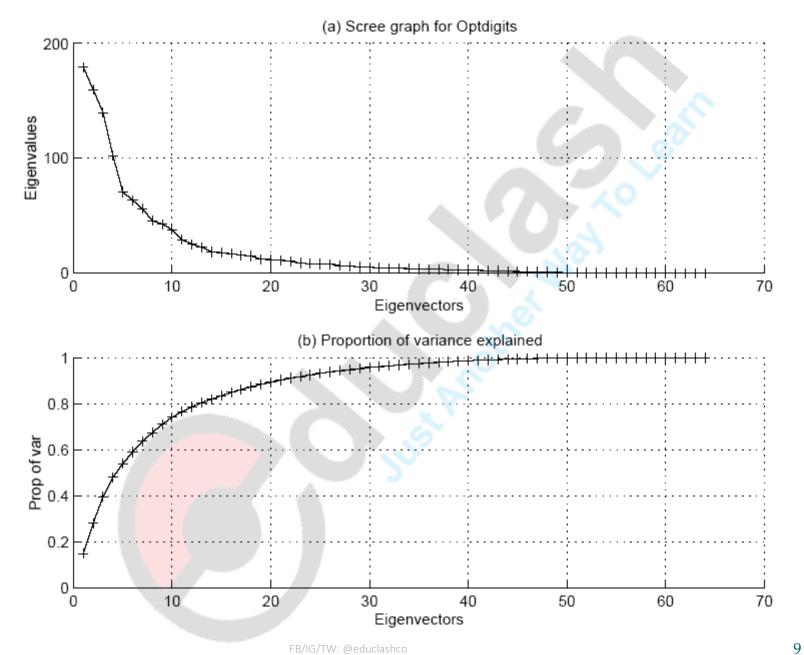
Proportion of Variance (PoV) explained

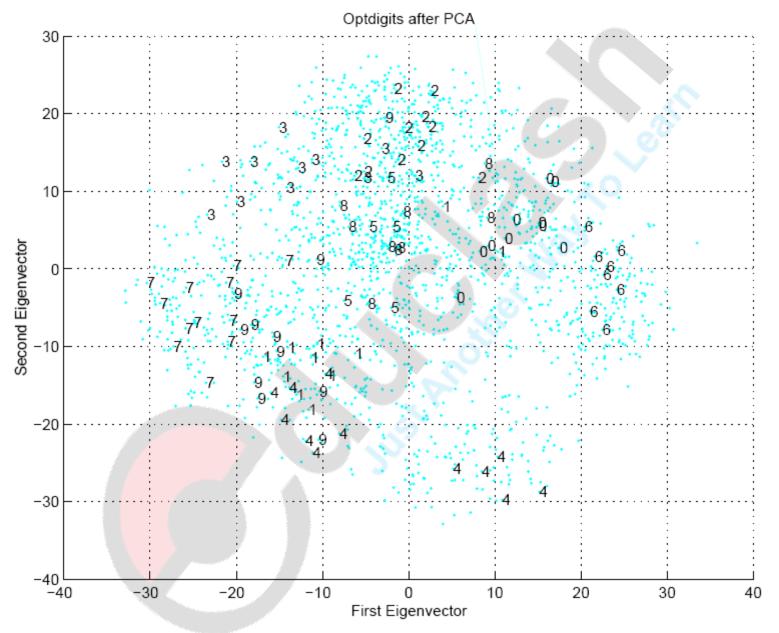
$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"

