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5 Prediction Methods and Models

“When you have eliminated the impossible, whatever remains, how-
ever improbable, must be the truth.”
The Sign of Four

“As to Holmes, I observed that he gat frequently for half an hour on
end, with knitted brows and an abstract air, but he swept the matter
away with a wave of his hand when I mentioned it. ‘Datal data! data!’
he cried impatiently. ‘I can’t make bricks without clay.” ™

The Adventure of the Copper Beeches '

Most “prediction problems” can be categorized as classification problems, regres-
sion problems, or time series problems. When placing a prediction problem into
one of these three categories, two major aspects have to be taken into account: the
expected output and time. Let us explain these two aspects further.

For some problems, there are only two possible expected outputs: “yes” or
no,” “true” or “false,” “buy” or “sell,” etc. These are classic classification prob-
lems,' because they assign new cases to a class. The best example would be classi-
fication of credit card transactions into two classes: “fraudulent” and “legitimate™
(this problem is discussed in more detail in Sect. 12.5). A classification problem
may have, however, more than two outputs — in fact, the number of possible
classes (i.e., expected outputs) might be quite significant (e. g., different types of
diseases). In these classification problems, time does not exist: the “future” is
understood as an arrival of a new (yet unknown) case, or it is included as a vari-
able of the case.

Similar comments are also applicable to regression problems. The general pur-
pose of (multiple) regression is to discover the relationship between several inde-
pendent (“predictor”) variables and a dependent (“criterion”) variable, with the
output being a concrete number. For example, we may want to predict salary lev-
els as a function of position, number of years at the position, number of supervised
employees, etc. A regression model will also tell us which variables are better
predictors than others, and we can easily identify “outliers,” Again, the issue of
time is either non-existent or included as a variable of the case.

£E

' A prediction model developed for a classification problem is often called a classifier.

* An outlier is an observation that lies at an abnormal distance from the other valyes in
a random sample. For example, the annual salary level for 1,000 randomly selected peo-
ple might be in the range of $17,832 1o 5167,942, with the exception of one person, an
outlier, who earns $938,400 per vear.
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In contrast to classification and regression problems, “time” is the main feature
of a time series problem, with each case containing many values measured over
come time period in the past. In other words, the time-dependencies amnng the
cases are so strong that the cases must be kept in a sequential time order. In time
series problems, the future is referenced explicitly: we would like to predict
a variable’s value in the future (tomorrow, next month, etc.). A classic example in
economics would be to predict next year’s Gross Domestic Product (GDP). Plenty
of historical data are available (released every quarter), and the prediction model
may include many additional economic indicators as variables (e. g., employment,
financial, survey, production, and sales indicators).

Despite the fact that prediction problems come in all shapes and sizes - varying
in the number of variables, types of data patterns, time horizons, and types of
expected output — only two types of prediction methods exist for addressing these
problems: gquantitative and qualitative methods. The quantitative methods assume
that a sufficient amount of data exists about the past, that these data can be quanti-
fied in the form of numerical data, and that past patterns will continue into the
future. Conversely, qualitative methods are applied in situations where very little
quantitative data are available, but where sufficient qualitative knowledge exists.

Although quantitative methods vary from simple (and intuitive) methods based
on empirical experience to formal methods based on statistical principles, all these
methods require data! Fortunately, the amount of stored data are growing at
arapid rate. This growth takes place on two dimensions: the number of cases
stored (e. g., new transactions) and the number of variables in each case (e. g., the
detail of each transaction). In general, the more data the better, as data mining can
produce better results when performed on large data sets, and the resulting predic-
tion models are more accurate.

In the car distribution example, there are several important elements of predic-
tion. For example, we would like to predict the sale prices for different cars at
different auction sites on different days. Because these predictions are based on
past cases, we should know all the variables (e. g., “make.,” “model,” “body style,”
“mileage”} of the cars that were sold over the last, say, three vears: and we should
also know the sale price, and the exact date and location. Having all this informa-
tion, we can then apply various prediction methods to develop a good prediction
model. Of course, as we discussed in Chap. 3, the prediction model should also
take into account the distribution of other cars as well, because of the volume
effect.

The process of building a prediction model usually consists of a few steps:

* Data preparation. To avoid the situation of “garbage in, garbage out,” the rele-
vant data must be “prepared.” This step includes data transformation, normali-
zation, creation of derived attributes, variable selection, elimination of noisy
data, supplying missing values, and data cleaning. This stage is cften aug-
mented by preliminary data analysis to identify the most relevant variables and
to determine the complexity of the underlying problem. The data preparation
step can be the most laborious, and many people believe that it constitutes 80%
of any data mining effort.
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* Model building. This step includes a complete analysis of the data (i. e., the data
mining stage), the selection of the best prediction method on the basis of
(a) explairing the variability in question, and (b) producing consistent results,
and the development of one or more prediction models.

* Deployment and evaluation. This step includes implementing the best predic-
tion model, and applying it to new data to generate predictions. However, be-
cause new data arrive on a continuous basis, it is essential to measure the pre-
diction model’s performance and tune it accordingly.

Let us examine each of these steps.

§

v

5.1 Data Preparation

Generally speaking, there are only two “types” of variables: numerical and nomi-
nal. Numerical variables are numbers (e. g., “34,982” for mileage), while nominal
variables take their values from a predefined set (e. g., “black,” “white,” or “red”
for color). Because the values of nominal variables are symbols (strings of charac-
ters), there is rarely any order between them, and mathematical comparisons and
operations do not make much sense (as it is difficult to add “50” to “blue.” or to
compare which is larger: “blue” or “green”). Hence, it makes sense to talk about
ordered nominal variables, where comparisons of the type “greater than,” “less
than,” and “equal to” have meaning.

An additional type of variable is binary (also called a Boolean or true/false
i variable), as it only takes one of two possible values (e.g., “yes” or “no,” “true” or
“false”). We may also come across other lypes of variables (e.g., variables that
store free text as a value, or that contain a set of values). Most prediction methods
and models require that variables be either binary or numerical (or nominal with
numerical codes as values), thus allowing some order. So, what should we do with
truly nominal variables, such as color? Well, there are two possibilities: Either the
color of a car can be coded as a unique number, or it can be converted into several
binary (true/false) variables, with each variable representing a particular color. For
example, if the color of the car is white, then the variable can take on the value
“true” (or *17); if the color of the car is not white, then the value would be “false”
(or “0™).

To properly prepare the data, it is important to first identi fy the variable “type”
(i.e., to know whether the values of a variable allow arithmetical operations or
logical comparisons, whether there is a natural order imposed among them, and
whether is it meaningful to define a distance between the values). For example,
“very light,” “light,” "medium.” “heavy,” and “very heavy” follow a natural order,
but the distance between them is not defined. Mileage values, on the other hand,
have a natural measure of distance: a car with 34,789 miles has 3,500 miles less
than a car with 38,289 miles. Because the goal of any prediction model is to pro-
duce an output (i.e., the prediction), it is important to note that the output is also
a variable. In the car distribution example, the predicted output 1s the sale price,
which is a single numerical variable. e
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In the data preparation phase, some variables may also require “transforma-
tion.” For example, it is quite typical for “date of birth™ to be recorded as a vari-
able, but many decisi~ns (or aneries (o the system) mav be hased on the “age” of
an individual. A simple data transformation stcp would convert the variable “date
of birth” into the variable “age” by subtracting a person’s date of birth from the
current date. Returning to the car distribution example, the VIN is clearly the key
variable, because we can use it to identify any car. However, the VIN itself is not
useful for data mining activities (after all, the string of 17 characters looks random
and meaningless: . g., JD8320DJ2094GK2X3), but by using a VIN decoder it can
be transformed into meaningful information about the make, model, year, and
trim-level of a car.

Although data transformation is an important step in the data preparation proc-
ess, variable selection and variable composition are even more important. Vari-
able composition — which is somewhat similar to data transformation — requires
problem-specific knowledge to create new variables. Because these new variables
(often called synthetic variables) present existing data in a “better” form, they may
have a greater impact on the results than the specific prediction model used to
produce these results. A trivial example is the creation of a new variable to record
the average miles driven per year, which corresponds to the ratio:

Mileage / (Current Year — Year + 1)

The denominator would tell us the number of years the car was in service, and

; the entire ratio would tell us the average miles driven per year.
Ly Variable selection on the other hand (also known as feature selection or attrib-
ute selection) is the process of selecting the most relevant variables. This process
should be performed carefully, because if meaningful variables are not selected
then everything else — from data transformation all the way to the final prediction
model — will be meaningless. Conversely, selecting irrelevant variables may dete-
riorate the accuracy of a prediction model (in other words, removing irrelevant
variables usually improves the performance of a prediction model). This may
seem straightforward: After all, there are a finite number of variable subsets, so
we can examine all of them and select the best one! Unfortunately, it is not quite
that simple. First, the number of possible subsets may be too large: For a database
with “only” 20 variables, there are over 1 million possible subsets. Second, to
evaluate each subset, we will need to build a prediction model and evaluate it by
measuring the prediction error (we will discuss this in detail in Sect. 5.3, along
with some other validation issues). So, what is the solution?

Although the best way to select the most relevant variables is still manual
(based on problem-specific knowledge), there are numerous automatic methods
that can be divided into several categories. For example, we can consider methods
that evaluate the relevance of a single variable versus methods that evaluate
a subset of variables. Another category of automatic methods is based on the tim-
ing of selection: Some methods select variables at the very beginning using char-
acteristics of the data, while other methods select relevant variables during the
model construction process.
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Let us consider a few (simple) examples of different automatic methods for
variable selection that we could apply to a problem. Say the prediction problem is
one of classification (e.g., “fraudulent” ard “legitimate”) and we are trying to
evaluate the usefulness of particular variables (such as the time of transaction, or
the amount) for predicting the outcome. One of the most popular automatic meth-
ods we could use is based on “means and variances.” Using a simple statistical
test, the means of a variable are compared for the twa classes to see whether the
difference is likely to be random or not. Small differences in means usually imply
irrelevant variables. This method evaluates the variables one by one, and does so
before the development of any prediction model. On the other hand, we could use
an automatic method where the variable selection process is an inherent part of the
prediction model. For example, when a decision tree is built (these are covered in
the next section), the relevant variables are selected, one by one, during the tree-
building process. Lastly, we could also use automatic methods that evaluate the
entire subset of variables. Many optimization techniques discussed in Chap. 6
would be appropriate for this type of approach, as the problem is really an optimi-
zation problem (i. e., finding the “optimal” subset of variables).

