

educlash Result / Revaluation Tracker Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Day	Outlook	Temp.	Humidity	Wind	Decision	
1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	
3	Overcast	Hot	High	Weak	Yes	
4	Rain	Mild	High	Weak	Yes	
5	Rain	Cool	Normal	Weak	Yes	0
6	Rain	Cool	Normal	Strong	No	
7	Overcast	Cool	Normal	Strong	Yes	1
8	Sunny	Mild	High	Weak	No	
9	Sunny	Cool	Normal	Weak	Yes	
10	Rain	Mild	Normal	Weak	Yes	
11	Sunny	Mild	Normal	Strong	Yes	
12	Overcast	Mild	High	Strong	Yes	
13	Overcast	Hot	Normal	Weak	Yes	
14	Rain	Mild	High	Strong	No	

Gini index

Gini index is a metric for classification tasks in CART. It stores sum of squared probabilities of each class. We can formulate it as illustrated below.

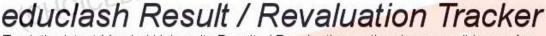
Gini = $1 - \Sigma$ (Pi)² for i=1 to number of classes

0	Number of instances		
Sunny	2	3	5
Overcast	4	0	4
Rain	3	2	5

Gini(Outlook=Sunny) = $1 - (2/5)^2 - (3/5)^2 = 1 - 0.16 - 0.36 = 0.48$

Gini(Outlook=Overcast) = $1 - (4/4)^2 - (0/4)^2 = 0$

Gini(Outlook=Rain) = $1 - (3/5)^2 - (2/5)^2 = 1 - 0.36 - 0.16 = 0.48$


Then, we will calculate weighted sum of gini indexes for outlook feature.

 $Gini(Outlook) = (5/14) \times 0.48 + (4/14) \times 0 + (5/14) \times 0.48 = 0.171 + 0 + 0.171 = 0.342$

Temperature

Similarly, temperature is a nominal feature and it could have 3 different values: Cool, Hot and Mild. Let's summarize decisions for temperature feature.

Temperature	Yes	No	Number of instances
Hot	2	2	4

ack the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Cool	3	1	4
Mild	4	2	6

Gini(Temp=Hot) = $1 - (2/4)^2 - (2/4)^2 = 0.5$

Gini(Temp=Cool) = $1 - (3/4)^2 - (1/4)^2 = 1 - 0.5625 - 0.0625 = 0.375$

Gini(Temp=Mild) = $1 - (4/6)^2 - (2/6)^2 = 1 - 0.444 - 0.111 = 0.445$

We'll calculate weighted sum of gini index for temperature feature

 $Gini(Temp) = (4/14) \times 0.5 + (4/14) \times 0.375 + (6/14) \times 0.445 = 0.142 + 0.107 + 0.190 = 0.439$

Humidity

Humidity is a binary class feature. It can be high or normal.

Humidity	Yes	No	Number of instances
High	3	4	7
Normal	6	1	7

Gini(Humidity=High) = $1 - (3/7)^2 - (4/7)^2 = 1 - 0.183 - 0.326 = 0.489$

Gini(Humidity=Normal) = $1 - (6/7)^2 - (1/7)^2 = 1 - 0.734 - 0.02 = 0.244$

Weighted sum for humidity feature will be calculated next

Gini(Humidity) = $(7/14) \times 0.489 + (7/14) \times 0.244 = 0.367$

Wind

Wind is a binary class similar to humidity. It can be weak and strong.

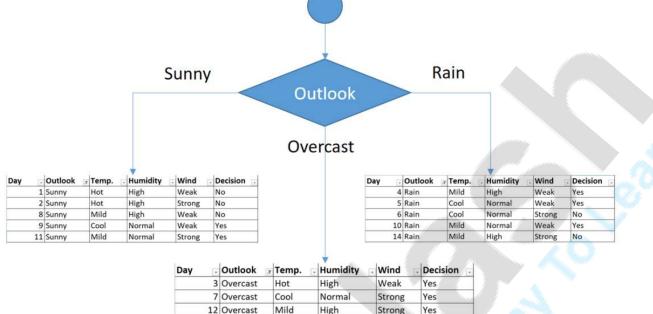
Wind	Yes	No	Number of instances
Weak	6	2	8

Strong	3	3	6

Gini(Wind=Weak) = $1 - (6/8)^2 - (2/8)^2 = 1 - 0.5625 - 0.062 = 0.375$

Gini(Wind=Strong) = $1 - (3/6)^2 - (3/6)^2 = 1 - 0.25 - 0.25 = 0.5$

 $Gini(Wind) = (8/14) \times 0.375 + (6/14) \times 0.5 = 0.428$


Time to decide

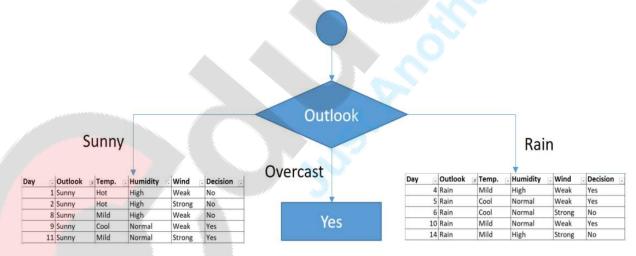
We've calculated gini index values for each feature. The winner will be outlook feature because its cost is the lowest.