8





Factor Analysis

Find a small number of factors z, which when combined generate x:

$$X_i - \mu_i = V_{i1}Z_1 + V_{i2}Z_2 + \dots + V_{ik}Z_k + \varepsilon_i$$

where z_i , j = 1,...,k are the latent factors with

$$E[z_{i}]=0$$
, $Var(z_{i})=1$, $Cov(z_{i}, z_{i})=0$, $i \neq j$,

 ε_i are the noise sources

$$E[\epsilon_i] = \psi_i$$
, $Cov(\epsilon_i, \epsilon_j) = 0$, $i \neq j$, $Cov(\epsilon_i, z_j) = 0$,

and v_{ij} are the factor loadings

B/IG/TW: @educlashco 11

PCA vs FA

PCA

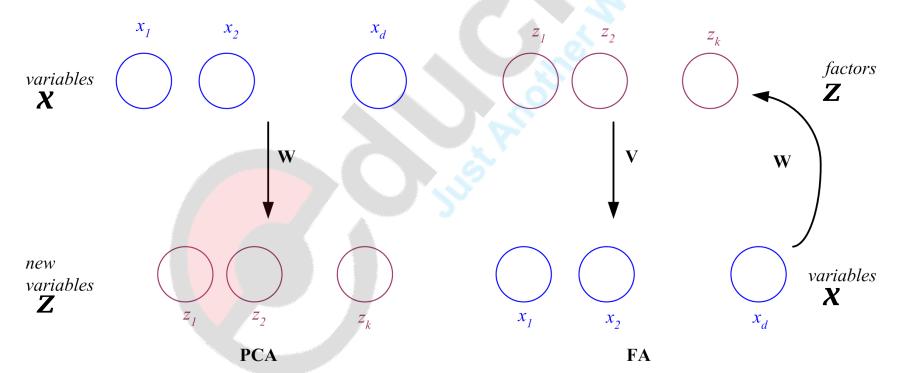
From x to z

 $z = \mathbf{W}^{T}(\mathbf{x} - \boldsymbol{\mu})$

FA

From z to x

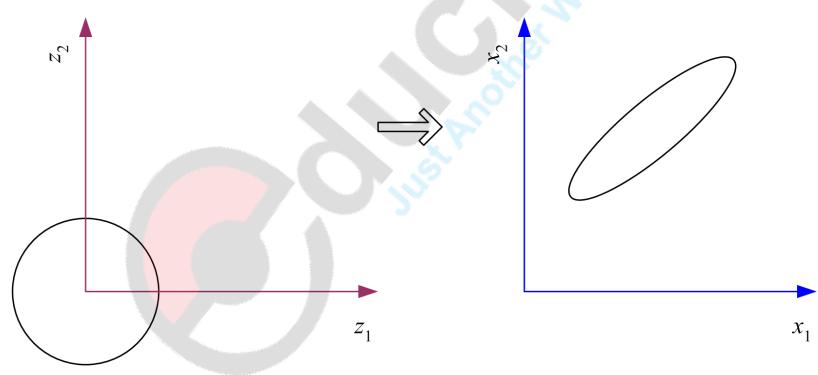
$$x - \mu = Vz + \varepsilon$$



FB/IG/TW: @educlashco 12

Factor Analysis

• In FA, factors z_j are stretched, rotated and translated to generate ${m x}$



13

Multidimensional Scaling

Given pairwise distances between N points,

$$d_{ii}$$
, $i,j = 1,...,N$

place on a low-dim map s.t. distances are preserved.

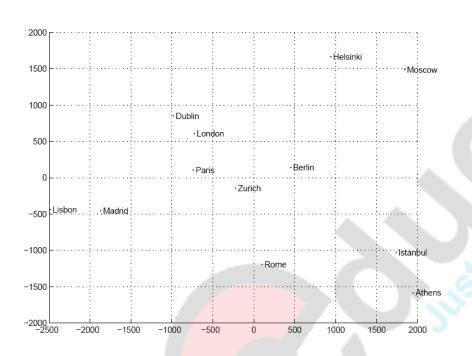
• $z = g(x \mid \vartheta)$ Find ϑ that min Sammon stress

$$E(\theta \mid \mathcal{X}) = \sum_{r,s} \frac{\left\| \mathbf{z}^{r} - \mathbf{z}^{s} \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$$

$$= \sum_{r,s} \frac{\left\| \mathbf{g}(\mathbf{x}^{r} \mid \theta) - \mathbf{g}(\mathbf{x}^{s} \mid \theta) \right\| - \left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}{\left\| \mathbf{x}^{r} - \mathbf{x}^{s} \right\|^{2}}$$