Because the variable selection step removes redundant and/or non-productive
variables, we can consider this step as part of the “data reduction” process, the
general goal of which is to delete nonessential data (as the data set may be too big
for some prediction models and/or the expected time for building a model might
be too long). As data are represented in a table, we can: (1) reduce some variables
(columns) in the table, (2) reduce some values present in the table, and/or (3) re-
duce some cases (rows) from the table. We have already discussed the removal of
some variables, which is equivalent to the task of variable selection, so let us
move on to reducing values.

It is often necessary to “discretize” a numeric atiribute into a smaller number of
distinct categories (e.g., the variable “mileage™ can be grouped into values of
“below 10,000 miles,” “between 10,000 and 19,999 miles,” “between 20,000 and
29,999 miles,” and so on, right up to “over 200,000 miles”). This looks natural,
but how can we be sure that such discretization is any good? Moreover, what is
a good way to discretize numeric variables into categories? As usual, there are
a few possibilities to consider. One approach would be to discretize an attribute by
rounding: The actual mileage of the car can be rounded off to the closest
1,000 miles, thus 23,772 miles would become 23,000 miles. Another possibility
would be to create some number of discrete categories (say, 20), and distribute all
values to these categories in such a way that the average distance of a value from
its category mean is the smallest. For example, the first category may contain
mileages from 0 to 11,209, the second category may contain mileages from 11,789
to 18,991, and so on. Some mathematical methods (such as k-means clustering)
can deliver near-optimal solutions for such distributions, However, this approach
might be a bit risky for time-changing data. In the case of off-lease cars, new cases
are coming in at regular intervals, so the optimal mileage distributions might
change quite frequently.

Finally, let us turn our attention to the last possibility of data reduction, which
is the reduction of cases from the table. Clearly, the number of cases is often the
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largest dimension of the data; it is not unusual to have hundreds of millions of
cases containing 20 to 30 variables each. This does not mean, however, that the
nrocess of case reduction is easy. Just the opposite is true: very often, case reduc-
tion is the hardest type of data reduction to perform. The general approach for
handling case reduction is based on random sampling. Rather than using the whole
data set to build a prediction model, random samples are used instead. Two popu-
lar techniques for random sampling include:

o Incremental sampling. Where the model is trained on increasingly larger ran-
dom subsets of cases, the trends are observed, and the process is stopped when
no significant progress is made.

o Average sampling. Where several samples of the same size are drawn from the
data set, a prediction model is created for each sample, and the outputs of all
the models are combined by voting or averaging (more on this in Sect. 10.1).

While discussing data preparation, it is also worthwhile to mention some other
aspects of this phase. Some problems require data normalization (e. g., scaling some
values to a specific range, say, [0, 1]). For example, the age of a car (in number of
years) should be interpreted on a different scale than the mileage. In particular, two
cars of the same age, but which differ by five miles, can be considered quite similar
(assuming that the other variables are the same), whereas two cars of the same mile-
age, but which differ by five years, are quite different. Data normalization also al-
lows us to express some values as integers, categories, floating point numbers, la-
bels, ete. For instance, we can transform $400 in damage into “damage level” = 0.04,
or we can assign damage to 1 of 10 categories, such as category 1 for damage under
$500, category 2 for damage between $501 and $1,000, and so forth. As indicated
earlier, we can also transform the variable “color” into 20 binary variables, one for
each color; “white,” “silver,” “red,” “green,” “blue,” ..., “black.”

Another important issue connected with data preparation is that of inaccurate or
missing values. Inaccurate values usually arise from typographical errors. Some of
these errors can be “discovered” by analyzing the outliers for each variable, but
some of them may be difficult to find. Furthermore, in almost any data set, some
values are not recorded. For example, the color might be unknown for some cars,
or the mileage might be missing. Sometimes missing values are treated as just
another variable value (e. g., “white,” “silver,” “red,” ..., “black,” “unknown”).
Another possibility would be to ignore all cases with missing values, but in some
data sets we might lose over 90% of the cases by doing this! Yet another way of
approaching the problem of missing values is to replace them with the variable’s
mean value. This might be tempting, but it is very risky, as the data could become
biased. Instead, it is safer to observe a relationship between the variable in ques-
tion and some other variables, and then replace the missing value with an esti-
mated value, For example, we can estimate the mileage on the basis of other vari-
ables (such as “year” and “type”): a four-year-old off-lease car should have around
48.000 miles, because car leases typically allow for 12,000 miles per year.

The final aspect of data preparation is connected with time-dependent data, Be-
cause all orders, deliveries, and transactions have some sort of a time stamp, most
real-world business problems have some time-dependent relationships within their
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data sets. Even some relatively “stable” data sets, such as bank customers, change
over time. Of course, these types of changes happen at a much slower rate than
chonges in the stock market, but they do happen. Thus, this additional dimension
of time - additional to cases and variables — plays a significant role in most pre-
diction models. This time factor necessitates updates of the prediction model at
regular intervals. This can be done online, when new data arrive, or offline, by
analyzing the new data and modifying the prediction model. We will return to this
issue later, in Sect. 10.3, when we discuss the process of updating a prediction
model.

Time dependencies should be recognized and dealt with during the data prepa-
ration phase. Usually, time series models assume that the values for some vari-
ables are recorded at fixed intervals. For example, we can record the US Gross
Domestic Product at the end of each quarter, the Dow Jones Industrial Average at
the end of each business day, the temperature at some location every four hours
(i. €., six readings a day), and so on. However, if we look at the car distribution ex-
ample, our time series is far less regular. Although the price prediction is for
a particular make/model, there are many subcategories within each make/model
category (because of different mileage, color, trim, etc.). Hence, if we find several
exact cases from the past, they will not have regular time intervals: For example,
a blue Toyota Corolla with 33,000 miles was sold on April 13th, two more were
sold in early May, and another was sold in late August — but we have to make
prediction for this exact car for mid-October. Because of these interval irregulari-
ties, we should relax the precision of some input variables. For instance, color
need not be exactly the same (and for some makes/models, color is not a major
influencer of price anyway). On top of everything, we are not predicting the value
of a variable for the “next” time unit. If we ship a car from California to an auction
site in Arizona, we might be interested in a price prediction for next week (as the
shipping time would be several days). On the other hand, if we ship the same car
to an auction site in New York, then we might be interested in a price prediction
for three weeks from today! Needless to say, the volume effect should also be
taken into account, as other distribution decisions may influence the actual price
of the car!

Another important issue related to time-dependency is the “tirne horizon” of the
historical data. Simply put, we have to make a decision on how far back to look. It
seems natural that we should pay more attention to recent data, as “old” data may
have lost their significance. For example, using pre-September 11th, 2001 data to
predict air traffic for 2002 would not yield good results.

Some people also consider a preliminary (exploratory) analysis to be a part of the
data preparation phase, while others consider it a separate stage of the data mining
process. In either case, such an analysis is extremely helpful for gaining an under-
standing of the data, Preliminary data analysis usually includes graphing data for
visual inspection (e. g., we can graph the prices for a particular make/model with
respect to mileage), and computing some simple statistics such as averages, mini-
mums, maximums, means, standard deviations, and percentiles for each data set
(e. g., the prices of a particular make/model at a particular auction site). We can also
use “decomposition’ analysis™ to detect trends, seasonality, cycles, and to identify
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outliers. Anyway, the main purpose of such an analysis is not to immediately select
a prediction model, but rather to get a “feel” for data. This stage is vital, as it can
sugges: the cpprooriawe prediction method.

5.2 Different Prediction Methods

After the data are prepared, we can begin our search for the right prediction
method. The goal is to build a prediction model that will predict the “outcome™ of
a new case. This outcome might be the price of a used car sent to auction, the
classification of a loan application, the assignment of a new customer to the ap-
propriate cluster, and so on. Many prediction methods have been developed over
the years that differ from one another in the representation of a solution (e. g.,
decision tree versus a set of rules), as well as some other differences (e. g.,
whether they are capable of “explaining” the prediction, the ease with which a so-
lution can be edited). We can group these different prediction methods into a few
broad categories:

Mathematical (e. g., linear regression, statistical methods).

Distance (e. g., instance-based learning, clustering).

Logic (e. g., decision tables, decision trees, classification rules).

Modern heuristic (e. g., neural networks, evolutionary algorithms, fuzzy logic).

The first three caiegories are covered in this chapter, but the last category,
modern heuristic methods, is covered in later chapters. These heuristic methods
include fuzzy systems (Chap. 7), neural networks (Chap. 8), genetic programming
(Chap. 9), and agent-based systems (Chap. 9). One can argue, of course, that neu-
ral networks can be placed in the category of mathematical models, whereas fuzzy
systems and genetic programming are in the category of logic models (as they
represent classification rules and decision trees, respectively). However, these
techniques are of growing importance for building prediction models, and so we
have moved them into separate chapters to discuss them in greater depth,

5.2.1 Mathematical Methods

As discussed earlier in this chapter, there are three types of prediction problems:
classification, regression, and time series. Classification problems have been the
focus of data mining research for the last few decades, and some prediction methods
(e. g., distance and logic) were developed explicitly for classification problems. For
the time being, however, let us focus on regression and time series problems.

The major difference between regression and time series problems is that the
former assumes that the expected output exhibits some explanatory relationship
with some other variables. For example, someone’s (predicted) salary might be
a function of education, experience, industry, and location. In such cases, an ex-
planatory method would be used to find the relationship between these variables
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and make a prediction. The goal of time series models, on the other hand, is not to
discover or explain the relationships between variables; their goal is purely one of
prediction. Neural networks (Chap. 8) are a good example of this: We may not un-
derstand the connection weights, the importance of particular variables or their
relationship, and yet the neural network model might be producing quite accurate
predictions ...