Feature	Gini index
Outlook	0.342
Temperature	0.439
Humidity	0.367
Wind	0.428

We'll put outlook decision at the top of the tree.

Normal

Weak


Yes

First decision would be outlook feature

You might realize that sub dataset in the overcast leaf has only yes decisions. This means that overcast leaf is over.

Hot

13 Overcast

Tree is over for overcast outlook leaf

We will apply same principles to those sub datasets in the following steps.

Focus on the sub dataset for sunny outlook. We need to find the gini index scores for temperature, humidity and wind features respectively.

Day Outlook	Temp.	Humidity	Wind	Decision
-------------	-------	----------	------	----------

educlash Result / Revaluation Tracker Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

1	Sunny	Hot	High	Weak	No	
2	Sunny	Hot	High	Strong	No	
8	Sunny	Mild	High	Weak	No	
9	Sunny	Cool	Normal	Weak	Yes	
11	Sunny	Mild	Normal	Strong	Yes	

Gini of temperature for sunny outlook

Temperature	Yes	No	Number of instances
	0	2	2
Hot	0	2	2
Cool	1	0	1
			2
Mild	1	1	2

Gini(Outlook=Sunny and Temp.=Hot) = $1 - (0/2)^2 - (2/2)^2 = 0$

Gini(Outlook=Sunny and Temp.=Cool) = $1 - (1/1)^2 - (0/1)^2 = 0$

Gini(Outlook=Sunny and Temp.=Mild) = $1 - (1/2)^2 - (1/2)^2 = 1 - 0.25 - 0.25 = 0.5$

Gini(Outlook=Sunny and Temp.) = (2/5)x0 + (1/5)x0 + (2/5)x0.5 = 0.2

Gini of humidity for sunny outlook

Humidity	Yes	No	Number of instances
High	0	3	3

Normal	2	0	2

Gini(Outlook=Sunny and Humidity=High) = $1 - (0/3)^2 - (3/3)^2 = 0$

Gini(Outlook=Sunny and Humidity=Normal) = $1 - (2/2)^2 - (0/2)^2 = 0$

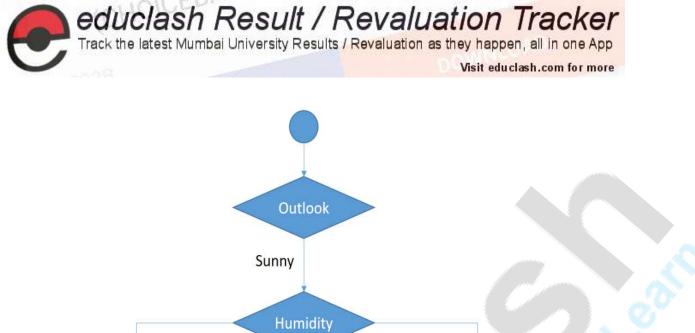
Gini(Outlook=Sunny and Humidity) = (3/5)x0 + (2/5)x0 = 0

Gini of wind for sunny outlook

Wind	Yes	No	Number of instances
Weak	1	2	3
Strong	1	1	2

Gini(Outlook=Sunny and Wind=Weak) = $1 - (1/3)^2 - (2/3)^2 = 0.266$

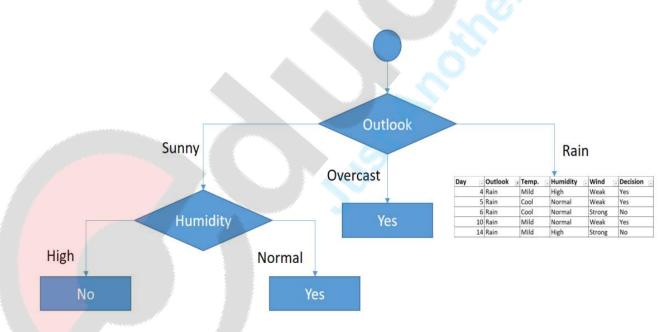
Gini(Outlook=Sunny and Wind=Strong) = $1 - (1/2)^2 - (1/2)^2 = 0.2$


Gini(Outlook=Sunny and Wind) = (3/5)x0.266 + (2/5)x0.2 = 0.466

Decision for sunny outlook

We've calculated gini index scores for feature when outlook is sunny. The winner is humidity because it has the lowest value.

