'11.2.1 Reflection Attacla

The first thing we might notice is that the protocol is inefficient. We can reduce the protocol downy
to three messages (instead of five used above) by putting more than one item of information ingo

each message:

I'm Alice, R,
— T
2 Ry, f(Kajice-Bob» F2) 2
< @
f (KAIice-Bob’ R 1) B
Protocol 11 - imized mutual authentication based on a shared secret K sjice-Bob

This version of the protocol has a security pitfall known as the reflection attac

: . k. Suppose
ants (0 impersonate Alice to Bob. First Trudy starts Protocol | 1-8, but when -

::(:z;l‘l'cngc from Bob, she cannot proceed further, because she can't encrypt R,. ¥i% ot
I'm Alice, R '
] Ry, f(K R ™5
|l » (Kavice-Bob: A2) @

Figure 11-9. Beginning of reflection attack

“I can’t explain myself, I'm afraid sir,” said Alice, “because I'm not

myself, you see.”
Alice in Wonderland

However, note that Trudy has managed to get Bob to encrypt R,. So at this point Trudy opens
a second session to Bob. This time she uses R, as the challenge to Bob:

I'm Alice, R,

_>.

Trudy
Bob

R3, f(Kalice-Bobr A1)

\
Figure 11-10. Second session in reflection attack

FB/IG/TW: @educlashco [Vipin Dubey]

Trudy can’t go any further with this session, because she can’t encrypt R;. But now she
knows K ajice-Bob{ R}, 50 she can complete the first session.

This is a serious security flaw, and there are deployed protocols that contain this flaw. In
many environments it is easy to exploit this, since it might be possible to open multiple simulta-
ﬂe?us connections to the same server, or there might be multiple servers with the same secret for
A]'.cc (so Trudy can get a different server to compute f(K Alice-Bob»R1) SO that she can impersonate
Alice to Bob), eeme
methotiie ocfa?', :;0“ the reflection attack if we are careful and understand the pitfalls. Here are two

ng the protocol, both of which are derived from the general principle don't have

Alice and Bob 4, exactly the same thing:

¢ diff
erent keys—Have the key used to authenticate Alice be different from the key used to

:‘;‘:::i‘;g;caFOb. We could use two totally different keys shared by Alice and Bob at the cost
authenticagi Cl;)n:guratlon and storage. Alternatively we could derive the key us.ed for
Ky, g Bob from the key used to authenticate Alice. For instance, Bob's key might be

ice-Bob» OF K pjice Bob+ 1, OF K jice.pop ® FOFOFOFOFOFOFOFQ, 6. Any of these would foil

———
——

Trudy in her attempt to impersonate Alice to Bob since she would not be able to get Bg .
encrypt anything using Alice’s key.

e different challenges—Insist that the challenge from the initiator (Alice) look different from
the challenge from the responder. For instance, we might require that the initiator challenge
be an odd number and the responder challenge be an even number. Or the name of the party
that created the challenge might be concatenated with the challenge before encryption, so that
if the challenge from Alice to Bob was R, Bob would encrypt Bob|R (the string Bob concat-
enated with R). This would foil Trudy, since in order to impersonate Alice to Bob, Trudy
would need to get Bob to encrypt the string Alice concatenated with some number.

Notice that Protocol 11-7 did not suffer from the reflection attack. The reason is that it fol-
lows another good general principle of security protocol design: the initiator should be the firstto
prove its identity. Ideally, you shouldn’t prove your identity until the other side does, but since that
wouldn’t work, the assumption is that the initiator is more likely to be the bad guy.

...if you only spoke when you were spoken to, and the other person always

waited for you to begin, you see nobody would ever say anything...
—Alice (in Through the Looking Glass)

FB/IG/TW: @educlashco [Vipin Dubey]

|

.‘.{

112 MUTUAL AUTHENTICATION

N

It is often.nccessary for both communicating parties to authenticate themselves to each otht:‘r. For
ttample,_ln lnt&‘:rnet banking, it is imperative that a customer interacts with his/her bank and not
some entity posing as the bank. Likewise, it is important that a bank be able to verify the identity
of the customer. We next discuss mutual authentication using a secret key shared by both parties.

We then use public k-eyl;?rivate key pairs for mutual authentication. Finally, we design protocols
that combine authentication and session key exchange.

11.2.1 Shared Secret-based Authentication

Figure 11.4(a) is a straightforward extension of the protocol for one-way authentication shown in

Fig. 11.2(c). In Message 1, A communicates its identity and its challenge in the form of a nonce

8 DT .

@ “AVRa
__Ex(RaLRs @
) iC 0 (8]
® A" Ra © Bl P L ® AR
Ex (Re), R
E (Ra).Rs_@ LS N 3] - Ex(Ra). Ex (Ra) @
) ® Ex(Re)
® Ex(Rs) @ D« (Ex (Rs)) = Rs
K -

(b) Parallel session att
(a) Flawed protocol ack (c) Corrected protocol

Figure 1 1.4 Mutual authentication using a shared secret

FB/IG/TW: @educlashco [Vipin Dubey]

N

158 Network Security and Cryptography 1
1

ponds to the challenge by encrypting R, with the COMMon se

R,. In Message 2, B res
' : ot

A'and B share. B also sends its own challenge, Rp, to A. A’s response to B’ challenge i ; K, thy

¢ th

message appears to complete the protocol for mutual authentication.] While ¢he Protoe Il irg |
« « 0 |
My

i ¢ in it. |
appear sound, there are some scrious flaws .

One attack scenario [see Fig. 11.4(b)] is as follow:}: N
; age to B containi .
e Message 1: An attacker, C, sends a messag ng a nonce R, and claiming , b

A. -)
Message 2: B responds to the challenge with Egx(R,) and its own challenge Ry as requireg b

the above protocol of Fig. 11.4(a). o ,

Message 1': Now C attempts to connect to A'clalmmg it is B with a challenge Rp. Note h
this is the same challenge offered to it by B in Message 2. a
Message 2: A responds to the challenge with E.K(RH) and a nonce of its own,

Message 3: C uses A’s response Ex(Rp) to complete the three-message authentication Protocy|
with B. |

What has the attacker C accomplished? C has successfully impersonated A to B. Message 3 was
required to complete the authentication of C (posing as A) to B. However, C could not compm:'
the response to B’s challenge since that required a computation involving the secret key, K, shared
between A and B. So, C initiated the authentication protocol with A, presenting to A the same
challenge it had received from B. A’s response to the challenge in Message 2’ was used by C 1,
convince B that it was A that was trying to establish communication with him.