Probably the most popular explanatory method is linear regression . If the pre-
dicted outcome is numeric and all the variables in the prediction model are nu-
meric, then linear regression is the classic choice.’ In this method, we build a lin-
ear expression that uses the values of different variables to produce a predicted
value for a “new" variable (i.e., a variable not used in the model). To illustrate
this prediction method in more detail, let us consider linear regression for predict-
ing the auction price of a car. In this case, the “new” variable would be the pre-
dicted sale price. Note that many variables are nof numeric, so we have to address
this issue first. It is clear that the non-numeric variables “make,” “model,” and
“location” are of key importance, as they determine the basic price range (which is
further influenced by the mileage, year, trim, etc.). By building a separate regres-
sion model for each make/model at each location, we can eliminate these three
non-numeric variables,

Next, we should convert the remaining non-numeric variables into numeric
variables. For example, we can take a list of the available colors, sort them from
white to black according to some standard order (e.g., how they appear on
a spectrum), and assign consecutive natural numbers. Assumin g we have 30 dif-
ferent colors, white would be 1 and black would be 30, Similar assi gnments can be
made for other non-numeric variables. Note that the variables “mileage,” “year,”
and “damage level” are already numeric, so there is no need to covert these.

Because a linear regression model must answer (i, e., produce a value for) ques-
tions such as: “What's the price of a Toi,’mat (“make”) Camry (“model”) at auction
site Jacksonville, Florida (“location”)?™ we need to develop a function:

Sale Price=a + (b x Mileage) + (¢ x Year) + (d x Color) + ...

that provides the predicted price for a new case (i. e., a used Toyota Camry) when
supplied with the numeric values of the other variables ("mileage,” “year,” “co-
lor,” etc.). The main challenge here is to find the values for parameters a, b, c, d,
etc. that give the prediction model the best possible performance (i. e., that mini-
mize the predictive error). Since we have all the historic data from three million
cases, we can extract all cases where “location” = Jacksonville, “make” = Toyota,
and “model” = Camry. This subset of cases (say we identified 150 such cases)
would constitute the data set available for training the prediction model (some of

' Note also that in some situations we would like to predict only one of two values (“yes”
or “no,” “fraudulent” or “legitimate,” “buy” or “sell,” etc.). This type of regression is
called logistic regression, and a similar methodology is applied (e.g., transformation of
variables, building a linear model).

Note that the Jacksonville location would contain many prediction models (for all dis-
tinct pairs of make/model).
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these cases would also be used for validation and testing; see Sect. 5.3 for more
details on this).

To minimize the error on the training set, there ar. several standard procedures
for determining the parameter values. Once these parameters are determined, the
prediction model (for all Toyota Camry cars sold at the Jacksonville auction) is
ready. For every new case (again, by new case we mean a used Toyota Camry),
we can determine the sale price for the Jacksonville location by inserting the ap-
propriate values for “mileage,” “year,” “color,” etc. into the sale price function.

Note, however, that the training process might not be that simple (this is true
for any prediction model, not just linear regression). First of all, some values
might be missing (e. g., the mileage was not recorded). In such cases we can:

» Remove the case from consideration and contact the appropriate auction site to
recover the mileage value. Once this value is recovered, we can insert the case
back into the system for processing. Although this would cause a delay in proc-
essing the car, it might prevent us from making a serious prediction error.

* Estimate the mileage on the basis of other variables. For example, if the car was
“leased,” it might be reasonable to assume that the average mileage allowance is
12,000 miles per year. Thus, a three-year-old car is likely to have 36,000 miles.

Second, because the prediction model has to provide more than just tomorrow’s
price (as it takes some time to transport the car to Jacksonville, and so we need
a predicted price for next week and/or three weeks from today), the training proc-
ess might be much more complex. The reason for this increased complexity is
hidden in the fact that the prediction model’s accuracy must be assessed for both
shorter and longer time periods. Hence, the process of searching for the best pre-
diction model is more difficult, as it is harder to compare and select the beiter of
two models where one provides better short-term predictions while the other pro-
vides better longer-term predictions. This is a typical multi-objective optimization
problem (as discussed in Sect. 2.4).

Third, from time to time the linear regression model would process a “rare” car,
such as a Dodge Viper or Acura NSX. Note that we assumed a linear regression
model for each make/model at each location. This assumption is fine, but the his-
torical data set may only contain 100 Dodge Viper cars with zero occurrences at
some locations! How can we build a model for a location where the data set is
empty? Well, as usual, there are several ways of dealing with this problem. One
way would be to estimate the price on the basis of (1) prices of the same
make/model at nearby locations, and (2) prices of similar models at the same loca-
tion. This approach would require some additional, problem-specific knowledge.
Another possibility would be to use an approach based on agent modeling
(Chap. 9), which can be used as a data mining technique for “data-less” problems!

The above example serves to underline the simple fact that the devil is in the de-
tail. This is true for any prediction method, because developing a prediction model
for a real-world problem usually involves the resolution of many issues ranging
from incomplete information to insufficient data. Something else to consider is that
regression might be far more complicated than our simple example. Note that the
prediction model above has one powerful disadvantage: it is linear! Real-world
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data often display nonlinear dependencies that we would like to capture (recall the
nonlinear transportation model in Sect. 2.5). Of course, a linear regression model
would find the best possible line, but the line may not fit very well.

One approach to this problem is to replace the line with a curve, which can be
done by transforming the variables (by multiplying some of them together, squar-
ing or cubing them, or taking their square root). After completing these transfor-
mations, we can then determine the new parameters (i.e., a. b, ¢, d, etc.) of the
prediction model (although this new model is'more complex and we are now talk-
ing about nonlinear regression). It is possible to experiment with a wide variety of
transformations, and if they do not provide a meaningful contribution to the pre-
diction model, then their parameters will stay close to zero. The difficulty, how-
ever, is that the number of possible transformations might be too prohibitive (i. e.,
the number of possible parameters to explore might be too high, and any training
would be mfeamble) Moreover, with complex transformations we should guard
against overfitting, as the use of complex transformations guarantees high preci-
sion on the training set that may not carry over to new predictions.

Now let us turn our attention to time series problems. As mentioned earlier, the
only purpose of a time series model is to predict future values; the relationships
between the variables are of no interest. The problem might be expressed as fol-
lows:

Given v[1], v[2], ..., v[t], predict the values of v[t+1], v[t+2], ..., v[t+k]

where 1 is the present time interval, 1—f is the previous time interval, r+/ is the
next time interval, and so on. If we are only predicting the next interval (¢+1), then
a time series model is concerned with a function F such that:

vit+1]=F(v[1], v[2]. ..., v[tD

Note that the above function may include some other variables, and not just the
values of variable v from earlier time intervals. In such cases, we talk about com-
posite forecasting models, which consist of past time series values, past variables,
and past errors.

Many statistical time series models have been proposed during the last few dec-
ades, including exponential smoothing models, autoregressive/integrated/moving
average models, transfer function models, state space models, and others. Each
model is based on some assumptions, and involves a few (at least one) parameters
that must be tuned on the basis of historical data.

Now let us consider the category of prediction methods that are collectively
known as “exponential smoothing.” These methods generalize the moving average
method, where the mean of past k cases is used as a prediction. All exponential
smoothing methods assign weights to past cases in such a way that recent cases are
given more weight than the older cases (as the more recent cases usually provide
better future direction than the less recent ones). Hence, it is reasonable to develop
a weighting scheme that assigns smaller weights to older cases. Such a weighting

® Overfitting occurs when a model tunes itself during the training stage to such an extent
that all predictions on the training data set are perfect,
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scheme also requires at least one parameter a. For example, a prediction for the
time ¢+ 1s calculated as:

Prediciion (it ) — ta ~ Actualiigr + vi—a) X Prediction(t))

which simply means that the prediction for the next (future) case is calculated as
a total of two values: the actual last case (Actual(t)) with parameter a and the last
prediction (Prediction(t) with the weight /—a). Note that parameter a provides the
significance of the last case in making the prediction; in particular, if a= 1, then
the prediction would always report the last actual value as a new prediction. It is
easy to generalize this method to include more past cases:

Prediction (t+1) = (a x Actual(t)) + (a % (1-a) x Actual(t-1))
+(ax (l—a}2 x Actual(t-2)) + (a x (1-a)’ x Actual(t-3)) + ...
+ (a x (1-a)" x Actual(1)) + ((1-a)" x Prediction(1))

so Prediction(t+1) represents a weighted moving average of all past observations.
Note again, that different values of parameter a would result in a different distri-
bution of weights. Also, it was assumed that the prediction horizon was just one
period away (r+1). For longer-term predictions, it is often assumed that the func-
tion is flat:

Prediction (t+1) = Prediction (t+2) = Prediction (1+3) = ...

as exponential smoothing works best for data that have no trend or seasonality.
However, since some form of trend or seasonality exists in most data sets, decom-
position methods can be used to identify the separate components of the underiy-
ing trend-cycle and seasonal factors. The trend-cycle (which is sometimes sepa-
rated into trend and cyclical components) represents long-term changes in the time
serics values, whereas seasonal factors relate to periodic fluctuations of constant
length caused by phenomena such as temperature, rainfall, holidays, etc.

