

1. For relation R{A,B,C,D,E,F,G} $\{ A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G \} \models ACF \rightarrow DG$ 1. $A \rightarrow B$ (given) 7. $ACF \rightarrow ACDEF$ (6, aug.) 2. BC \rightarrow DE (given) 8. ACF \rightarrow AEF (7, decomp) 3. AEF \rightarrow G (given) 9. ACF \rightarrow G (8,3 trans) 4. $AC \rightarrow BC$ (1, aug.) 10. $ACF \rightarrow D$ (6, decomp) 5. $AC \rightarrow DE$ (4,2 trans) 11. $ACF \rightarrow DG$ (9,10 union) 6. ACF \rightarrow DEF (5, aug.)

°2001 Irwin Levinstein

[Vipin Dubey]

Are 2 sets of FDs Equivalent?

- First method:
 - Compute the closure of F
 - Compute the closure of G
 - See if they are equal
- Second method
 - Show every FD in F can be proven from G
 - Show every FD in G can be proven from F

©2001 Irwin Levinstein

[Vipin Dubey]

©2001 Irwin Levinstein

$\begin{array}{c} \mathsf{FDs:} \ \mathsf{AB} \to \mathsf{C}, \ \mathsf{BD} \to \mathsf{EF}, \ \mathsf{AD} \to \mathsf{GH}, \\ \mathsf{A} \to \mathsf{I}, \ \mathsf{H} \to \mathsf{AJ} \end{array}$

- Try adding H: is BDH a key?
- Since $H \rightarrow AJ$, $H \rightarrow A$.
- So BDH \rightarrow BDA, which is a key.
 - So BDH determines all that ABD determines.
- BDH is another key
- 2 overlapping keys: ABD and BDH.

©2001 Irwin Levinstein

	counter: { XY \rightarrow Z, Z \rightarrow X } = Y \rightarrow XZ
	• X Y Z (attributes)
	a b c (first tuple) ? b ? (y must be the same)
	• What about X? If X is the same:
	x y z a b c
	ab?
	• Problem: Cannot violate LHS (xy \rightarrow z)
	 so Z must be the same
	 but cannot have 2 identical tuples.
~	 Therefore, make X different
	^{\$} 2001 Irwin Levinstein