This attack is termed a Reflection Attack since a part of the message received by an attacker s
reflected back to the victim. In this case, the reflected message fragment is E¢(Rp). This attack is
also called a Parallel Session Attack since the attacker, in the midst of a protocol run with one
entity, opens another protocol run or session with the same or another entity.

One way of thwarting reflection attacks is for the initiator and responder to draw challenges
from different disjoint sets. So, in the protocol of Fig. 11.4(a), for example, A could use nonces,
which are odd numbers, while B could use nonces that are even numbers. With this modification,
the R used in Message 2 of Fig. 11.4(b) cannot be reused in Message 1’. Another possibility is to
have the initiator and responder handle challenges differently. For example, the protocol might
require the responder to encrypt his challenge, while the initiator would be required to decrypt her

challenge (see Fig. 11.4 (c)).
We now examine how mutual authentication can be performed using public key encryption.

11.2.2 Asymmetric Key-based Authentication

We assume that both A and B have public key/private key pairs. In the protocol of Fig. 11.5()
each party transmits its own nonce and challenges the other to sign it. We use the notation ["_t].\
to mean a message, m, sent in the clear together with A’s signature on m. In Message 2, the string
obrained by concatenating nonces R, and Ry is signed by B. Both the nonces and the signature ar¢
sent. Nonce Ry is the challenge provided by A. Ry is the challenge provided by B and signed by
A in response (Message 3),

Is this protocol flawed? There appears to be a subtle way in which this protocol can be abused
as demonstrated by the following attack scenario depicted in Fig. 11.5(b).

M:zz:g: 1;- }(\: Initiates communication with C, sending her challenge R,.
g¢ 1= Cinitiates communication with B using the same nonce R, supplied by A.

FB/IG/TW: @educlashco [Vipin Dubey]

0 =

(D *A", Ra, A's certificate

-

[Ra, Rals, B's certificate ()| (a) Flawed protocol

©) [Rela

(&)

8 ofin @

® .‘An. HA WA

\ ® “A”, Ra - @ A", Ra X

W+ Bafee @ - [ARyRgs @

® GO -

T ® [Rela p ® ['B”, Rgla R
(b) Attack on flawed protocol

(c) Corrected protocol
Figure 11.5 Mutual authentication using public key Cryptography

Message 2°: B responds to “A’s challenge” angd includes a challenge of his own, Rg.

Message 2: C responds to A’s challenge and yses B’s nonce, Rp, as his challenge to A.

Message 3: A responds to C’s challenge (which Was actually generated by B). A thus completes the
mutual authentication protocol with C,

C forwards A’s response to B, '

We next analyze the above message sequence by attempting to determ

three parties. ‘

Message 4.

ine the Intentions of the
It is clear from Fig. 11.5(b) thﬂ_t _
e A does not intend to communicate WI'th C. cherw1se A would not have responded, ip
3, to C’s challenge that was transmitted i Message 2. ’
k] " . .
e B wishes to communicate with A. ’Othel’Wlse, B would noy have responded
the nonce presented in Message 1°. o
2 2 L .

Note that Message 17 is sent by C:u:\}tt mcllllndes _A s ldentlty. Who is ¢ and what sory
is he up to? Cis probably knowp A |er AL Adintends o talk to C. But C is also the
here. When A initiates commumcnn'on w1lt 1 C, the atter seizes the OPportunity (after

) . ince B thar A intends to ¢, : Y (4
ts to convi .) + B responds g
:.md at'temlz) communicate with him, Notf: that, in the curren
intention :vith B and is not aware that C is attemp;
municate

Mpting to dg g on h

| _ ting t er behal
3. he feels A intends to communicars With him sipce Message 3
Message = » hosen by him,

Message

in Message 2° to

of game
atmcker
Message 1)

ars to be A’s
nay not wish ¢q com-

t. Yet, after B receives
contains her Signature

. b
FB/IG/TW: @educlashco [Vipin Dubey]

160 Nerwork Security and Cryptography

One solution to the above problem is for the sender to include the identity of the ypi,.
all messages signed by him. This is shown in Fig. 11.5(c). Note that with this modificatio CCtpient ;,
3 in Fig. 11.5(b) would be [*C", Ry],. If C tries to forward this message to B, the Iilttc:’ Mcssagc
a rat since it is C's identity that is included in the message. So B will realize that the will SMel|
intended for C, not for him. MESSage yy,

11.2.3 Authentication and Key Agreement

In previous sections, authentication was pertormed using operations involving a long-term

secret or a private key. It is good security practice that these keys be used sparingly to ’,Shar.cd
the probability of compromise. Also, private key operations are notoriously expensive I;n:}?lmlu
of the communication needs to be integrity-protected and/or encrypted (as it often is) 'thc:n ehrm
term keys for these purposes must be agreed upon. It is expedient to derive the short-;erm ks "
session keys during the authentication phase itself. Teor

Figure 11.6 shows protocols providing both mutual authentication and key agreement. Fj

11.6(a) uses secret key cryptography, while Fig. 11.6(b) uses public key cryptography. In l;mhgu]:c
figures, S, and Sy are the contributions to the secret key by A and B, respectively. They are fres;l]e
cbosen random numbers that are encrypted and sent so that they cannot be eavesdropped upon ly
Fig. 11.6(a), they are encrypted in Messages 2 and 3 by the shared secret, K. In Fig. 11 6([?) [iln
are encrypted in Messages 2 and 3 using the recipient’s public key. A

B & [B

@ “A”, Ra G @ “A”, “B", Ra, A’s cert.

b Ex, (Ra), Ek(Rs, Sg) (@ [*A”, Ra, Rg, Ea pu(Se)ls, B's cert.(d)
® Re. E(Sa) v @ ['B"Re. Eapu(Salla

(a) Using secret key cryptograbhy (a) Using public key cryptography

Session key = S @ Sg

Figure 11.6 . Combined mutual authentication and key exchange

It i i :

nichtii ‘:z::ﬂt::zt;he.se;slon key could have been contributed exclusively by one of the commu-

The key finall c.h gain however, it is good security practice that both parties contribute to the key.
Y chosen could be a simple function of Sa and Sp, for example, S, @ Sp.

