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Just Another Way To Learn

BAYESIAN BELIEF
NETWORKS



INTRODUCTION

Bayesian learning methods are relevant to machine
learning for two different reasons.

First, Bayesian learning algorithms that calculate
explicit probabilities for hypotheses, such as the naive
Bayes classifier, are among the most practical
approaches to certain types of learning problems.

The second reason that Bayesian methods are
important to machine learning is that they provide a
useful perspective for understanding many learning
algorithms that do not explicitly manipulate
probabilities.



Features of Bayesian learning methods

Each observed training example can incrementally decrease or
increase the estimated probability that a hypothesis is correct.

This provides a more flexible approach to learning than
algorithms that completely eliminate a hypothesis if it 1s found
to be inconsistent with any single example.

Prior knowledge can be combined with observed data to
determine the final probability Of a hypothesis.

In Bayesian learning, prior knowledge 1s provided by asserting
(1) a prior probability for each candidate hypothesis, and

(2) a probability distribution over observed data for each
possible hypothesis.



Features of Bayesian learning methods

Bayesian methods can accommodate hypotheses that make
probabilistic predictions (e.g., hypotheses such as "this
pneumonia patient has a 93% chance of complete recovery").

New 1nstances can be classified by combining the predictions
of multiple hypotheses, weighted by their probabilities.

Even in cases where Bayesian methods prove computationally
intractable, they can provide a standard of optimal decision
making against which other practical methods can be
measured.



Difficulties of Bayesian learning methods

One practical difficulty in applying Bayesian methods
1s that they typically require initial knowledge of
many probabilities.

When these probabilities are not known in advance
they are often estimated based on background
knowledge, previously available data.

A second practical difficulty 1s the significant
computational cost required to determine the Bayes
optimal hypothesis in the general case.



BAYESIAN BELIEF NETWORKS

A Bayesian belief network describes the probability
distribution governing a set of variables by specifying
a set of conditional independence assumptions along
with a set of conditional probabilities.

In contrast to the naive Bayes classifier, which
assumes that all the variables are conditionally
independent given the value of the target variable.



BAYESIAN BELIEF NETWORKS

Bayesian belief networks allow stating conditional
independence assumptions that apply to subsets of the
variables.

Bayesian belief networks provide an intermediate
approach that 1s less constraining than the global
assumption of conditional independence made by the
naive Bayes classifier.

Bayesian belief networks are an active focus of
current research, and a variety of algorithms have
been proposed for learning them and for using them
for inference.



BAYESIAN BELIEF NETWORKS

In general, a Bayesian belief network describes the
probability distribution over a set of variables.
Consider an arbitrary set of random variables Y1 . . .
Y,, where each variable Y1 can take on the set of
possible values V(Y1).

the joint space of the set of variables Y to be the cross
product V(Y1) x V(Y2) x ... V(Y,).

The probability distribution over this joint' space 1s
called the joint probability distribution.



BAYESIAN BELIEF NETWORKS

The joint probability distribution specifies the
probability for each of the possible variable bindings
for the tuple (Y1...Y,).

A Bayesian belief network describes the joint
probability distribution for a set of variables.



Conditional Independence

Bayesian belief networks by defining precisely the
notion of conditional independence.

Let X, Y, and Z be three discrete-valued random
variables.

It says that X is conditionally independent of Y given
Z. it the probability distribution governing X 1s

independent of the value of Y given a value for Z.



Conditional Independence

We say that X is conditionally independent of Y given Z if the
probability distribution governing X is independent of the
value of Y given a value for Z.

i.e., (Vx,y,2;) P(X=xY=y,Z=5,)=P(X=xZ=z,)

or, P(X1Y,Z)=P(XIZ)

This definition can be extended to sets of variables as well: we
say that the set of variables X ;.. AXI 1s conditionally
independent of the set of variables Y,...Y

given the set of variables Z,...Z 1t
PX,...x)Y,...Y,,Z,...Z(=P(X,...X)Z,...Z,)
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Inference in Bayesian Belief Networks

A Bayesian Network can be used to compute the
probability distribution for any subset of network
variables given the values or distributions for any
subset of the remaining variables.

Unfortunately, exact inference of probabilities in
general for an arbitrary Bayesian Network 1s known

to be NP-hard.

In theory, approximate techniques (such as Monte
Carlo Methods) can also be NP-hard, though in
practice, many such methods were shown to be
useful.



Learning Bayesian Belief Networks

3 Cases:

1. The network structure 1s given in advance and all the
variables are fully observable in the training examples. ==>
Trivial Case: just estimate the conditional probabilities.

2. The network structure 1s given in advance but only some of
the variables are observable in the training data. ==> Similar
to learning the weights for the hidden units of a Neural Net:
Gradient Ascent Procedure

3. The network structure 1s not known in advance. ==> Use a
heuristic search or constraint-based technique to search
through potential structures.



The EM Algorithm: Learning with
unobservable relevant variables.

Example: Assume that data points have been uniformly
generated from k distinct Gaussian with the same known
variance. The problem 1s to output a hypothesis h=<u,, u,
.y A4> that describes the means of each of the k
distributions. In particular, we are looking for a maximum
likelihood hypothesis for these means.

We extend the problem description as follows: for each point
x;, there are k hidden variables z;,,..,z;, such that z;,=1 if x, was
generated by normal distribution / and  z;,= 0 for all g.



he EM Algorithm (Cont'd)

An arbitrary initial hypothesis h=<g;, 1, ,.., 1> 1s
chosen.

The EM Algorithm iterates over two steps:

Step 1 (Estimation, E): Calculate the expected value E[zij] of each hidden
variable zij, assuming that the current hypothesis h=<y,, 1, ,.., 14> holds.

Step 2 (Maximization, M): Calculate a new maximum likelihood hypothesis
h’=<w’, 1’ ,.., p,’>, assuming the value taken on by each hidden variable z;,
is its expected value E[z;] calculated in step 1. Then replace the hypothesis
h=<u, W, ,.., ;x> by the new hypothesis h’=<y,’, u,’,.., i,’> and iterate.

The EM Algorithm can be applied to more general
problems



