Functional Dependency Problems

1. For relation $R\{A, B, C, D, E, F, G\}$
 $\{\underline{A} \rightarrow B, \underline{B C} \rightarrow \underline{D E}, \underline{A E F} \rightarrow \underline{G}\} \equiv A C F \rightarrow D G$
 Source of the RHS

So we need to show that $A C F \rightarrow B C$ and $A E F$
Notice $A \rightarrow B$ can be augmented to $A C \rightarrow B C$ that transitively yields $D E$.

By the 'shootover rule' (augmentation),
$A C \rightarrow D E$ yields $A C \rightarrow A C D E$
And with more augmentation we get

$$
\mathrm{ACF} \rightarrow \mathrm{ACDEF}
$$

1. For relation $R\{A, B, C, D, E, F, G\}$

 $\{A \rightarrow B, B C \rightarrow D E, A E F \rightarrow G\} \models A C F \rightarrow D G$1. $A \rightarrow B \quad$ (given) 7. $A C F \rightarrow \operatorname{ACDEF}(6, a u g$.
2. $B C \rightarrow D E \quad$ (given) \quad 8. $A C F \rightarrow A E F$ (7, decomp)
3. $A E F \rightarrow G \quad$ (given) \quad 9. $A C F \rightarrow G \quad(8,3$ trans $)$
4. $A C \rightarrow B C \quad$ (1, aug.) 10. $A C F \rightarrow D \quad$ (6, decomp)
5. $A C \rightarrow D E \quad(4,2$ trans) 11. $A C F \rightarrow D G \quad(9,10$ union $)$
6. $A C F \rightarrow D E F$ (5 , aug.)
7. For $R\{A B C D E F\}$
$\{A \rightarrow B C, B \rightarrow E, C D \rightarrow E F\} \models A D \rightarrow F$
8. $A \rightarrow B C \quad$ (given)
9. $B \rightarrow E \quad$ (given)
10. $C D \rightarrow E F \quad$ (given)
11. $A D \rightarrow B C D \quad$ (1, aug)
12. $A D \rightarrow C D \quad$ (4, decomp)
13. $A D \rightarrow E F \quad$ (5,3 trans)
14. $A D \rightarrow F \quad$ (6, decomp)

NOTE: Proof Strategies

- Suppose you have to prove $A B \rightarrow C D$
- Try deducing a functional dependency with CD on the RHS (right hand side)
- Augmentation, Union or Decomposition can modify RHS of FDs.
- result: $x \rightarrow C D$

Strategies (cont.)

- Try deducing a functional dependency with $A B$ on the LHS.
- Augmentation, Reflexivity, Pseudotransitivity can affect LHS.
- result: $A B \rightarrow y$
- Now try to deduce $y \rightarrow x$
- Try disproof first: it is mechanical.

Are 2 sets of FDs Equivalent?

- First method:
- Compute the closure of F
- Compute the closure of G
- See if they are equal
- Second method
- Show every FD in F can be proven from G
- Show every FD in G can be proven from F

3. Equivalent sets of FDs ?
$F=\{B \rightarrow C D, A D \rightarrow E, B \rightarrow A\}$ $G=\{B \rightarrow C D E, B \rightarrow A B C, A D \rightarrow E\}$
$\rightarrow F \models G$? $(A D \rightarrow E$ in \quad 6. $B \rightarrow E \quad(5,3$, trans $)$ both.)
4. $B \rightarrow C D$ (given)
5. $B \rightarrow A$ (given)
6. $B \rightarrow \operatorname{ACDE}(4,6$, union $)$
7. $B \rightarrow C D E^{\star}$ (7,decomp)
8. $A D \rightarrow E^{*}$ (given)
9. $B \rightarrow A C D(1,2$, union $)$
10. $B \rightarrow A C$ (4, decomp)
11. $B \rightarrow A D$ (4, decomp)
*FD in G to be Proven

3. Continued

$F=\{B \rightarrow C D, A D \rightarrow E, B \rightarrow A\}$
$G=\{B \rightarrow C D E, B \rightarrow A B C, A D \rightarrow E\}$