11.2.4 Use of Timestamps

The use of n : . :

cach pary g:::::tc::a: ::)trfl ggl:;::iic;]n.Scctlon 11.1 as a means to prevent replay attacks. Basi.c:f”)’,

is often expected to Sign or 1s used as a fre.?h challenge to the other party. The recipient
encrypt the challenge using a secret known to only the recipient (and

ere is the freshness of the nonce - if nonces were re-used, the response

FB/IG/TW: @educlashco [Vipin Dubey]

AT Ao —]1 101

An alternative to no

nces are timestamps. Ideally, by E

ecurely “stampine” . :
Sonvinc}:e tl ampmg _ @ message with the current time, you :
‘ 1€ receiving party of its freshness. Figure 11.7 [{“A", “B", Ta, Sale.ouls. A's cert

ows tl : . . . ; i
Is(h . 1€ use of timestamps in conjunction with public
ey cryptography for authentication.

(.

[{"A", "B", Ta+1, Sglapule, B'scert r\

e In Message 1, A inserts a timestamp, T,, in her F j
message and signs it. |

° B., on receiving the message, checks whether the Figure 11.7. Mutual authentication
timestamp is sufficiently recent and then verifies the “IQEY T

signature. He increments the received timestamp,
Inserts it into his response message to A, and signs the message

The notati ,
maintained b??’\{m}cihﬁ“ denotes a message, .m encrypted using the public key of X. If the clocks
the s y afn | lare synchronized, the tmestamp in Message 1 signed by A convinces B that
ge was freshly created by A. The tumestamp implicitly serves as As challenge to B I;\‘

signing the incremented ti i
g ed timestamp, B hopes to satisfy A that he is indeed responding to her message

Q. What are pros and cons of symmetric and asymmetric key encryption?
Explain a method that adapts the advantage of both techniques.

Methods for encrypting messages include the: Symmetric key encryption and Asymmetric key
encryption methods. Each system has its own pros and cons which are outlined below:

Symmetric Key Encryption

Symmetric key encryption is also known as shared-key, single-key, secret-key, and private-key or
one-key encryption. In this type of message encryption, both sender and receiver share the same key
which is used to both encrypt and decrypt messages. Sender and receiver only have to specify the
shared key in the beginning and then they can begin to encrypt and decrypt messages between them
using that key. Examples include AES (Advanced Encryption Standard) and TripleDES (Data
Encryption Standard).

Pros

- Simple: This type of encryption is easy to carry out. All users have to do is specify and share the
secret key and then begin to encrypt and decrypt messages.

- Encrypt and decrypt your own files: If you use encryption for messages or files which you alone
intend to access, there is no need to create different keys. Single-key encryption is best for this.

- Fast: Symmetric key encryption is much faster than asymmetric key encryption.

- Uses less computer resources: Single-key encryption does not require a lot of computer resources
when compared to public key encryption.

- Prevents widespread message security compromise: A different secret key is used for
communication with every different party. If a key is compromised, only the messages between a
particular pair of sender and receiver are affected. Communications with other people are still secure.

Cons

- Need for secure channel for secret key exchange: Sharing the secret key in the beginning is a
problem in symmetric key encryption. It has to be exchanged in a way that ensures it remains secret.
- Too many keys: A new shared key has to be generated for communication with every different
party. This creates a problem with managing and ensuring the security of all these keys.

- Origin and authenticity of message cannot be guaranteed: Since both sender and receiver use the
same key, messages cannot be verified to have come from a particular user. This may be a problem if
there is a dispute.

Asymmetric/Public Key Encryption

Also known as public key encryption, this method of encrypting messages makes use of two keys: a
public key and a private key.The public key is made publicly available and is used to encrypt

FB/IG/TWMgssaiifsiayrasyone who wishes to selﬁd/apnqs@gb@}he person that the key belongs to. The private

key is kept secret and is used to decrypt received messages. An example of asymmetric key
encryption system is RSA.

Pros

- Convenience: It solves the problem of distributing the key for encryption.Everyone publishes their
public keys and private keys are kept secret.

- Provides for message authentication: Public key encryption allows the use of digital signatures
which enables the recipient of a message to verify that the message is truly from a particular sender.

- Detection of tampering: The use of digital signatures in public key encryption allows the receiver
to detect if the message was altered in transit. A digitally signed message cannot be modified without
invalidating the signature.

- Provide for non-repudiation: Digitally signing a message is akin to physically signing a document.
It is an acknowledgement of the message and thus, the sender cannot deny it.

Cons

- Public keys should/must be authenticated: No one can be absolutely sure that a public key
belongs to the person it specifies and so everyone must verify that their public keys belong to them.
- Slow: Public key encryption is slow compared to symmetric encryption. Not feasible for use in
decrypting bulk messages.

- Uses up more computer resources: It requires a lot more computer supplies compared to single-
key encryption.

- Widespread security compromise is possible: If an attacker determines a person's private key, his
or her entire messages can be read.

- Loss of private key may be irreparable: The loss of a private key means that all received
messages cannot be decrypted.

In practice, symmetric key cryptography and asymmetric key cryptography are combined to have a
very efficient security solution. The way it works is as follows, assuming a is sender of message and b
is its receiver.

1) A’s computer encrypts the original plain-text (PT) with the help of a standard symmetric key
cryptography algorithm, such as DES, IDEA, etc. This produces a cipher text message (CT). The key
used in this operation (K1) is called one-time symmetric key, as it is used once and then discarded.

—

——-.___ﬂ_ﬁ.;-ﬂj "1'1- "L‘ B __i
— LPTSM A I
-.,.-—'_'_ —

||| b]

| -_l:b 4 & - B " r
%ﬁdﬂm e 3%.L1% S Gplu oy

hr-‘_"-‘_h_';ﬁ:_\ ﬂ&uﬁu’r‘w Lo Y

e il - . f

B __i O, -
—) "-‘"j . % —

- B e, W
: 5 s L

FB/IG/TW: @educlashco

2) We have encrypted the plain-text (PT) with a symmetric key. We must now transport this one-time
symmetric key (K1) to the server so that this server can decrypt the cipher text (CT) to get back the
original plain-text message (PT).