Although there are several approaches to decomposing a time series problem
into separate components, the basic concept is based on experience: First the
trend-cycle is removed, then the seasonal components are addressed. Any remain-
ing error is attributed to randomness; thus:

Data=trend-cycle + seasonality factors + error

Note that the relationship between the data and trend-cycle, seasonality factors,
and error need not be linear (additive, as above); in general, decomposition meth-
ods search for a function D that would “explain™ a data point at any time r:

Data (1) = D (trend-cycle(t), seasonality factors(t), error(t))

The figure below illustrates what such a decomposition of data might look like
for the car distribution example:
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First of all, note that the “Car Price” (Data) corresponds to the left y-axis, while
the “Trend”, “Seasonality” and “Error” correspond to the right y-axis, and the x-axis
represents the month. In general, the “Trend” is a continued decrease of the “Car
Price,” while “Seasonality” can have a negative effect or no effect at all. The “Error”
can be positive or negative. Let us take June (month “6” in the figure above) as an
example: The “Car Price” is $4,045, the “Trend” during June is a decrease of $152,
the “Seasonality” effect is $0, and the “Error” is $35. If we add up all these numbers
then we get a “Car Price” of $3,928 for the beginning of July. '

Going back to exponential smoothing, the relationship between the past and fu-
ture is linear, but this might not be appropriate for many real-world applications of
time series. Linear models cannot capture some features that commonly oceur in
actual data, such as asymmetric cycles (which are data patterns in which the pe-
riod of repeating cycles is not fixed, and the average number of data on the up-
cycle is different than the average number of data on the down-cycle) and occa-
sional outliers. Although linear methods often deal with nonlinear time series by
logarithmic or power transformations of data, these techniques do not account for
asymmetric cycles and outliers,

Some nonlinear methods assume that asymmetric cycles are caused by distinct
underlying phases of the time series, and that a transition period (either smooth or
abrupt) exists between these phases. The individual phases are usually given
a linear functional form, and the transition period (if smooth) is modeled as an
exponential or logarithmic function. Some other methods are used to deal with time
series that display variable variance of residuals (error values). In these methods,
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the variance of error values is modeled as a quadratic function of past variance
values and past error values.

Although all these linear and nonlinear methods are capable of chrracterizing
the variables found in actual data, they also assume that the underlying process of
data generation is constant. This assumption is often invalid for actual time series
data, as changing environmental conditions may cause the underlying data gener-
ating process to change. For all prediction methods, human judgment is required
to first select an appropriate method, and then set the appropriate parameter values
for the model’s parameters. In the event that the underlying data generating proc-
ess changes, the time series data must be revaluated and the parameter values re-
adjusted (in extreme cases, a new model might be required). We will address the
issue of adaptability in Sect. 10.3, as well as a few other subsections in Part II of
this book.

5.2.2 Distance Methuds

Another method for building prediction models is based on the concept of “dis-
tance between cases.” Any two cases in a data set can be compared for similarity,
and this similarity measure (called “distance”) is assi gned some value: the more
similar the cases, the smaller the value. Using a distance measure within a data set
would allow us to compare a new case with the most “similar” existing case. The
outcome of the most similar casé (e, g., the loan was repaid, the transaction was
fraudulent) would be the prediction for the new case. Going back Lo our example
of the Toyota Camry at the Jacksonville auction site, we may search our database
of three million cases for the most similar Toyota Camry sold in Jacksonville and
use its sale price as our prediction. Ideally, the existing case wouid be recent and
have the same mileage, color, trim, efc. as the new case. Hence, instead of build-
ing a function where the variable values (magnified by some weights) determine
the outcomne, we just keep the past cases.

The essential aspect of this approach is creating a similarity measure betwecen
cases, because the probability of finding an identical case is very low. Hence, we
have to base our decisions on similarities, which is far from trivial: For instance, is
a silver Toyota Camnry with 33,000 miles “more similar” o a white Toyota Camry
with 34.100 miles, or to a silver Toyota Camry with 36,000 miles? Or, is the dif-
ference in “similarity” between “silver” and “white” the same as between “red”
and “yellow”? To answer such questions, it is necessary Lo define some distance
between cases (again, the shorter the distance, the greater the similarity).

One of the most popular distance-based prediction methods is k nearest neigh-
bor. where k nearest neighbors (i. €., kK most similar cases) of a new case arc de-
termined. Clearly, if k=1 (i.e.. we find only one neighbor), the outcome of this
single neighbor is the prediction for the new case. If £ > I. then a voting mecha-
nism is used (classification problems) or the average value of the & answers 18
calculated (regression problems).

Note, however, that the most important step of the k nearest neighbor method 18
calculating the distance between cases — this is crucial for getting high-quality
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results. There are many ways of defining a distance function, but experimentation
is often the best way. In any case, careful data preparation is always the first step
(it is likely that the data will be normalized to equalize the scale for computir.g
distances and/or some weighting will be applied where different variables get
ditferent weights). Note that calculating the distance is trivial when there is only
one numeric vanable, (e.g., 5.7 — 3.8=1.9). With several numerical variables,
a Euclidean distance® can be used, provided that the variables are normalized and
of equal importance (otherwise a weighting must be applied).

The largest problem, however, is with nominal variables. Given our earlier
question of whether “the difference in similarity between ‘silver’ and ‘white’ is
the same as between ‘red’ and ‘vellow’ 7" we can assume that different colors are
just different (resulting in a distance of 1), or we can introduce a more sophisti-
cated matrix that would assign a numeric measure for each color (e. g., so that the
difference between “light blue” and “dark blue” is smaller than the difference
between “blue™ and “red”). These are the two standard approaches for evaluating
differences between the values of nominal variables.

Another issue to consider is that of missing values. A standard approach is to as-
sume that the distance between an existing value and a missing value is as large as
possible. Hence, for nominal values, the distance is assigned a normalized value
of 1 (all distances are between 0 and 1), and for numeric variahles the distance is
assigned the largest possible normalized value between 0 and 1. For example, if an
existing value is 0.27 and the other value is missing, then the distance is 0.73; if the
existing value is 0.73 and the other value is missing, then the distance is also 0.73.

Yet another issue is the number of stored cases. A distance-based method might
be too time consuming for large data sets, because the whole data set must be
searched to evaluate each new case. With larger values of parameter £, the compu-
tation time increases significantly. For efficiency reasons, it would be beneficial to
reduce the number of stored cases. By selecting a subset of “representative cases,”
the process of finding the closest neighbor (or neighbors) might be more efficient.
And to make the representative cases as “representative” as possible (i. e., as good
as possible), a new set of representative cases can be selected from the current
representative cases and all misclassified cases that produced a prediction error
larger than some threshold. In other words, the current representative and misclas-
sified cases could constitute an input for some reclassification method (e. g., deci-
sion trees), which would be responsible for creating a better set of representative
cases.

Also, some clustering methods can be used to group the cases into meaningful
categories. A new case would then be assigned to an existing category and the
predicted value would be drawn from the cases present in that category (again,
by voting for classification, or averaging for regression). Note that it is not nec-
essary to store all the cases per category; again, we can select some representa-
tive cases instead. A few clustering techniques might be considered for this task

® Euclidean distance is defined as the length of a line segment between two points in an
n-dimensional space. In particular, the distance d between two pmnls (X, yi)and (%1, ya 2)in
a
a 2-dimensional space is determined by the following function: d° = (x; — x1)° +(v;=Vya)"
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(e.g., k-means algorithm, incremental clustering, or statistical clustering based on
a mixture model), which we will discuss later in the text.

5.2.3 Logic Methods

A decision table (also known as a lookup table) is the simplest logic-based method
for prediction, and there are many such tables published for estimating the price of
a used car sold at auction (e. g., Black Book, Kelley Blue Book, Manheim Market
Report). In these tables, we can locate the appropriate make/model/year/body
style, get a basic price, and adjust this price for additional variables such as mile-
age, color, trim, damage level, etc. However, not all variables are included (e. g.,
for some makes/models, color might not be included).

The most widely used logic method, on the other hand, is the decision tree. Be-
cause the structure of a decision tree is relatively easy to follow and understand
(especially for smaller trees), its popularity is widespread. To make a prediction
for a new case, the root of a tree is examined, a test is p&rf(}rmﬁ‘ﬂ,‘? and, depending
on the result of the test, the case moves down the appropriate branch. The process
continues until a terminal node (also known as a “leaf”) is reached, and the value
of this terminal node is the predicted outcome.

Although decision trees are used for all types of predictions problems, they are
especially popular for classification problems. If the test involves a nominal vari-
able, the number of branches corresponds to the number of possible values that
variable can take (i.e., there is one branch for each possible value). If the test
involves a numeric variable, there are usually two branches, as the test determines
whether the value is “greater than” or “less than™ (possibly also “equal to” for
integer numbers) some predefined fixed value.? In the case of missing values, an
additional branch is assigned or some other heuristic is used (e. g., selection of the
most popular branch or selection of a few branches).

We can easily picture a decision tree for used car prices. Al the root of the tree
a decision is made on “make™; if there are 30 different makes, then the root node
would have 30 branches. On the second level of the tree, a decision is made on
“model,” then the third level provides branches for “location.” Further down, we
may have nodes that test a new case for “body style” and “mileage” and refer it to
the appropriate branch. For example, a test on “mileage” might involve the selec-
tion of an appropriate category (e.g., "0 to 9,999 miles,” “10,000 to 19,999
miles,” and so on). The following illustrates the branch of a simplified decision
lree:

T By “test” we mean that a node compares a value of a variable with some constant. Ho-
wever, it is possible to include more sophisticated tests, where more variables and/or ad-
ditional functions are involved.

8 |t is also possible to have a decision tree with more than two branches for a numeric
variable, where a range of values is assigned to each branch,
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Make

Toyota / | \

Model

ST

Location

TN

Body Stvle

/AN

Mileage
10,000 - 19,999

*

Year

2003

517,350

Naturally, there are better and more sophisticated ways to use decision trees for
numeric prediction. It might not be practical to represent every value (or range of
values) as a separate branch in a decision tree, as the size of the tree might be too
large. Instead of keeping a single, numeric value at each terminal node (as illus-
trated above), it might be easier to keep a model (e. g., a linear regression model)
that predicts a value for all cases that reach this terminal node. Such a tree could
be used to answer our question from Sect. 5.2.1: “What's the price of a Toyota
(“make”) Camry (“model”) at auction site Jacksonville (“location™)?" The vari-
ables “make,” “model,” and “location” are used for building the-tree (and later for
branch determination when processing a new case), whereas mileage, year, color,
etc. are used as variables in the linear regression model at each terminal node, as
illustrated below:
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Make

Toyota

Model

Camry

Jacksonville

Sale Price = a + (b » Mileage) + (¢ ¥ Year) + (d * Color) + ...