IG/TW: @educlashco 14

Map of Europe by MDS



Map from CIA – The World Factbook: http://www.cia.gov/

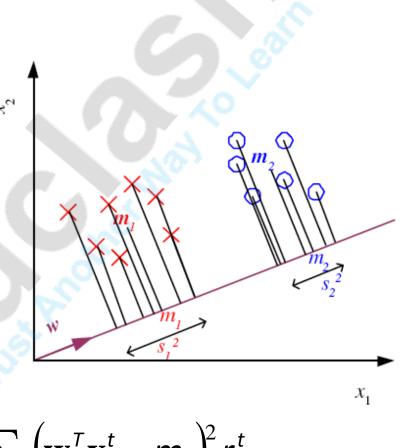
FB/IG/TW: @educlashco 15

Linear Discriminant Analysis

- Find a low-dimensional space such that when x is projected, classes are well-separated.
- Find w that maximizes

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

$$m_1 = \frac{\sum_{t} \mathbf{w}^T \mathbf{x}^t r^t}{\sum_{t} r^t} \quad s_1^2 = \sum_{t} (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$



Between-class scatter:

$$(\mathbf{m}_{1} - \mathbf{m}_{2})^{2} = (\mathbf{w}^{T} \mathbf{m}_{1} - \mathbf{w}^{T} \mathbf{m}_{2})^{2}$$

$$= \mathbf{w}^{T} (\mathbf{m}_{1} - \mathbf{m}_{2}) (\mathbf{m}_{1} - \mathbf{m}_{2})^{T} \mathbf{w}$$

$$= \mathbf{w}^{T} \mathbf{S}_{B} \mathbf{w} \text{ where } \mathbf{S}_{B} = (\mathbf{m}_{1} - \mathbf{m}_{2}) (\mathbf{m}_{1} - \mathbf{m}_{2})^{T}$$

• Within-class scatter:

$$s_1^2 = \sum_t (\mathbf{w}^T \mathbf{x}^t - \mathbf{m}_1)^2 r^t$$

$$= \sum_t \mathbf{w}^T (\mathbf{x}^t - \mathbf{m}_1) (\mathbf{x}^t - \mathbf{m}_1)^T \mathbf{w} r^t = \mathbf{w}^T \mathbf{S}_1 \mathbf{w}$$
where $\mathbf{S}_1 = \sum_t (\mathbf{x}^t - \mathbf{m}_1) (\mathbf{x}^t - \mathbf{m}_1)^T r^t$

$$s_1^2 + s_1^2 = \mathbf{w}^T \mathbf{S}_W \mathbf{w} \text{ where } \mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2$$

G/TW: @educlashco 17

Fisher's Linear Discriminant

Find w that max

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}} = \frac{\left| \mathbf{w}^T (\mathbf{m}_1 - \mathbf{m}_2) \right|^2}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

$$\mathbf{w} = \mathbf{c} \cdot \mathbf{S}_{w}^{-1} (\mathbf{m}_{1} - \mathbf{m}_{2})$$

Parametric soln:

$$\mathbf{w} = \Sigma^{-1}(\mu_1 - \mu_2)$$
when $p(\mathbf{x} \mid C_i) \sim \mathcal{N}(\mu_i, \Sigma)$

18

IG/TW: @educlashco

K>2 Classes

Within-class scatter:

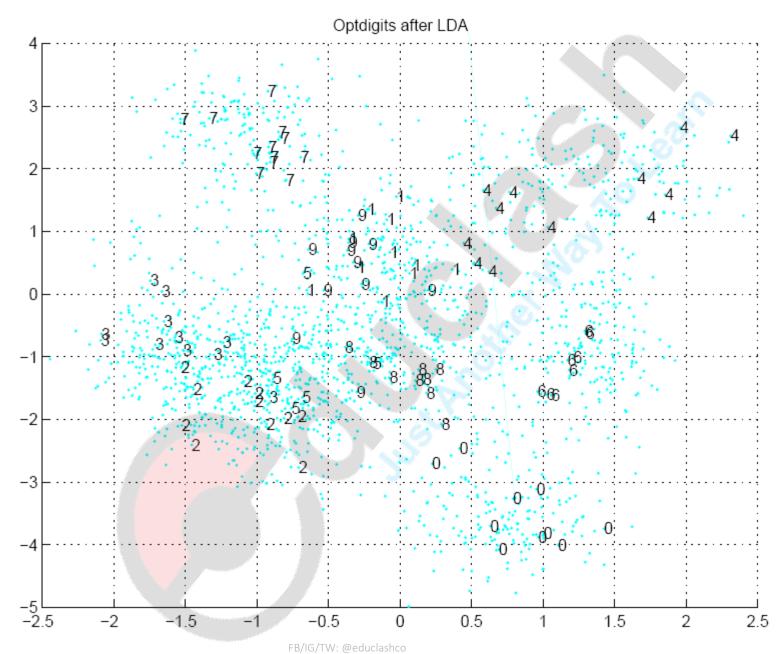
$$\mathbf{S}_{w} = \sum_{i=1}^{K} \mathbf{S}_{i} \qquad \mathbf{S}_{i} = \sum_{t} r_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right) \left(\mathbf{x}^{t} - \mathbf{m}_{i} \right)^{T}$$

• Between-class scatter:

• Find W that
$$\max_{k} \mathbf{S}_{B} = \sum_{i=1}^{K} N_{i} (\mathbf{m}_{i} - \mathbf{m}) (\mathbf{m}_{i} - \mathbf{m})^{T}$$
 $\mathbf{m} = \frac{1}{K} \sum_{i=1}^{K} \mathbf{m}_{i}$

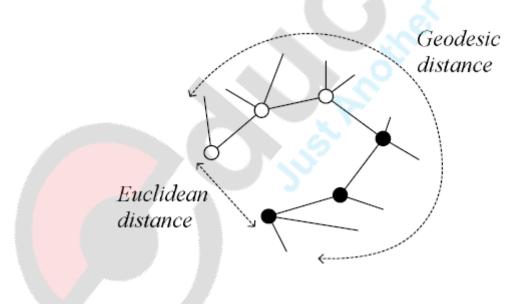
$$J(\mathbf{W}) = \frac{|\mathbf{W}^T \mathbf{S}_B \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_W \mathbf{W}|}$$
 The largest eigenvectors of $\mathbf{S}_W^{-1} \mathbf{S}_B$ Maximum rank of $K-1$

G/TW: @educlashco 19



Isomap

 Geodesic distance is the distance along the manifold that the data lies in, as opposed to the Euclidean distance in the input space

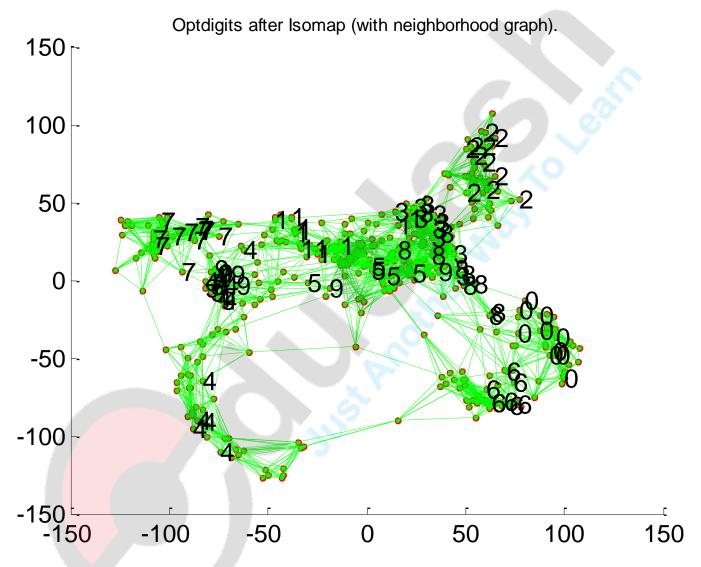


B/IG/TW: @educlashco 21

Isomap

- Instances r and s are connected in the graph if ||x^r-x^s||<ε or if x^s is one of the k neighbors of x^r
 The edge length is ||x^r-x^s||
- For two nodes r and s not connected, the distance is equal to the shortest path between them
- Once the NxN distance matrix is thus formed, use MDS to find a lower-dimensional mapping