It now takes K1 and encrypts it with B’s public key (K2). This process is called key wrapping of
symmetric key.

[Vipin Dubey]

it \

— I Smﬁc. Wi LD o

|
|

— _ S5 - -
— ek — o

= et b Olstyreradde s =
T —%, I_:.,uﬂpwgpwm-jX— —

= T
5 Public Ve

3) Now, A puts the cipher text (CT) and the encrypted symmetric key together inside a digital
envelope.

B TS
- - |
3= o H "

g
. - Tl

, ————

e < b M
] € He o madvn B Al N
RS

B T Wi

.....

4) The A now sends the digital envelope to B using the network.

o . 0 : - —_
| P : :

T - -

T Y

r e

— [CO5 T -

5) B receives digital envelope and opens it. After B opens this digital envelope, it gets 2 things, first is
CT and another one is the one-time session key(K1) which is encrypted using B’s public key (K2).
Wi i

ST et
— —
Reerivra ‘;:D!.'Elih-nl "FH'# =
- E:wudnpg_

-

6) B now uses same antisymmetric-key algorithm as used by A and her private key (K3) to decrypt
the logical box that contains the symmetric key (K1), which was encrypted with B’s public key (K2).
Tlhe output of this process is the one-time symmetric key LKl).

]
1 Y
| - 5 o = i e “u
| LT e WEe o fE - oy -
- R . 'y x BT

4

FB/IG/TW: @educlashco [Vipin Dubey]

7) Finally, B applies the same symmetric-key algorithm as used by A, and uses the symmetric key K1
to decrypt the cipher text (CT). This process Lield_stﬂg original plain text (PT)

B =yl B —
S eeT> " A)

— SIS I [P Se |

lece wenl ~ Lﬁwﬁiﬁﬁ_——' r TR

[y jge_“::ﬂ_ G o

Q. Explain Kerberos as third party authentication service

Kerberos is an authentication protocol and a software suite implementing this protocol. Kerberos uses
symmetric cryptography to authenticate clients to services and vice versa.

USES:

Possible uses of Kerberos include allowing users to log into other machines in a local area network,
authentication for web services, authenticating email client and servers and authenticating use of
devices such as printers.

Kerberos is protocol for authenticating service requests between trusted hosts across an untrusted
network.

WORKING:

The Kerberos protocol uses strong cryptography so that client can prove its identity to a server and
(vice versa) across an insecure network connection.

After client and server has used Kerberos to prove their identity, they can also encrypt all of their
communications to assure privacy and data integrity.

Kerberos uses the concept of a ticket as a token that proves the identity of a user.

Tickets are digital documents that store session keys. They are typically issued during a login session
and then can be used instead of passwords for any services.

During the course of authentication, a client receives two tickets: a ticket-granting ticket (TGT),
which acts as a global identifier for a user and a session key — a service ticket, which authenticates a
user to a particular service.

These tickets include time stamps that indicate an expiration time after which they become invalid.
This expiration time can be set by Kerberos administrators depending on the service.

To accomplish secure authentication, Kerberos uses a trusted third party known as a Key Distribution
Center (KDC), which is composed of two components, typically integrated into a single server.

1) An authentication server (AS), which performs user authentication

2) A ticket-granting server (TGS), which grants tickets to users.

“—---—-_ . . A T

Y — 0

b _:‘n"-"‘u_h‘?;auah "v:’\r_ﬁ_?-_u:"ﬁ_‘:.‘mhh ’i""‘m L':-‘f‘*‘-"lh._ l_

L...__.__ M{ME=EE Bl Bar e w%

I .. Serwtn o q:L—L.u»w,_ a3

i — i — > J .
A Advetiedgon | 3 mim&g_'_'_
Lol O]I e b Btsacs TTeMske
N Ic_hmﬂ—v{_‘“‘:am] _

- 5 Denadca ﬂ&-nmh&-
b o ‘. Shondk Ewu BTG,

To start the Kerberoé authentication process, the initiating client sends a request to an authentication
FB/IG/TW sevediashess to a service. [Vipin Dubey]

The initial request is sent as plaintext because no sensitive information is included in the request. The
AS retrieves the initiating clients private key, assuming the initiating clients username is in the KDC
database.

If the initiating clients username cannot be found in the KDC database, the client cannot be
authenticated and authentication process stops.

If the clients username can be found in the KDC database, the authentication server generates a
session key and a ticket-granting ticket. The ticket-granting ticket is timestamped and encrypted by
the authentication server with the initiating clients password.

The initiating client is then prompted for a password, if what is entered matches the password in the
KDC database, the encrypted ticket granting ticket sent from the authentication server is decrypted
and used to request a credential from the ticket granting server for the desired service.

The client sends the ticket granting ticket to the ticket granting server.

The ticket granting service carries out an authentication check similar to that performed by the
authentication server, but this time sends credentials and a ticket to access the requested service.

This transmission is encrypted with a session key specific to the user and service being accessed. This
proof of identity can be used to access the requested kerberized service.

The timestamped ticket sent by the ticket granting service allows the requesting system to access the
service using a single ticket for a specific time period without having to be re-authenticated.

Making the ticket valid for a limited time period makes it less likely that someone else will be able to
use it later.

FB/IG/TW: @educlashco [Vipin Dubey]

1)Discuss authentication. Explain how authentication done by the token?

What is authentication? How can be achieved with the help of token
Authentication:-
One of the key aspects of cryptography and network/Internet security is
authentication. Authentication helps trust by identifying who a particular user / system is.
Authentication can be defined as determining an identity to the required level of assurance.
It is the first step in any cryptographic solution.
Authentication tokens:
An authentication token is an extremely useful alternative to a password. An authentication
token is a small device that generates a new random value every time it is used. This random
value becomes the hasis for authentication. The small devices are typically of the size of small
key chains, calculators or credit cards. Usually an authentication token has the following
features:

* Processer

e Liquid Crystal Display(LCD) for displaying outputs

* Battery
{Optionally) a small keypad for entering information
{Optionally) a real-time clock
Each authentication token (i.e. each device) is pre-programmed with a unigue number, called
as a random seed, or just seed. The seed forms the basis for ensuring the unigqueness of the
output produced by the token.