As before, the predicted sale price might be adjusted further to take into ac-
count the time factor, as it would take some time to transport the car to Jackson- .
ville. Note that the number of parameters (a, b, ¢, d, etc.) and their values might be '

different at each terminal node.
To achieve better prediction accuracy, it might be worthwhile to build a linear

regression model for each node of the tree (rather than just for the terminal
nodes).” Note, however, that the root node would now have a function that in- !

volves all the variables:'°

" Sale Price =a + (b x Make) + (¢ x Model) + (d x Location)
: + (e x Mileage) + (f x Year) + (g X Color) + ... i \
Eor second-level nodes, the linear function will not include the variable
“make,” because the appropriate branch of the decision tree has already been se-
lected. Thus, the linear function would be:
Sale Price =a + (b x Model) + (¢ x Location) + (d x Mileage) \
+ (e x Year) + (f x Color) + ...
For third-level nodes (where the decision for make and model has already been
made), the function would be:
Sale Price =a + (b x Location) + (¢ x Mileage) + (d x Year) £
+ (e x Color) + ...

fferent in all these b
fourth level .'

and so on. (Note, however, that the parameters a, b, c, etc. are di
functions.) In our earlier diagram, the terminal node was placed on the

with a linear function of:
: ; A
Sale Price =a + (b x Mileage) + (c x Year) + (d X Color) + ...

| ¥ Experimental evidence shows that prediction accuracy can be increased by combining \
3 several prediction models together (we will discuss this in Sect. 10.1). ‘
2 10 This approach usually involves nominal attributes as well (e.g.. make, model, location) !

4 as all the variables are represented on different levels of the decision tree. Such nominal ‘

variables are transformed into binary variables and treated as numeric.

5
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To compensate for the differences between “adjacent” linear models at the
fourth level, some averaging (also called smoothing) can be applied when process-
ing a new case. Instead of using the predicted value from the termiral node, the
predicted value can be “filtered” back up the tree and averaged at each node by
combining the predicted value from a lower level with the predicted value from
the current level. This usually improves the accuracy of predictions.

Another logic method is based on decision rules, which are “similar” to deci-
sion trees: after all, a decision tree can be interpreted as a collection of rules. For
example, the single branch of the decision tree displayed earlier can be converted
into the following rule:

if Make =Toyota & Model = Camry & Location = Jacksonville
& Body Style = LE & 10,000 < Mileage < 19,999 & Year = 2003,
then Sale Price=3%$17,350

The “if” parts of a rule (e.g., “model” =Camry) are combined logically to-
gether by the “and” (&) operator, and all the tests must be true if the rule is “to
fire” (i. e., for the conclusion of the rule to be applied: Price=3$17,350). Note that
there must be several decision rules in the system (the above rule represents
a single branch of a tree) and we can interpret this collection of rules as connected
through the “or™ operator: if one rule applies to a new case, its conclusion is taken
as the predicted outcome. If two (or more) rules fire, then we can combine the
conclusions of these rules to determine the final predicted outcome. The other (in
some sense, opposite) problem can arise if no rules fire for a new case! As usual,
some standard remedies exist, such as the creation of a default rule that will al-
ways fire

if 0 <Mileage < 999,999, then Sale Price = $15,000

which is the overall average price of a used car. Of course, one can question the
usefulness of such a rule ...

These two simple cases, when two or more rules fire or no rules fire, illustrate the
point that rules can be difficult to deal with. The reason is that each rule represents
a separate “piece” of knowledge and all the rules together operate as one system
(often called a rule-based system). Thus, it is essential to understand the conse-
quences of adding or dropping a rule in the system. This is important in many prac-
tical situations, where experts add their own rules (from experience) to the data-
generated rules. Although dropping and adding rules in a rule-based system is not a
trivial task, it is much easier to drop or add a rule than to modify an entire decision
tree by cutting or adding some new branches. Hence, each method has its own ad-
vantages and disadvantages.

As mentioned earlier, classification problems have been the focus of data min-
ing research for the last few decades, and the creation of decision rules'' has been
the most popular approach for addressing these problems. Several aspects of gen-
erating rules from data have been investigated, including:

"' A decision rule for a classification problem is often called a classification rule.
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* Association rules, which describe some regularity present in the data and can

“predict” any variable (rather than just the class). For example, an associate
rnle mav ctate that

if Make =Porsche & Model = Carrera,
then Location in {Jacksonville, Tampa, Los Angeles, San Francisco,
San Diego}

as Porsche Carreras are sold only at auction sites in Florida and California.

* Rules with exception, which extend a rule with exceptions. may refer to asso-
ciation rules, e. g.,

if Make = Porsche & Model = Carrera, then Location in {Jacksonville,
Tampa, Los Angeles, San Francisco, San Diego}, except if Year < 1997,
then Location in { Austin, Houston, Dallas}

which states that older Porsche Carreras (produced in 1997 or earlier) are sent
to auction sites in Texas; or to a classification rule, e. g.,

if Make = Toyota & Model = Camry & Location = Jacksonville
& Body Style =LE & 10,000 < Mileage < 19,999 & Year =2003,
then Sale Price =$17,350, except if Color = Red, then Sale Price = $1 8,450

as red was a rare (but popular) color for Toyota Camry cars in 2003 and that in-
creases the price.

Rule-based systems, which consist of a collection of rules and an inference Sys-
tem,'* are quite popular, because each rule specifies a small piece of knowledge
and people are good at handling small pieces of knowledge! Separate rules can be
discovered from data mining activities or interviewing experts, and instead of
specifying the overall model only the decision rules and inference system are
needed. Note that the rule-based system will try to behave like an expert, perform-
ing some reasoning on the basis of the knowledge present in the system.

5.2.4 Modern Heuristic Methods

As indicated earlier, a few prediction methods fall into the category of “modern
heuristics”; these include fuzzy systems, neural networks, genetic programming,
and agent-based systems. These methods originated in different research commu-
nities, and their “mechanics’ are very different to classic methods such as statis-
tics and machine learning. Because these prediction methods are of growing im-
portance, we will discuss them in detail in Chaps. 7-9.

" An inference system is responsible for putti ng the decision rules in the appropriate order
and combining the outcomes of the rules that fired. It may also contain stratepies and
controls that are typically used by experts.
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5.2.5 Additional Considerations

Wi W

Many other considerations must be taken into account when selecting the “best”
prediction method for an Adaptive Business Intelligence system. Although the
prediction error is quite possibly the most important measure, it only provides one
dimension of a model’s quality. For real-world business problems, many other
factors must be considered, such as:

* Response time. This is an essential consideration, as any Adaptive Business
Intelligence system would have a defined response time. Fraud detection Sys-
tems, for example, process millions of transactions per second, so the frequency
of predictions (i. e., classifications of “fraudulent” or “legitimate”) is very high.
Other prediction methods, on the other hand, might be used on a weekly basis
(e. g., inventory management) and so the response time is not that critical,

 Editing. Some prediction models are difficult to edit (e. g., neural networks),
while others (e. g., rule-based systems) are easy. The ability to edit a model is
an important consideration, as it might be necessary to add the knowledge of
experts to the final model.

* Prediction justification. This is an often-overlooked aspect of evaluating the
usefulness of a prediction model. For some applications (e. g., credit scoring) it
is very important to justify the prediction; in some cases, this might even be re-
quired by law (e. g., justification for rejecting a loan application).

* Model compactness. A prediction model should not be exceedingly large and
complex, as that would make it difficult for humans to understand; also, it might
take a longer amount of time to make predictions. According to the principle of
“Ockham’s Razor,” a more compact prediction model is preferable over a
sprawling prediction model assuming they both do an equally good job of pre-
dicting.

* Tolerance for noise. All prediction methods require some approach for han-
dling missing values (e. g., the mileage of an off-lease car has not been re-
corded), but some methods do a better job of handling missing values than oth-
ers. Also, some values might be present, but noisy (i.e., imprecise) — like
stating that the color of a car is “dark™ ...
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Because of these many factors, it may be difficult to select “the best” prediction
method for the problem at hand. Different prediction methods have different prop-
erties, and so some of them may perform better or worse when trained on different
data sets. Hence, it might be worthwhile to use a few methods to build a few mod-
els, and then use all the models to reach a consensus. We will explore this hybrid
systems approach to prediction in Sect. 10.1.

PO YREE

5.3 Evaluation of Models

Although it is possible to use a variety of different prediction methods to build
I a variety of different prediction models, the key issue is which method should be
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account. Although many error measurement techniques exist (e. g., mean-squared
error, mean absolute error, relative squared error, relative absolute error), it is much
harder to measure the consequences of an error. For example, the error in a price
prediction of a used car for a particular location might only be $150 (approximately
1% of the car’s value), but this error may influence the distribution decision, which
in turn influences the transportation decision and distributions of other cars (be-
cause of the volume effect)!

Because we are interested in the fiture performance of a prediction model -
. e., performance on new data, not performance on the training data — we cannot
take a model’s performance (or error rate) on the training data (i.e., old data) as
a foolproof indicator of its performance on new data. The reason for this is very
simple: The most “reliable” prediction model would be a simple lookup table
where all the previous cases are stored. Such a model will score exceptionally well
on old cases ... Unfortunately, this score will tell us very little about the model’s
performance on new data! Most prediction models can be overtrained in the sense
that they would behave in a similar way to a lookup table. Hence, a model’s per-
formance on the training data set will always be better than the model’s true per-
formance ...

To predict a model’s performance on new data, we need another data set (usu-
ally called a rest set) that did not participate in the building, training, and tuning of
the model. This is important: we need fresh data to evaluate the performance of
a prediction model. The most popular way of doing this (when there is enough
data) is to randomly divide the original data set (i. e., available cases) into a train-
ing set and testing set. The prediction method then uses the training set to select
variables, compose additional variables, calculate ratios, parameters, elc., but it
does not have access to the test set. Once the prediction model is created on the
basis of the training data set, it can be fairly evaluated for performance on the test
data set.

In many cases, the process of building a prediction model consists of two
phases: (1) constructing a model, and (2) tuning the parameters of the model. For
this reason, it is also convenient to further split the training data set into two sub-
sets: the primary training set and a validation set - the former for building the
model, the latter for tining its parameters. So, altogether, it is convenient to have
three independent data sets (the third one being the test data set, which is used to
evaluate the model’'s performance). Each of these three data sets should be se-
lected independently, and each of them plays an important, independent role:

e The training data set is used for building a prediction model.

e The validation data set is used for tuning the parameters of the model (i. e., for
optimizing the performance of the model),"*

» The test data set is used to evaluate the performance of the model.