- $G \models F$? (prove F from G ?)
- Obviously

4. What is the key for R ?

- $\{K E Y\} \rightarrow\{R E S T\}$
because key must determine all fields
- KEY must include all NOT on RHS of ANY functional dependency
- Only fields on RHS are determined.
- An undetermined field must be in the key.
- REST must include all NOT on LHS
- They don't determine anything
- so they can not be part of key.
- If field is not in ANY FD, it must be part of the key

4. What is the key for R ?

- R=(A,B,C,D,E,F,G,H,I,J)

FDs: $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{BD} \rightarrow \mathrm{EF}, \mathrm{AD} \rightarrow \mathrm{GH}, \mathrm{A} \rightarrow \mathrm{I}, \mathrm{H} \rightarrow \mathrm{AJ}$

- NOT on RHS: Key must include BD
- NOT on LHS: Rest must include CEFGIJ
- Unknown: A and H
- Is BD a Key? No: it only determines EF which don't determine anything else
- If BD were a key, we would stop here.
- So Key might include A or H
- But not both, Why not?

FDs: $A B \rightarrow C, B D \rightarrow E F, A D \rightarrow G H$, $A \rightarrow I, H \rightarrow A J$

- Try adding A : is $A B D$ a key?
$-A B D \rightarrow E F$ because BD $\rightarrow E F$ (aug)
- $A B D \rightarrow C$ because $A B \rightarrow C$ (aug)
- ABD \rightarrow GH because $A D \rightarrow G H$ (aug)
- ABD \rightarrow I because $A \rightarrow I$ (aug)
- ABD $\rightarrow \mathrm{J}$ because $A D \rightarrow G H \& H \rightarrow A J$ (aug, decomp, trans)

FDs: $A B \rightarrow C, B D \rightarrow E F, A D \rightarrow G H$,

$$
A \rightarrow I, H \rightarrow A J
$$

- Try adding H : is BDH a key?
- Since $H \rightarrow A J, H \rightarrow A$.
- So BDH \rightarrow BDA, which is a key.
- So BDH determines all that ABD determines.
- BDH is another key
- 2 overlapping keys: $A B D$ and BDH.

$$
\begin{aligned}
& \text { 5. Counter example: } \\
& \{X Y \rightarrow Z, Z \rightarrow X\} \neq=Y \rightarrow X Z \text { ? }
\end{aligned}
$$

- Method: Set up a database in which LHS is NOT Violated but RHS IS violated
- Why? Because \models is a form of implication and implication is only false when
LHS is True and RHS is false
- When is RHS ($Y \rightarrow X Z$)false?
- It too is a kind of implication!
- When 2 tuples agree in Y and disagree in $X Z$
counter: $\{X Y \rightarrow Z, Z \rightarrow X\}=Y \rightarrow X Z$
- Requirements for counter:
- two tuples
- agree in Y, disagree in X and/or Z
- do not violate LHS.
- Important Note: given $A \rightarrow B$
- two tuples which disagree in A cannot violate $A \rightarrow B$.
- Why? Because implication is false only when A is true and B is false.
counter: $\{X Y \rightarrow Z, Z \rightarrow X\}=Y \rightarrow X Z$
- X
Y Z
(attributes)
a b c (first tuple)
? b ? (y must be the same)
- What about X ? If X is the same:

X Y Z
a b c
a b ?

- Problem: Cannot violate LHS $(x y \rightarrow z)$
- so Z must be the same
- but cannot have 2 identical tuples.
- Therefore, make X different

$$
\text { counter: }\{X Y \rightarrow Z, Z \rightarrow X\} \mid==Y \rightarrow X Z
$$

- X Y Z
a b c
H b ? (y the same \& x different)
- What about Z ? Suppose Z is the same.
- Maybe OK since $Y \rightarrow X Z$ still violated.
-X Y Z
a b c
H b c
- But this would violate the LHS. Why?
counter: $\{X Y \rightarrow Z, Z \rightarrow X\}=Y \rightarrow X Z$
- Solution:

X	Y	Z
a	b	c
H	b	K

- Check:
- RHS violated?
- Yes: Same in Y, different in X and/or Z
- LHS not violated?
- $X Y \rightarrow Z$: no two the same in $X Y$
- $Z \rightarrow X$: no two the same in Z