FB/IG/TW: @educlashco [Vipin Dubey]

Step 1:-Creation of a token:

Whenever an authentication token is created, the corresponding random seed is generated for the
token by the authentication server. This seed is stored or pre-programmed inside the token, as
well as its entry is made against that user’s record in the user database. Conceptually, think about
this seed as the user’s password (although this is technically completely different from a

password). Also the user does not know about the value of the seed, unlike a password. This is
because the seed is used automatically by the authentication token.

Id= ahd
Send=61%019191 e \
—_ Server i“u . F
J User recond creaton N —
Tl Seed
1 L L] pes 159000101
d Amar 415901617
e —— Ad 612019191

; . T — .
& .

':J L Send=615019191
4
\ / User

7

Seed

Authenbication tokea

Fig:- Random seed storage in the database and the authentication token

Step 2:-Use of token:-

An authentication token automatically generates pseudorandom numbers,

called as one time passwords or one-time passcodes. One-time passwords are generated
randomly by an authentication token, based on the seed value that they are pre-programmed
with. They are one-time because they are generated, used once , and discarded for ever. When a
user wants to be authenticated, the user will be get a screen to enter the user id and the latest
one-time passward. For this, the user will enter the user id and the one-time password obtained
from the authentication token. The user id and password travel to the server as a part of the login
request. The server abtains the seed corresponding to the user id from the user database, using a
Seed retrieval program. It then calls another program called as Password validation program, to
which the server gives the seed and the one-time password. This program knows how to establish
the relationship between the seed and the one-time password. How this is done beyond the scope
of the current text. , but to explain it in simple terms, the program use synchronization

technigues, to generates the same one-time password as was done by the authentication token.
However, the main point to be noted here is that the authentication server can use this program to
determine if a particular seed value relates to a particular one-time password or not,

FB/IG/TW: @educlashco [Vipin Dubey]

token are sent to the server

Step 1° The nse's id and the ane-me password abtained from the anthentication

Seed=?

Server

Seed retieval program '\
L

14

Send found

Seed=615019191

o~

o6 159010191
Ame 415901617
And 515019191

= Server
Client I\\\
| 1Login Request A

1 L~

— Id=arul s b=
{% Pacsword=15615191 /

15615191
Authentication Token
Step 2: The server 's sced retricval program now retricves the sscd for this uscr
from the user database
id=aml

@

Seed

__/

User database

FB/IG/TW: @educlashco

[Vipin Dubey]

Step 1° The nse-'s id and the ane-—sime password obtained from the anfhentication

token are sent to the server
— Server
Client ™
| 1Login Reques >t

1 b

E— Id=arml 7
f% Password=15€15191 y

15615191
Authentication Token

Step 2: The server 's sced retricval program now retricves the sacd for this uscr

from the user database
Id=atul
Seed=? /"_“\
& e I\v
Seed retieval program
= l/' Id Seed

jyeti 159010191

~

=\<| Send found

Seed=615019191

Ama 415901617
And 515019191

\

v

User database

FB/IG/TW: @educlashco [Vipin Dubey]

Step 3: The server's password vabdatior. program calculate the one time password and
chacks the seed aganst the one-time password

1a=amy
— Szed=?
e Server '\
Password vahdation N Password
) | vaidation
7 / L - program
% \ Program i correct
y Y |
Seed=615019191 >

Fig:- Server validations the one-time password
A question at this stage could be, what would happen if a user loses an authentication token? Can
another user simply grab it and use it? To deal with such situations, the authentication token is

generally protected by a password or a 4-digit pin. Only when this PIN is entered can the one-
time password be generated. This is also the basis for what is called as multi-factor

authentication. What are this factors? There are three most common factors:

* Something thatyou know, e.g. a password or PIN

* Something you have , e.g. a credit card or an identity card

* Something you are ,e.g. your voice or finger print
Based on these principles, we can see that a password is a 1-factor authentication, because it is
only something that you know. In contrast, authentication tokens are examples of 2-factor
authentication, because here you must have something (the authentication token itself) and you
must also know something (the PIN used to protect it). Someone only knowing the PIN or only
having the cannot use it = both the factors are required for the authentication token to be used.
Step 3: server returns an appropriate message back to the user :- Finally, the server sends an
appropriate message back to the user, depending on whether the previous operations yielded
success or failure. This is shown in figure.

Server
et -

ii
y |
7

1 View Balance
2 Transfer Money

FETTEIT IERan

Fig:- Scrver scnds an approoriate mossage back to the user
Authentication token type
There are two main types of authentication token:-

1. Challe nge/Response Tokens
2. Time-based Tokens

FB/IG/TW: @educlashco [Vipin Dubey]

2)What are the digital certificate? Explain the stepwise process of certificate
generation. How is digital certificate issued & by whom?

A digital certiicate i an electronic "passport” that allows a persan,
computer or arganization o exchange information securely over the
Internat using tha public keyinfrastructure (PEI. A digital certificate may
also ba raferrad 1o as a public kay cerlificata.

Just like a passport, a digital certificate provides identitying informatian, is
forgery resistant and can be verified becauss it was issued by an official,
trusted agency. The certificate contains the name of the cedificate holder,
a sanal numbsar, axpiration dales, a copy of the certificate halder's pubbc
key (used for encrypting messages and and the digital signature of the
certificate-issuing authorty (A} =0 that a recipient can vearify that the
cerfificate is real.

To provide evidence that a certificate is genuine and valid, it is digitally
signed by a root certificate belonging to a trusted certificate authority.
Operating systems and browsers maintain lists of trusted CA root
certificates so they can easily verify certificates that the CAs have issued
and signed. When PKI is deployed intemally, digital certificates can be

self-signed.