If we had plenty of data for training, plenty of data for validation, and plenty of
data for evaluation, then the result should be a better model. However, if there is

4 If several prediction models were constructed from the training data set, then the valida-
tion data set is sometimes used for selecting the best model.
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account. Although many error measurement techniques exist (e. g., mean-squared
error, mean absolute error, relative squared error, relative absolute error), it is much
harder to measure the consequences of an error. For example, the error in a price
prediction of a used car for a particular location might only be $150 (approximately
1% of the car’s value), but this error may influence the distribution decision, which
in turn influences the transportation decision and distributions of other cars (be-
cause of the volume effect)!

Because we are interested in the fiture performance of a prediction model —
i e., performance on new data, not performance on the training data — we cannot
take a model’s performance (or error rate) on the training data (i.e., old data) as
a foolproof indicator of its performance on new data, The reason for this is very
simple: The most “reliable” prediction model would be a simple lookup table
where all the previous cases are stored. Such a model will score exceptionally well
on old cases ... Unfortunately, this score will tell us very little about the model’s
performance on new data! Most prediction models can be overtrained in the sense
that they would behave in a similar way to a lookup table. Hence, a model’s per-
formance on the training data set will always be better than the model’s true per-
formance ...

To predict a model’s performance on new data, we need another data set (usu-
ally called a test set) that did not participate in the building, training, and tuning of
the model. This is important: we need fresh data to evaluate the performance of
a prediction model. The most popular way of doing this (when there is enough
data) is to randomly divide the original data set (i.e., available cases) into a train-
ing set and testing set. The prediction method then uses the training set to select
variables, compose additional variables, calculate ratios, parameters, etc., but it
does not have access to the test set. Once the prediction model is created on the
basis of the training data set, it can be fairly evaluated for performance on the test
data set.

In many cases, the process of building a prediction model consists of two
phases: (1) constructing a model, and (2) tuning the parameters of the model. For
this reason, it is also convenient to further split the training data set into two sub-
seis: the primary training set and a validation set — the former for building the
model, the latter for tuning its parameters. So, altogether, it is convenient to have
three independent data sets (the third one being the test data set, which is used to
evaluate the model’s performance). Each of these three data sets should be se-
lected independently, and each of them plays an important, independent role:

e The training data set is used for building a prediction model.

e The validation data set is used for tuning the parameters of the model (i. e., for
optimizing the performance of the model)."

e The test data set is used to evaluate the performance of the model.

If we had plenty of data for training, plenty of data for validation, and plenty of
data for evaluation, then the result should be a better model. However, if there is

" If several prediction models were constructed from the training data set, then the valida-
tion data set is sometimes used for selecting the best model.
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only a limited amount of data, then what can be done to maximize them? Note
again that the general idea is to split the data: some data (usually two thirds) are
nsed for training (this includes validation), and some (usually one third) for testing.

The first issue to consider here is whether each subset is a “representative”
sample of the entire set. For example, it may happen that the training data set has
no “yellow” cars, while the test data set contains many yellow cars. If a category
is missing in the training set, then the prediction model might have serious diffi-
culties in predicting the “right” value for this category (as the “learning” process is
based on data). Moreover, the evaluation of the prediction model would be biased,
as all (or most) cases of the category in question (e. g., “yellow” cars) would ap-
pear only in the test data set!

Clearly, it would be beneficial to “guarantee” that the distribution of cases is
uniform across all data sets. One way of approaching this problem is through stra-
tification: the algorithm that splits the data into training and testing subsets ensures
that the sampling is done in such a way that each category is properly represented.
The other approach is repeating the training and testing phases with different da-
ta sets, and then averaging the performance of the prediction model from all the
iterations. A popular statistical technique, called cross-validation, is often used in
connection with the latter approach. In this technique, we divide the data set into
some number (say k) of disjoined subsets (called folds). Then & — I folds are used
for training and one for testing, and we can repeat this process k times, each time
with a different group of folds selected for training and a different fold for testing.
If k=3 (i.e. the data set is partitioned into three subsets), then the technique is
called three-fold cross-validation. It is quite common to use k=10 (10-fold cross-
vafidarfﬂn},' as 10 is a reasonable number of folds to get a good estimate of the
prediction error.'®

One extreme (and, in many cases, useful) application of the cross-validation
technique is when the number of folds equals the number of cases in the dala set
(this approach is called the leave-one-out approach). In a database with three mil-
lion cases, there would be three million folds. Hence, we would repeat the follow-
ing process three million times: A prediction model is built on a training data set of
2.999.999 cases, and the error estimate is made on the remaining single case. Then
the average of all errors will give us the error estimate for the prediction model. In
this technique, the greatest possible amounts of data are used for training, and,
because the approach is deterministic, there is no need to repeat the process. How-
ever, the computational overhead might be too large for large data sets.

The final model evaluation technique we will mention is the bootstrap, which
has a reputation for being one of the best techniques when the data set is very
small. In the bootstrap technique, a collection of cases is selected as the training

13 10-fold cross-validation is often used with strati fication. Stratified 10-fold cross-validation
is generally held as a standard evaluation technique in cases where the amount of data are
limited.

16 This estimation. however, need not be perfect, as different fold selections may give differ-
ent error estimates. Thus, it is a standard procedure to repeat the cross-validation process
10 times, which results in building and testing a prediction model 100 times altogether.
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set with repetition. Further, the number of cases in the training set is the same as
the total number of cases available. By doing this, some cases will be selected
more than orce, while some cases will not be selected al all! It is relatively easy
for a mathematician to calculate the probability of a case not being selected for the
training set by dividing the constant e by 1, which equals to 0.36787944117 =
0.368. This means that approximately 36.8% cases will not be selected, and 63.2%
of cases will be selected (once or more than once).!” If we apply the bootstrap
technique to our data set of three million used-car cases, then approximately
1,896,362 cases would be selected (once or more than once) for the training data
set, whereas the remaining 1,103,638 cases would constitute the test data set. As
with cross-validation, the bootstrap procedure is usually repeated several times
with different samples.

For a moment, let us return to the issug of time dependencies in the data set. As
mentioned earlier, most real-world business problems have some time-dependent
relationships within their data sets: Transactions, orders, deliveries, sales — all of
these have a time stamp. And because these data sets will inevitably change, the
problem lies in not knowing how they will change! Also, some data sets change
very quickly (e. g., the closing prices of all stocks in the S&P 500 index), while
others change very slowly (e. g., the average income in a particular region). As
a matter of fact, some changes are so slow that we consider the data set to be sta-
ble, even though small changes are constantly taking place. In any case, it is im-
portant to select the appropriate sampling technique when dividing the original
data into training and testing sets. It is also essential to organize the cases in such
a way that all the training cases have an earlier timestamp than the testing cases.
This is done so that the predictions go from “past™ to “future.” In other words, we
should identify a particular point of time, and take all relevant preceding cases for
the training set and all relevant subsequent cases for the testing set. Note also, that
the time dependencies among cases might be so strong that we should treat the
data set as a time series, where all cases are kept in a sequential time order.

The inevitable changes that occur in a data set — from which we are supposed to
create a prediction model — have powerful consequences. If the changes are slight,
then the sampling and evaluation techniques discussed in this section would work.
However, if the changes are significant (like after a major stock market crash or
natural disaster), then it might necessary to build a new model altogether. Also, as
we saw in Sect. 5.2, different prediction methods produce different models of
varying complexity. For this reason, it might be safer to select a simpler model
that has a higher degree of generality (allowing for better adaptation to small
changes that occur in the data set). Another approach (which we will discuss in
Sect. 10.3) would be to use an adaptability module to adjust the various parame-
ters of the model.

T Because 63.2% of the cases (on average) will be selected for the training set, the method
is also called the 0.632 bootstrap.
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5.4 Recommended Reading

In this chapter we pave a geueral overview of many different tvoes of prediction
problems (e. g., classification, regression, time series), methods (quantitative or
qualitative), and processes (data preparation, data mining, model building, de-
ployment and evaluation). Because the ultimate goal of any prediction model is to
predict the “outcome” of a new case, we also discussed a variety of prediction
models based on mathematics, distance, and logic. Our discussion on prediction
methods will continue in Chaps. 7-9, where we will present several modern pre-
diction methods, including artificial neural networks, fuzzy logic, and agent-based
modeling. Lastly, in Chap. 10 we will discuss the concept of using several predic-
tion models together, along with the role of the adaptability module.

There are a variety of texts available that discuss data mining techniques. The
hook Predictive Data Mining by Sholom M. Weiss and Nitin Indurkhya {Morgan
Kaufmann, San Francisco, 1998) provides an excellent high-level discussion on
most of the topics presented in this chapter (e. g., preparation of data, data reduc-
tion, types of solutions), with an additional discussion on data mining and statisti-
cal methods, and several case studies.

A slightly more technical introductory text to data mining techniques is Data
Mining: Practical Machine Learning Tools and Technigues by lan H. Witten and
Eibe Frank (Morgan Kaufmann, San Francisco, 2000). The book presents many
algorithms for extracting and validating various models (e. g., decision trees, rules,
linear models) from data. The book also provides Java data mining tools that the
authors made available through their website.

More advanced texts include Machine Learning and Data Mining: Methods
and Applications edited by Ryszard §. Michalski, Ivan Bratko, and Miroslav Ku-
bat (Wiley, Chichester, 1998). This volume provides a detailed treatment of many
specific topics (e.g., multi-strategy approach, inductive logic programming) as
well as discussions on data mining applications in pattern recognition, design,
engineering, control systems, medicine, and biology.

Further, there are texts available like Data Mining and Knowledge Discovery
with Evolutionary Algorithms by Alex A. Freitas (Springer, Berlin, 2002), which
discusses the integration of some optimization and data mining techniques.