/IG/TW: @educlashco 22



Matlab source from http://web.mit.edu/cocosci/isomap/isomap.html

FB/IG/TW: @educlashco 23

Locally Linear Embedding

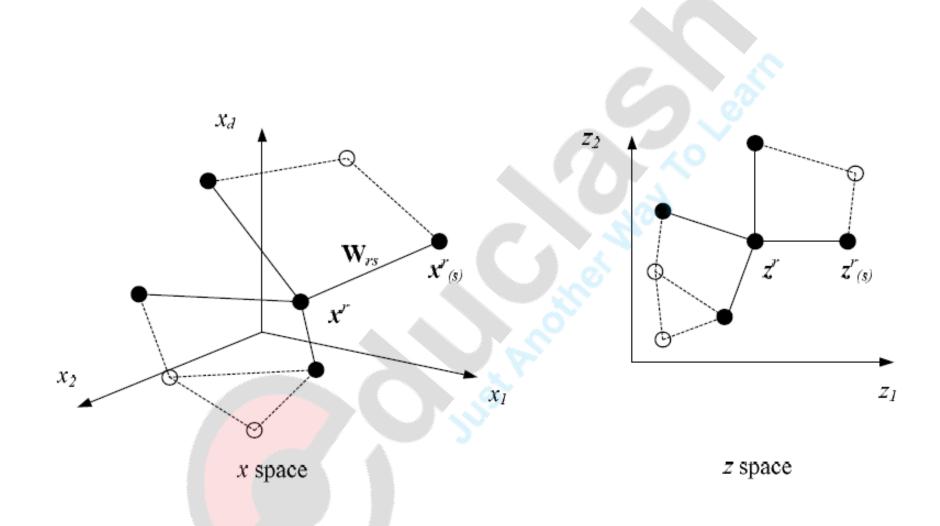
- 1. Given \mathbf{x}^r find its neighbors $\mathbf{x}^s_{(r)}$
- 2. Find W_{rs} that minimize

$$E(\mathbf{W} \mid X) = \sum_{r,r} \left\| \mathbf{x}^r - \sum_{s} \mathbf{W}_{rs} \mathbf{x}_{(r)}^s \right\|^2$$

3. Find the new coordinates \mathbf{z}^{r} that minimize

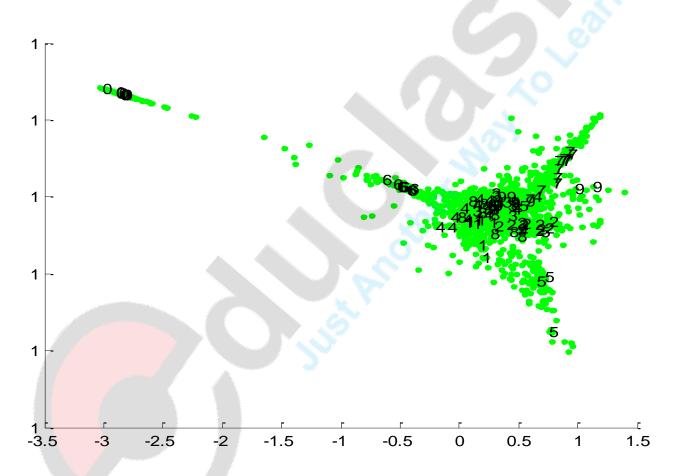
$$E(\mathbf{z} \mid \mathbf{W}) = \sum_{r} \left\| z^{r} - \sum_{s} \mathbf{W}_{rs} z_{(r)}^{s} \right\|^{2}$$

/IG/TW: @educlashco 24



FB/IG/TW: @educlashco 25

LLE on Optdigits



Matlab source from http://www.cs.toronto.edu/~roweis/lle/code.html