Many digital certificates conform to the X_509 standard
'.:ul:c: 0—-lCArtihwn_sn
It fication l bty
Irformation y Private Key
S uboest
s - | Mearceag
uf::c — Digest g
Camtmeoaton e Ganarats
Authcnty s digetai
Narre cignature.
Cetificat on "
Ruthonty s
Dicital Segesture |

Example of dgital certificate

Technical detall of digital certificate :
PERC-compliant public key mfrastiuctures, nduding the public key infrastructure in Wirdows 2000,
support X509 version 3 centificates. the contents of X509 version 3 certificates

FB/IG/TW: @educlashco [Vipin Dubey]

Certificate

Wereion
Certificate Serial Mumber

Certificate
Llgorithm Identifier for

Certificats Issusr's Signaturs =

Issuer %- é =

Walidity Pariod = = o

Subject = 3
w

Subject 5 o
PUBlEKeY Algorithm 1dentfier

Information Public-Kay Walue
Issuer Unique Identifier

Optianal Subject Unigque [dentifier
Exte

Certification Authority's
Digitsl Signature i
—

Cxtansion Fields
{optional) ‘

Content of digital certificate Table 14.1 Description of X.509

Certificate creation step

Asymmetric key cryptography can be a very good solution , but the exchange of public key
between two parties is also a probiem & this problem was solved by an idea of "Digital
Certificate”

Cenrtificate Creation Steps

Key Generation

Registration

Verification

Certificate Creation

Step -1 Key Generation
a) The end user can create his own private key & public key pair using some s/iw . He then
send the public key along with other information & proof about himself to R.A

b) Or alternatively RA generates the private as well as public key pair for user. (This
happens in case when the user is not aware of generation of keys)

Step- 2 Registration

When user creates his own xeys .then he send the public key along with other information &
proof about himself to R.A in a provided s/w wizard

Note that he keeps his private key as private only,

After this he gels a requested identifier for tracking the progress of certificate request

Step 3- Verification

After registration process is compiete RA has to verify user’s identification

a) RA verifies the proof like address proof, email-id, ph.no, Passport /driving license.. etc

D) Then he verifies private key of user by

- RA can demand at the time of sending the proof the user must send those with digital

FB/IG/TW: @educlashco [Vipin Dubey]

signature | If BEA can verlfy the signature by using user's public key sothat RA can beleve on
private key of user

- Alernatively RA can encrypt documents with User's public key & send to user , which will
decrypt its own private key

Step -4 Certificate creation
Assuming that all steps so far have been successfully
RA passes those documents to CA & CA will creates digital certificate in X.509 format.

CA send this certificate to user or user can download it from
CA's sile

3)Define message digest. Explain MD5 & compare with SHA.
Message Digest in Information security. Message Digest is used to ensure the
integrity of a message transmitted over an insecure channel (where the content of
the message can be changed). The message is passed through a
Cryptographic hash function. This function creates a compressed image of
the message called Digest.
MD5 & SHA
e Both MDS5 stands for Message Digest and SHA1 stands for Secure Hash
Algorithm square measure the hashing algorithms wherever The speed of
MDS5 is fast in comparison of SHA1's speed.
e However, SHA1 provides more security than MD5. The construct behind these
hashing algorithms is that these square measure accustomed generate a

novel digital fingerprint of knowledge or message that is understood as a
hash or digest.

Stego Image > DWT based Concatenated | —| Secretdata
Steganography| Data
Y
h 4
MD5
Y Algorithm
Encrypt
data

h 4 h 4

1 Has Value Has Value
Key » Filter Blank

Block Cipher Y

» verification

Some features of hash algorithms are given below:

1. The has functions can’t be restrained.

FB/IG/TW: @educlashco [Vipin Dubey]

2. The size of the hash (or digest) is often fastened and doesn’t rely upon the
scale of the info.
3. No 2 distinct information set square measure able to manufacture the same
hash.
Let's see that the difference between MD5 and SHA1 which are given below:

FB/IG/TW: @educlashco

MD5

MD?5 stands for Message Digest.

MD?5 can have 128 bits length of

message digest.

The speed of MD5 is fast in

comparison of SHA1’s speed.

To make out the initial message the
aggressor would want 27128
operations whereas exploitation the

MD?5 algorithmic program.

MDS5 is simple than SHAL.

MD?5 provides indigent or poor

security.

In MD?5, if the assailant needs to seek
out the 2 messages having identical

message digest then assailant would

[Vipin Dubey]

SHA
While SHA1 stands for

Secure Hash Algorithm.

Whereas SHA1 can have 160

bits length of message digest.

While the speed of SHAL is
slow in comparison of

MD5’s speed.

On the opposite hand, in
SHAT1 it’ll be 2”160 that
makes it quite troublesome to

seek out.

While SHA1 is more

complex than MD5.

While it provides balanced or

tolerable security.

Whereas in SHAL, assailant
would need to perform 2780

operations which is greater

need to perform 264 operations. than MD5.

1 3 ‘3‘;‘)
; , |
things manageable is 10 use a trusted node known ag N
DC knows keys for all the nodes. If a new node is insmn:dki:y“l‘)‘slﬂhm\c
€ Network, onl
B v ¥ thay
u\\ // ;
KDC
A \
by 7

pew node and the KDC need to be coﬂﬁgg@wm,lssxiguhmmilf node o wants o alk o
node B. a talks to the KDC (securely, since o and the KDC share), and asks for a key with
which to talk to . The KDC authenticates a, chooses a random number Ryg to be used as 3 key 1o
be shared by ot and P i‘?)ﬁliﬁr?qﬁéfsa—tibn. encrypts R, with the key the KDC shares with ¢ and
gives that to a.. The KDC also encrypts Rgg with the key the KDC shares with {3 and gives that to B,
with the instruction that it is to be used for conversinggigh_g{(ﬂsually. the KDC will not bother to
sctually transmit the encrypted Rep to B but rather will giv?ﬁ'to o to forward to f.) The encrypted
message to B that the KDC gives to o to forward is often referred to as a ticket. Besides containing
Rag: the ticket generally contains other information such as an expiration time and s @Wﬁl
‘hSCHS_S__protocols involving KDCs in §11.4 Mediated Authentication (with KDC).