As one of the main tasks of data mining is “prediction,” it is worthwhile to
check some classic texts on forecasting. One of the books we recommend 1s Fore-
casting: Methods and Applications by Spyros Makridakis, Steven C. Wheelwright,
and Rob J. Hyndman (Wiley, Chichester, 1998). The book presents a statistical
approach to forecasting: from basic forecasting tools, through time series decom-
position and particular methods (e. g., exponential smoothing, regression), to
judgmental forecasting.
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6 Modern Optimization Techniques

“I have frequently gained my first real insight into the character of par-
ents by studying their children.”
The Adventure of the Copper Beeches

“The nature of his tactics suggested his identity to me, and this physi-
cal peculiarity — he was badly bitten in a saloon-fight in Adelaide in
'89 — confirmed my suspicion.”

The Disappearance of Lady Frances Carfax

Whether in banking, manufacturing, or retail, there is scarcely an industry where
the term “optimization” does not apply. This is due to the fact that every industry
strives for excellence (as there are continual pressures to reduce cost and increase
efficiency) and so over the years many optimization techniques have emerged to
help managers find better solutions to their business problems. The field of opera-
tions research, in particular, developed many techniques to address the complexity
of scheduling people, machines, and materials. We often refer to these optimiza-
lion techniques as “classic” techniques, with the best examples being linear pro-
gramming, branch and bound, dynamic programming, and network flow pro-
gramming.

During the last decade, however, we have witnessed the emergence of a new
class of optimization techniques that people have termed “modern heuristics.”
These modern techniques include (among others) simulated annealing, tabu
search, and evolutionary algorithms, and they are the main focus of this chapter.

6.1 Overview

[rrespective of the optimization technique used, three things always need to be speci-
fied: (1) the representation of the solution, (2) the objective, and (3) the evaluation
function. Let us consider each of these in turn.

The representation of a solution will determine the search space and its size.
This is an important point, because the size of the search space (i. e., the number
of possible solutions to the problem) is not determined by the problem, but by its
representation. Consequently, choosing the right search space is of paramount
importance. If we do not select the correct domain to begin with, we might actu-
ally preclude ourselves from ever finding the right solution!
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Once we have defined the search space, we need to decide what we are looking
for. What is the objective of our problem? This is a mathematical statement of the
task to be achieved. It is not a function, but an expression, Fcr example, suppose
we wanted to discover a good solution to a traveling salesman problem . The ob-
jective would be to minimize the total distance of the route while satisfying the
problem constraints. After the objective has been clearly defined, the next thing to
do is create an evaluation function that allows us to compare the quality of differ-
ent solutions. Some evaluation functions produce a ranking for various solutions
(called ordinal evaluation functions), while others are numeric and provide a rank-
ing and a quality measure score as well.

In the traveling salesman problem, a numeric evaluation function might map
each solution to a distance. By comparing the distance of various possible solu-
tions, we can easily tell if one solution is better than another and by how much.
However, it might be computationally expensive to calculate the exact distance of
each particular solution. In such cases, it might only be necessary to know ap-
proximately how good or bad a solution is, or if it compares favorably or unfa-
vorably with some other solution. Such an ordinal evaludtion function might
evaluate two possible solutions and merely give us an indication as to which solu-
tion is favored.

Because the evaluation function is not provided with a problem, how should we
go about choosing the correct evaluation function? Oftentimes, the objective can
suggest a particular evaluation function. In the traveling salesman problem, for
instance, we considered using distance as the evaluation function. This corre-
sponds to the objective of minimizing the total distance of the route. Hence, the
objective naturally suggests an evaluation function for finding the best solution.
When designing the evaluation function, it is also important to keep in mind that
most of the solutions we are interested in will be in a small subset of the search
space (because we are only interested in feasible solutions — i.e., solutions that
satisfy the problem-specific constraints).

Once all of these steps are complete, we can begin searching for a solution. Note,
however, that the optimization technique'® does not know what problem we are
trying to solve! All it “knows” is the representation of the solution and the evalua-
tion function. If cur evaluation function does not correspond to the objective, then
we will be searching for the right answer to the wrong problem!

In any search space, the goal is to find a solution that is feasible and better than
any other solution present in the entire search space. The solution that satisfies
these two conditions is called a global optimum. Because finding a global opti-
mum is extremely difficult, a much easier approach is to find the best solution in
a subset of the search spacc.” If we can concenlrate on a region of the search
space that is “near” some particular solution, we can describe this as looking at the
neighborhood of that solution. Graphically, let us consider some abstract search
space with a single solution s: '

" Optimization technique and search technigue are considered synonymous. The search
for the best feasible solution is both an optimization problem and a search problem.
' This observation forms the fundamental basis of many optimization techniques.
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Our intuition might tell us that solution s is in a neighborhood of the search
space where all solutions are very similar to one another. Consequently, we can
use a “neighborhood” or “local™ optimization technigue to find the best solution in
this neighborhood. The sequence of solutions that these techniques generate while
searching for the best possible solution relies on local information at each step of
the way.

Local optimization techniques present an interesting trade-off between the size
of the neighborhood and the efficiency of the search. If the size of the neighbor-
hood is relatively small, then the algorithm may be able to search the entire
neighborhood quickly. Only a- few potential solutions may have to be evaluated
before a decision is made on which new solution should be considered next. How-
ever, such a small neighborhood increases the chance of becoming trapped in
a local optimum! This suggests using large neighborhoods, as a larger range of
visibility makes it easier for the algorithm to decide where to search next. In par-
ticular, if the visibility were unrestricted (i. e., the size of the neighborhood were
the same as the size of the whole search space), then eventually we would find the
best series of steps to take. However, the number of evaluations might become
overwhelming and impossible to compute. _

All optimization techniques (whether local optimization techniques, ant sys-
tems, or evolutionary algorithms) generate new solutions from existing solutions.
The main difference between these different techniques lies in how these new
solutions are generated. Because we can only sample a small fraction of the search
space (otherwise the computation time would be billions of years!), we should be
economical in the process of generating and evaluating new solutions.

-
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To put some of these concepts into context, let us return to the car distribution
example and assume that we want to distribute 3,000 cars to 5C auction sites,
Clearly, many noss.bilities exist for representing a “solution.” For example, we
can assign an index number from 1 to 50 for each auction site, and a solution can
be a vector of 3,000 numbers; the first number represents the destination of the
first car, the second number represents the destination of the second car, and so
forth:

23 41 5 19 41

The above vector represents a solution where the first car is shipped to auction
site 23, the second car is shipped to auction site 41, the third car is shipped to auc-
tion site 5, and so on, with the last two cars being shipped to auction sites 19 and 41
respectively. Of course, the auction numbers should not be assigned randomly.
When we discuss some optimization techniques in the following sections, the ad-
vantages of assigning “close” numbers to “close” auctions will become clear.

Note, however, that representing a solution in this way has a couple of disad-
vantages. First of all, this representation implies an enormous search space that is
too time consuming to search. We have 50 possible destinations for each car, o
the number of possible distributions for 3,000 cars 1s 50 % 50% 50 % ...x500.e,
50 multiplied by itself 3,000 times!). The size of this search space can be reduced
significantly by using a different representation.

The second disadvantage of this representation is that it makes some constraint
handling difficult. Recall that the car distribution problem includes many soft and
hard constraints, such as inventory level limits, exclusion condiiions (e. g, “the
total transportation distance for each car must not exceed 700 miles™), and so
forth. If the above vector of auction indices were used to represent the solution,
then many randomly generated solutions would be infeasible. We could reject
these infeasible solutions, lower their quality measure score, or attempt to “repair”
them by replacing some values in the vector with new ones. For example, if the
auction site for the second car is 41 and it corresponds to Jacksonville, Florida
(which is more than 700 miles from the current location of the car), then we could
try to replace auction 41 with some other auction site that 15 closer to the location
of the car. Note also that most new solutions would be infeasible with this repre-
sentation, making the search process less efficient. In this particular case, other
representations exist that can make constraint handling easier.

Clearly, many other representations are possible; for instance, we can create
a linked-list structure of 50 nodes, where each node represents an auction site and
has a list of cars “assigned” to this auction. With this representation, it would be
much easier to handle certain constraints (e. g., inventory constraints, as the length
of each node implies the number of cars assigned to that particular auction):
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—> [ 2340 P ooz ¥ 1108 P87 | 2,040

M
)=[=

m —> | 1,007 ™ 1,459 ™ 2,541

The above vector represents a solution that would send cars 2,340, 902, 1,198,
87, and 2,949 to auction 1, car 781 to auction 2, and so on, with cars 1,007, 1,459,
and 2,541 going to auction 50. By using this type of representation, the size of the
search space can be significantly reduced by imposing some inventory limits (e. g.,
each auction site should have at least 20, but no more than 100 cars). Additionally,
if some auction sites do not admit cars of a particular type (e. g., high mileage
cars), then it would be much easier to check (or enforce) such constraints.

Another possibility is based on indirect representation and some preprocessing.
Here we would sort all the available auction sites by distance from a particular
car, i.e., auction 1 would be the closest (distance-wise), auction 2 would be the
second closest, and so forth. Although this representation looks very similar to our
first representation, the interpretation is very different:

This vector represents a solution that ships the first car to the closest auction
site, the second car to the third-closest auction site, etc. Note that the same num-
bers in the above representation (e. g., number 1) correspond to different auction
sites! Again, there are several advantages of using this representation. First, the
vector:

represents a solution where each car is sent to the closest auction site. [ we be-
lieve that transportation costs play a major role in the decision-making process,
then the above solution may represent a reasonable “first draft.”” Second, the num-
bers are meaningful in the sense that they correspond to distances. If for some
reason auction 5 is not available (e. g., because of inventory limits), then we can
direct the car to auction 6, thereby increasing the transportation distance only
slightly. The third advantage is that preprocessing can help us handle many con-
straints. For example, if a car is red and auction 13 does not admit red cars, then
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we can eliminate 13 from the list of available auction sites for this car. Also, if we
limit the transportation distance for any car, all we have to do 18 truncate the auc-
tion list to eliminate those sites that exceed the threshold. By doing this, many
constraints (e. g., exclusions based on mileage, color, distance) can be handled
during the preprocessing stage!™

Note again, that the representation of a solution will define the search space and
its size, and that we can define a neighborhood for any solution in any representa-
tion. If we assume a solution is represented by a vector of 3,000 numbers, with each
number corresponding to an auction site, then for a solution:

23 41 5 19 41

we may define its neighborhood as a collection of all solutions that are identical
except for one auction site being different by one (e. g., 23 can be replaced by
either 22 or 24). Hence, the following solution:

23 41 6 19 41

is a neighbor of the original solution. Note that the size of the neighborhood is
6,000 solutions, as there are two possible replacements for each auction (23 can be
replaced by 22 or 24, 41 can be replaced by 40 or 42; ete.).”!