Feature	Gini index
Temperature	0.2
Humidity	0
Wind	0.466


We'll put humidity check at the extension of sunny outlook.

Sub datasets for high and normal humidity

As seen, decision is always no for high humidity and sunny outlook. On the other hand, decision will always be yes for normal humidity and sunny outlook. This branch is over.

Decisions for high and normal humidity Now, we need to focus on rain outlook.

Rain outlook

educlash Result / Revaluation Tracker Track the latest Mumbai University Results / Revaluation as they happen, all in one App

Visit educlash.com for more

Day	Outlook	Temp.	Humidity	Wind	Decision	
4	Rain	Mild	High	Weak	Yes	
5	Rain	Cool	Normal	Weak	Yes	
6	Rain	Cool	Normal	Strong	No	
10	Rain	Mild	Normal	Weak	Yes	
14	Rain	Mild	High	Strong	No	

We'll calculate gini index scores for temperature, humidity and wind features when outlook is rain.

Gini of temprature for rain outlook

Temperature	Yes	No	Number of instances
Cool	1	1	2
Mild	2	1	3

Gini(Outlook=Rain and Temp.=Cool) = $1 - (1/2)^2 - (1/2)^2 = 0.5$

Gini(Outlook=Rain and Temp.=Mild) = $1 - (2/3)^2 - (1/3)^2 = 0.444$

Gini(Outlook=Rain and Temp.) = (2/5)x0.5 + (3/5)x0.444 = 0.466

Gini of humidity for rain outlook

Humidity	Yes	No	Number of instances

High	1	1	2
Normal	2	1	3

Gini(Outlook=Rain and Humidity=High) = $1 - (1/2)^2 - (1/2)^2 = 0.5$

Gini(Outlook=Rain and Humidity=Normal) = $1 - (2/3)^2 - (1/3)^2 = 0.444$

Gini(Outlook=Rain and Humidity) = (2/5)x0.5 + (3/5)x0.444 = 0.466

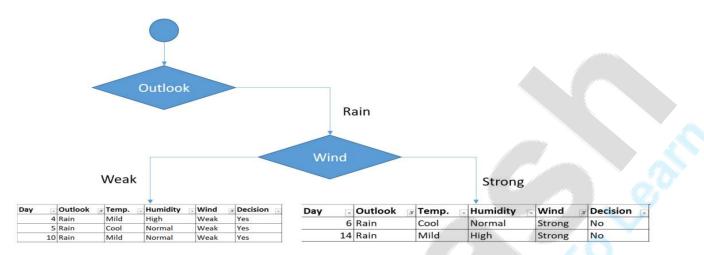
Gini of wind for rain outlook

Wind	Yes	No	Number of instances
Weak	3	0	3
Strong	0	2	2

Gini(Outlook=Rain and Wind=Weak) = $1 - (3/3)^2 - (0/3)^2 = 0$

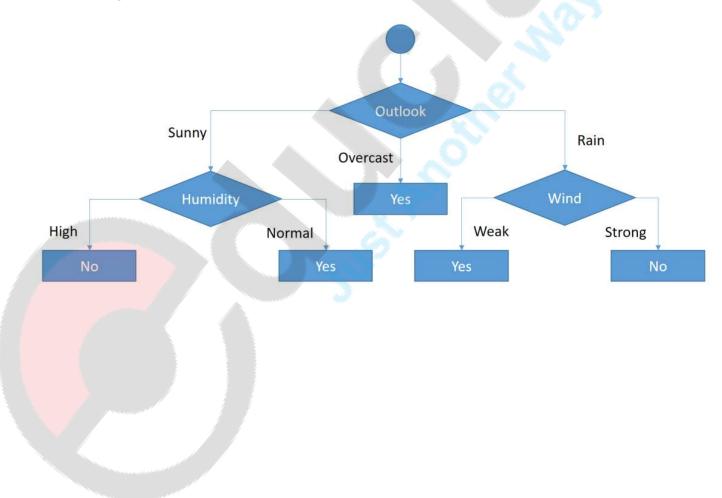
Gini(Outlook=Rain and Wind=Strong) = $1 - (0/2)^2 - (2/2)^2 = 0$

Gini(Outlook=Rain and Wind) = (3/5)x0 + (2/5)x0 = 0


Decision for rain outlook

The winner is wind feature for rain outlook because it has the minimum gini index score in features.

Feature	Gini index
Temperature	0.466
Humidity	0.466
Wind	0



Put the wind feature for rain outlook branch and monitor the new sub data sets.

Sub data sets for weak and strong wind and rain outlook

As seen, decision is always yes when wind is weak. On the other hand, decision is always no if wind is strong. This means that this branch is over.