. KDCs make key distribution much more convenient. When a new user is being installed into
lk fetwork, or when a user's key is suspected of having been compromised, there’s 2 single Iocf-
on (the KDC) that needs to be configured. The alternative to using a KDC is installing the user's

information at every server to which the user might need @There are some disadvantages 10

4ys i Il
" The KDC has enough information to impersonate anyone to anyone. If itis compromised. &
the network resources are vulnerable.
isasi : work
'(The: KDCis a single point of failure. If it goes down, nobody can use anything on the n¢

or A iotributed can
father, nobody can start using something on the network—keys previously distribe of
Continue 1

keys, but thabe used). It is possible 10 have multiple KDCs which share thel'samﬁeon pfo(ocds'
s ! means added complexity and cost for extra machines and replica 3
added Vulnerability, since there are now more targets that need to be protected:

The KDC
Micate wih j

{ly commu”
tght be a performance bottleneck, since everyone will need © frequently
- Having multiple KDCs can alleviate this problem. 3

g

FB/IG/TW: @educlashco [Vipin Dubey]

S — : R ———
9.7.2 Certification Authorities (CAs)
blic key cryptography. Each node is responsible for kmwm".
keys can be accessible in one place. But there are problems wjy
all the public keys are published in The New York Times,
be sure that the information is correct”? An intnige
directory service or taken out her own af §

Key distribution is easier with pu
own private key, and all the public
public keys as well. If, for instance,
stored in the directory service, how can you

Trudy, might have overwritten the information in lhe. ‘ i het
The New York Times. If Trudy can trick you into mistaking her public key for Alice’s, she ¢,

impersonate Alice to you. -
The typical solution for this is to have a trusted node known as a«&grtiﬂc,ﬁon Authorit
ifying a name (Alice; and the coy

(CA) that generates certificates, which are signed messages speci : > (ARO8) and the o
responding public key. All nodes will need to be preconfigured wuu_: the CA’s .pubhc key 50 thy
they can verify its signature on certificates, but that is the only public key they'll need 10 know
priori. Certificates can be stored in any convenient Jocation, such as the directory service, oread
node can store its own certificate and furnish it as part of the authentication exchange. CAs are ty

public key equivalent of KDCs. A CA or a KDC is the single trusted entity whose comprofnise ca
destroy the integrity of the entire n'gt_v%:fk;'l‘he advantages of CAs over KDCs are: 1

e The CA does not need to be on-line. It might be in a locked room protected by a scary-look
“ing guard, Perhaps only a single very trusted individual has access to the CA. That perscn
types the relevant information at the CA, and the CA writes a floppy disk with the new user’s
certificate, and the floppy disk can be hand-carried to 2 machine that’s on the network. If the

CA is not on-line it cannot be probed by curious intruders.

e Since the CA does not have to be on-line or perform net;work protocols, it can be a vastly sim-
pler device, and therefore it might be more secure.

e If the CA were to crash, the network would not be disabled (as would be the case with &
KDC). The only operation that would be impacted is installing new users (until things st

expiring, such as certificates or Certificate Revocation Lists—see §9.7.3 Certificate Revocs
tion). So i’s not as essential to have multiple CAs,

| Ceniﬁcatgs are not security-sensitive. If they are stored in a convenient. but potentially ¢
~eure, location like the directory service, a saboteur might delete certificates, which might &
vent network access by the owners of those certificates, but the saboteur c-anwl write bog®
certificates or modify certificates in any way, since only the CA can generatc signatures.
* A compromised CA cannot decrypt conversat; eccas : 1 6633
conversation between m?a?ﬂam;ﬁsg‘“mw ;‘m“""’"”m-‘“’ w
CA can fool Alice into accepting an incorrect public key for Bob w wf]
sonate Bob to Alice, but it will not be able to decrypt i Cm\t“;:::&‘:.,c; red =

and the real Bob. (It’s still really bad for a CA to be compromised, but we're just saying ‘zz"s
not quite as"bad a5 compromise of a KDC.)

Why do you security people always speak of compromise as if it’s a bad
thing? Good engineering is all about compromise. o
—overheard at a project review

FB/IG/TW: @educlashco [Vipin Dubey]

5)MDS5 algoithm

To preserve the integrity (i.e. to ensure that a message has not been tampered with after it leaves
the sender but before it reaches the receiver) of a message, the message is passed through a
message digest algorithm also called as hash function.

Thus we perform a hashing function {or message digest algorithm) over block of data to produce

its hash or message digest, which is smaller in size than the original message. This concept is shown
in figure:

101010101
010101010 Oiriginal Data

0

Message
Drigest
Algorithm

0

0101
1011

Message Dagest

Figure: Message Digest Concept.

=
o
o}

MDS5 is a message digest algorithm developed by Ron Rivest.
MD5 actually has its roots in a series of message digest algorithm, which were
predecessors of MDS, all developed by Ron Rivest.

» The original message digest algorithm was called as MD. He soon came up with next
version MD2, MD3 & MD4 but these were quite weak, failure etc. consequently Ron Rivest
released MD5.

s MDS5 is quite fast & produces 128 bit message digest. MD5 has been able to successfully
defend itself against collisions.

Working of MD5:
Step 1: Padding:
* The first step in MD5 is to add padding bits to the original message. The aim of this step is
to make the length of the original message equal to a value, which is 64 bits less than an
exact multiple of 512,
+ Note that padding is always added, even if the message length is already 64 bits less than a
multiple of 512. Thus, if the message were already of length say 448 bits, we will add a

padding of 512 hits ta make its length 960 bits. Thus, the padding length is any value
between 1 and 512.

FB/IG/TW: @educlashco [Vipin Dubey]

The padding process is shown in below
Ongmal Message

Padding (1-512 bits)

4
!

Original Message Padding

Figure: Padding Process
Step 2: Append length:

« After padding bits are added, the next step is to calculate the original length of the
message and add it to the end of message, after padding.

¢ This Iength of the original message is now expressed as a 64-bit value and these 64 bits are
appended to the end of the original message + padding. This is shown in Figure below.

¢ Note thatif the length of the message exceeds 2 bits (i.e. 64 bits are not enough to
represent the length, which is possible in the case of a really long message), we use only
the low-order 64 bits of the length. That is, in effect, we calculate the length mod 2 in that
case,

¢ We will realize that the length of the message is now an exact multiple of 512. This now
becomes the message whose digest will be calculated.

Original Message

Figure: Append Length
Step 3: Divide the input into 512-bit blocks
¢ Now, we divide the input message into blocks, each of length 512 bits. This shown below:

Date to be hashed (digested)

Blocki | Block2 | Block3 Block 1

512 bats 512 bits 512 bats 512 bats

Figuse: Data is divided into 512-bits blocks

FB/IG/TW: @educlashco [Vipin Dubey]

Step 4: Initialize chaining variables:
* In this step, four variables (called as chaining variables) are initialize, They are called as A,
B, C and D, Each of these is a 32-bit number,
* The initial hexadecimal values of these chaining variables are shown below:

A Hex 01 23 45 67

Hex 82 AB cD EF
Hex FE DC BA S8
Hex 76 34 32 10

Figure: Chaining Variables
Step 5: Process blocks:
* After all the initializations, the real algorithm begins .There is a loop that runs for as many
512-bit block as are in the message.
Step 5.1:
* Copy the four chaining variables into four corresponding variables, a, b, ¢ and d (note the
smaller case). Thus, we now have a=A, b=B, c=Candd =D, This is shown below:

1!

