Chapter 13 Reinforcement Learning
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Just Another Way To Learn

FB/IG/TW: @educlashco



Principal component analysis

Pros:

* Reduces complexity of data

* Indentifies most important features
Cons:

* May not be needed

* Could throw away useful information

Work with :Numerical values



Moving the co-ordinate axes

* In PCA, Rotate axes of the data
* The rotation is determined by data itself
* The first axis is rotated to cover the largest variation in the data

» After choosing the axis covering the most variability. Choose the next
axis, which has the second most variability, provided it’s
perpendicular to the first axis. The real term used is orthogonal.

* Rotating the axes hasn’t reduced the number of dimensions.
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Flgure 1.2.14 Three cholces for lines that span
the entire dataset. LiIne B Is the longest and ac-
counts for the most variabllity In the dataset.
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Decision trees:

If we want to separate the classes, we could use a decision tree.
Decision trees make a decision based on one feature at a time.

Support vector machine:

The support vector machine may give us better margin than the
decision tree, but the hyperplane is harder to interpret.

* We can get these values by taking the covariance matrix of the data- set
and doing eigenvalue analysis on the covariance matrix.

* Once we have the eigenvectors of the covariance matrix, we can take
the top N eigenvectors. The top N eigenvectors will give us the true
structure of the N most important features. We can then multiply the
data by the top N eigenvectors to transform our data into the new
space.



* Eigenvalue analysis

Eigenvalue analysis is an area of linear algebra that allows us
to uncover the underlying “true” structure of the data by
putting it in a common format. In eigenvalue analysis, we
usually talk about eigenvectors and eigenvalues. In the
following equation, Av = lv, eigenvectors are v and
eigenvalues are |. Eigenvalues are simply scalar values, so Av =
lv says when we multiply the eigenvectors by some matrix, A,
we get the eigenvectors (v), again multiplied by some scalar
values |. Luckily, NumPy comes with some modules for finding
the eigenvectors and eigenvalues. The NumPy linalg module
has the eig() method, which we can use to find the
eigenvectors and eigenvalues.



we can have a classifier as simple as a decision tree, while
having margin as good as the support vector machine.
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Figure 13.2 Three classes in two dimensions. When
the PCA is applied to this dataset, we can throw out
one dimension, and the classification problem be-
comes easier.
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Performing PCA in NumPay

Steps:
1. Collect the data
Normalize the data

2
3. Calculate the covariance matrix
Vi

Listing 13.1 The PCA algorithm

from numpy import *

(n

def loadDataSet (fileName, delim='“t'):
fr = open(fileName)
stringfArr = [line.strip().split(delim) for line in fr.readlines{()]
datArr = [map(float,line) for line in stringfrr]
return mat (dathrr)

def pca(dataMat, topNfeat=9999999) :
meanVals = mean (dataMat, axis=0) Remove
meanRemoved = dataMat - meanVals mean
covMat = cov(meanRemoved, rowvar=Q0)
eigVals,eigVects = linalg.eig(mat (covMat))

eigVallnd = argsort(eigVals) o Sort top N smallest

eigVallnd = eigVallndl[: - (topNfeat+1) :-1] \f tolmgeﬂ

redEigVecta = eigVects|[:,eigVallnd]

lowDDataMat = meanRemoved * redEigVects - Transform data into
reconMat = (lowDDataMat * redEigVects.T) + meanVals new dimensions

return lowDDataMat, reconMat



Example: : using PCA to reduce the dimensionality of semiconductor manufacturing
data

Listing 13.2 Function to replace missing values with mean

def replaceNanWithMean() :
datMat = loadDataSet ('secom.data', ' ') Find mean of non-
numfFeat = shape (datMat) [1] NaN values
for 1 in range (numbFeat) :
meanVal = mean (datMat [nonzero(~isnan{datMat[:,1].A))[0],1])

datMat [nonzero (isnan(datMat [:, 1] .A)) [0],4] = meanVal
Set NaN values
return datMat to mean

Let’s see how to do this. First, replace the NaN values in the dataset with mean val-
ues using the code we just wrote:

dataMat - pca.replaceNanWithMean ()

Next, borrow some code from the peca () unction because we want 1o look at the inter-
mediate values, not the output. We're going to remove the mean:

meanVals = mean(dataMat, axis-=0)
meanRemoved = dataMat - meanVals

Now, calculate the covariance matrix:

covMat = cowv(meanRemoved, rowvar=Q)

Finally, do Eigenvalue analysis on the covariance matrix:
eigVals, eigVects = linalg.eig(mat (covMat))

Now, let’s look at the eigenvalues:

=== elgVals

array ([ 5.34151979e+07, 2.17466T7T1L9=2+07, 8.24837662e+06,
2.073B8086e+06, 1.21540439e+06, 4. 6T7T69355Tae+05,
2.90B8625552+05, 2.82668601ae+05, 2.271L55830e4+05,
2.08513836e+05, 1.2609884%9a+05, 1.8685654%9a+05,

00000000+ 00 , L 00000000+ 00,
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Over 20% of the eigenvalues are zero. That means that these features are
copies of other features in the dataset, and they don’t provide any extra
information.

15 have magnitudes greater than 105, but after that, the values get really small. This tells
you that there are a few important features, but the number of important features drops off
quickly.

Negative values are caused by numerical errors and should be rounded to zero.
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Figure 13.4 Percentage of total variance contained in the first 20 principal components. From this plot,
you can see that most of the variance is contained in the first few principal components, and little infor-
mation would be lost by dropping the higher ones. If we kept only the first six principal components, we'd
reduce our dataset from 590 features to 6 features, almost a 100:1 compression.
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Table 13.1 % variance for the first 7 principal components of the semiconductor data

- & ; & W N =

Principal component

59.2
24.1
9.2
2.3
1.5
0.5
0.3
0.08

% Variance

59.2
83.4
92.5
94.8
96.3
96.8
97.1
99.3

% Cumulative
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