* Actually, the algorithm considers the combination of a, b, cand d as a 128-bit single
register (which we shall call as abcd). This register (abed) is useful in the actual algorithm
operation for holding intermediate as well as final results, This is shown below:

"!“"-’, A Abstracted view

.‘ b | ¢ d Internal view

Figure: Abstracted view of the chaiming vanables

Step 5.2:
* Divide the current 512-bit block into 16 sub-blocks. Thus, each sub-block contains 32 bits,
as shown below:

FB/IG/TW: @educlashco [Vipin Dubey]

| Block 1 (512 bits) |

! 1 1 } !

Sub-bleck 1 Sub-black 2 Sub-block 16
32 hiee

i2bns 32 bits

Figure: Sub-blocks wathin a block

Step 5.3:
* Mow, we have four rounds. In each round, we process all the 16 sub-blocksSte p 5.3:
belonging to a block. The inputs to each round are: (a) all the 16 sub-blacks. (b) the
variables a, b, ¢, d and ic} some constants, designated as 1, This is shown as below:

16 sub-blacks Other constants ()

\

Dne round

Figure: Concepiual process wiihin a

All the four rounds vary in one major way: Step 1 of the four round has different
processing. The other steps in all the four rounds are the same.

1. A process P s first performed on b, ¢ and d, This process P is different in all the four
rounds,

2, The variable a is added to the output of the process P (j.e. to the register abed),

3, The message sub-block M(i] is added to the output of 5tep 2 (i.e. to the register abcd),
4, The censtant tlk] is added to the output of Step 3 (i.e. to the register abcd),

5, The output of Step 4 (i.e. the contents of register abed] is circular-left shifted by s bits,
(The value of 5 keeps changing, as we shall study).

6. The variable b is added 1o the output of Step 5 (i.e. ta the register abed).

7. The output of Step & becomes the new abod for the next step.

. WiF EA B

Fiéure: One MDS operation

6)MAC

FB/IG/TW: @educlashco [Vipin Dubey]

» Similar to Message Digest

» Shared Symmetric (Secret) key is used for
encryption

* Message authentication is concerned with:

« protecting the integrity of a message

+ validating identity of originator

- non-repudiation of origin (dispute resolution)

consider the security requirements

FB/IG/TW: @educlashco [Vipin Dubey]

Message Authentication Code
(MAC)

» Generated by an algorithm that creates a small
fixed-sized block
depending on both message and some key
like encryption though need not be reversible
* appended to message as a signature
» receiver performs same computation on message
and checks it matches the MAC

* provides assurance that message is unaltered and
comes from sender

Message Authentication Code

4y Message withentication

7)HMAC
HMAC

HMAC stands for -Hash Message
Authentication Code

Mandatory for security implementation for
Internet Protocol security.

Idea of HMAC is to reuse existing Message-
Digest algorithms(such as MD5,SHA-1..)
Uses shared symmetric key to encrypt
message digest.

HMAC CONCEPT

FB/IG/TW: @educlashco [Vipin Dubey]

WORKING OF HMAC

* Variables used in HMAC
MD = the message digest/hash function used(e.g.
MD5,SHA-1,etc.)
M = the input message whose MAC is to be
calculated.
L = the number of blocks in the message M.
b = the numbers of bits in each block.
K = the shared symmetric key to be used in HMAC.
ipad = A string 00110110 repeated b/8 times.
opad = A string 01011010 repeated b/8 times.

WORKING OF HMAC

» STEP-1 Make the length of K equal to b.
» STEP-2 XOR K with Ipad to produce S1.
» STEP-3 Append M to S1.

» STEP-4 Message-digest algorithm.

» STEP-5 XOR K with opad to produce S2.
» STEP-6 Append H to S2.

» STEP-7 Message-digest algorithm.

FB/IG/TW: @educlashco [Vipin Dubey]

» STEP-1 Make the length of K equal to b.
If length of K<b : add 0 bit as required to the left of k
If length of K=b : In this case, we do not take any actic
proceed to step 2.
If length of K>b : we need to trim k, for this, we pass K
the message-digest algorithm(H) selected for this particul

instance of HMAC
//\\-\
- e .
T
- P
O bits 10 the
:l.-.o.- Longth of X » b oo

» STEP-2 XOR K with Ipad to produce S1

- XOR K (the output of step 1) and ipad to produce a variable
called S1.

DO x
2

ipad

FB/IG/TW: @educlashco [Vipin Dubey]

+ STEP-3 Append M to S1

Take the original message (M) and simply append it to the end of
S1.

o1 () gl message (M)

AN /

» STEP-4 Message-digest algorithm
- The selected message-digest algorithm (e.g. MDS . SHA-, etc.) is

applied to the output of step 3.
[+] g%m T
LT |
algorthen

=] ;

» STEP-5 XOR K with opad to produce S2

< XOR K (the output of step 1) with opad to produce a variable
called as S2.

2O x
i
8

FB/IG/TW: @educlashco [Vipin Dubey]

~ STEP-6 Append H to S2
Append the message digest calculated in step 4 to the end of S2.

[= 1)
\Q /
[= 1

» STEP-7 Message-digest algorithm
the selected message-digest algorithm (e.g. MDS5, SHA-|, etc.) is
applied to the output of step 6 (i.e. to the concatenation of S2 and
H). This is the Final MAC that we want

=

(MD)
algo rithm

==

Bisadvantages of HMAC

. Key exchange is main issue

2. Somehow the key-exchange problem is resolved,
HMAC cannot be used if the number of receivers is
greater than one.

3. If multiple parties share the same symmetric key.
How does a receiver know that the message was
prepared and sent by the sender

4. Replay of Message

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

Scanned by CamScanner

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

FB/IG/TW: @educlashco [Vipin Dubey]