Of course, there are many other possibilities.”® For example, if an auction site
were allowed to differ by five (rather than just one), then the neighborhood would
be much larger. Each auction site would define 10 possible neighbors (e. g., auc-
tion 23 could be replaced by any of the following auctions: 18, 19, 20, 21, 22, 24,
25, 26, 27, 28). so the size of the neighborhood would be 30,000. Alternatively,
we can stick to the requirement that an auction site can only differ by one, but
relax the restriction on the number of auction sites that can differ! In such a sce-
nario, if any auction site can differ by one (or stay as it was), the size of such
a neighborhood would be 3 x 3 x 3 x ... x 3 (3,000 multiplications!) Of course, if
we allow bigger changes (e. g., replacing auction 5 with auction 19), then the size
of this huge neighborhood would grow even further!

*" Using this representation, we have to build a list of all feasible auctions for each car.
Although this preprocessing might be computationally expensive, we do it only once, at
the beginning of the search. The general rule of thumb is that preprocessing is useful:
the more sweat during exercise, the less blood during combat! Also, we will return to the
subject of constraint handling in Sect. 6.6.

*l For some vectors, however, the neighborhood size is slightly less than 6,000 (e.g., auc-

tion sites 1 and 50 can only be replaced by 2 and 49 respectively).

The typical methods for defining neighborhoods are either based on distance or on some

transformation operator.
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The linked-list representation offers another possibility. For a solution:

R f
(1= | w0 > 902 [ 1,198 [ 87 i—* 2,949

@ — | 1,007 [ 1,459 *‘ 2.541

we can define a neighbor as a new solution derived by changing the destination of
one car. For example, if we move car 902 from the first auction site to the second,
then we would get the following neighboring solution:

[Z] —> | 2,340 ¥ 1,198 [ 87 [ 2,949
B = | 781 % 902

Y

2,541

— | 1,007 % 1,459

In this scenario, the size of the neighborhood is much smaller than in the previ-
ous example: there are 49 “other™ auctions available for each car, so the number of
neighbors is only 147,000 (i. ., 49 x 3,000). Again, we can change the size of the
neighborhood by allowing some other transformations. For example, if we define
a neighbor as a solution obtained by swapping the assignment of two cars (¢. g.,
swapping the assignment of cars 87 and 1,007), then the number of possible
neighbors would be less than 4,498,500 (i. ., 3,000 x 2,999/2), as swapping the
assignment of some cars (e. g., cars 2,340 and 87) does not lead to a new solution,

During different stages of different optimization techniques, it is necessary to
compare two different solutions and determine the better one. Hence, we must be
able to evaluate any solution and assign a quality measure score to it. If the quality
measure score is 123.76 for one solution and 119,92 for another, then we would
like to assume that the former solution is better, In the car distribution example, it
is necessary to build an evaluation procedure that returns a quality measure score
for any solution. However, this task is not trivial; for example, how can we evalu-
ate a solution:
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23 41 5 19 41

that assigns the first car to auction 23, the second car to the auction 41, and so on?
Clearly, several things must be considered: the predicted sale prices of these cars at
the auction sites (taking into account the time delay caused by transportation),
transportation costs, “penalties” for violation of various constraints (e. g., a red car
is shipped to an auction that does not admit red cars), and so forth. Quite often, there
would be many trade-offs to consider (e. g., by sending a red car to a particular auc-
tion site we would violate a constraint, but on the other hand we would save a lot on
the transportation cost ...), which should be reflected in the evaluation function.

6.2 Local Optimization Techniques

The evaluation function defines a quality measure score landscape (also known as
a response surface or fitness landscape) that is much like a topography of hills and
valleys. Within this three-dimensional landscape, the problem of finding a solution
with the highest quality measure score is similar to searching for a peak in a foggy
mountain range. Because our visibility is limited, we can only make local deci-
sions about where to go next. If we always walk uphill, we will eventually reach
a peak, but this peak might not be the highest peak in the mountain range; it might
Just be a “local” optimum. We may have to walk downhill for some period of time
to find a path that will eventually lead us to the highest peak (i.e., the “global”
optimum).

The quality measure score landscape for a two-variable function is illustrated
below. The graph displays the quality measure score for every pair of values for
the first and second variable, which allows us to visualize the mountain ranges,
highest peaks, local optima, etc.:
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Keeping this illustration in mind, let us examine a basic local optimization proce-
dure called hill climbing,™ and its connection with the “neighborhood” concept.
Like all local cptimization techniques, hill climbing uses iterative improvement.
The technique is applied to a single solution (i.e., the current solution) in the
search space. During each iteration, a new solution is selected from the neighbor-
hood of the current solution. If that new solution has a better quality measure
score, then the new solution becomes the current solution. Otherwise, some other
neighbor is selected and tested against the current solution. The techniques termi-
nates if no further improvements are possible, or when the allotted time runs out.
A simple flowchart of a hill-climbing sequence is given below:

select a current solution s

evaluate s
select a new solution x from the
neighborhood of s

:

evaluate x

select x as new
current solution s

1S X better
than s?

no

Note that this flowchart expresses only the general principle of hill climbing
without any termination conditions. We have to start with some (possibly ran-
domly generated) solution s, evaluate it, and then generate a new solution x from

2 The term hill climbing implies a maximization problem, but the eguivalent descent
method is easily envisioned for minimization problems. For convenience, the term will
be used to describe both methods without any implied loss of generality.
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a neighborhood of s. If the new solution x is better than s, then we take an uphill
step (i. e., we accept this new solution as the current solution, and try to improve it
further by generating yet another new solution from the neighborhocd of the cur-
rent one), On the other hand, if the new solution x is not better than s, we generate
another new solution and we repeat this process several times until either (1) the
whole neighborhood has been searched, or (2) we have exceeded the threshold of
allowed attempts (which is missing from the flowchart). At this stage, we can exit
the loop and report the current solution as the best solution, or we can store the
current solution in “memory” and restart the whole process, hoping that the next
hill-climbing iteration (which starts from a new solution) may produce a better
overall solution (a process called iterated hill-climbing).

It is clear that such hill-climbing techniques can only provide locally optimum
values that depend on the starting solution. Moreover, there is no general proce-
dure for measuring the relative error with respect to the global optimum because it
remains unknown. Given the problem of converging on locally optimal solutions,
we often have to start the hill-climbing algorithm from a large variety of different
solutions. The hope is that at least some of these initial locations have a path that
leads to the global optimum. We might choose the initial solutions at random, or
we might base them on some grid, regular pattern, or other available information
(perhaps using the search results from somebody else’s effort to solve the same
problem).

The success or failure of a single iteration (i. e., one complete climb) of the hill-
climbing algorithm is determined completely by the initial solution. For problems
with many local optima, it is often very difficult to find the global optimum. Con-
sequently, hill-climbing techniques have several weaknesses:

e They usually terminate at solutions that are only locally optimal.

e There is no information as to how much the discovered local optimum deviates
from the global optimum, or perhaps even from other local optima.

e The optimum that is obtained depends on the initial configuration.

e In general, it is not possible to provide an upper bound for the computation
time,

On the other hand, there is a tempting advantage to using hill-climbing tech-
niques: they are very easy to apply! All that is needed is the representation, the
evaluation function, and a measure that defines the neighborhood around a given
solution.

Effective optimization techniques provide a mechanism for balancing two ap-
parently conflicting objectives at the same time: exploiting the best solutions
found so far, and exploring the search space. Hill-climbing techniques exploit the
best available solution for possible improvement, but they neglect exploring
a large portion of the search space. In contrast, a random search (where various
solutions are sampled from the entire search space with equal probability) ex-
plores the search space thoroughly, but foregoes exploiting promising regions of
the space. Each search space is different, and even identical spaces can appear
very different under different representations and evaluation functions. As a result,
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there is no way to choose a single optimization technique that performs well in
every case (more on this topic in Sect. 10.2).

T et us illustrate the hill-climbing technique on the car distribution example. Sty
we would like to implement an iterative hill-climbing algorithm that would gener-
ate a car distribution recommendation. Using the first representation (i. e., where a
vector of 3,000 values provides indices of auction sites from 1 to 50) and defining
a “neighbor” as a solution that differs (at most) by 1 on any position, the hill-
climbing algorithm would work as follows.

First, the algorithm would generate a starting solution. This solution might be
generated randomly (i. e., for each entry, a random number from 1 to 50 is pro-
duced) or we can accept some heuristic-based solution (e. g., an initial solution
that assigns each car to the nearest auction site). Either way, let us assume that the
initial solution is:

23 41 3 19 4]

The algorithm then evaluates this solution and assigns a quality measure score
to it. For this example, let us assume that the above solution generates a quality
measure score of 171.49. Now we are ready to do some “hill-climbing™! The algo-
rithm generates a neighbor solution by generating some random locaticns in the
vector (any number of locations from 1 to 3,000) and then changing the selected
indices in these locations by one (increment or decrement). Assume that the gen-
erated solution is (i. e., the selected first, second, ..., and 3,000th location was in-
creased or decreased by one.):

24 41 6 19 40

Next, the evaluation of this selution is needed. If the evaluation produces a
guality measure score higher than the original solution (e.g., 176.18), then the
algorithm will accept this new solution as the current solution and continue. Note
that this new solution (with a higher quality measure score) has its own new
neighborhood, and the subsequent new solution is drawn from this new neighbor-
hood. Any acceptance of a new solution means that the algorithm found a better
solution and made a step uphill. However, it may happen that the quality measure
score of the new solution is lower than the current solutions (e. g., 169.83). In such
a case, the algorithm will discard this solution (we are not interested in inferior
solutions) and generate another solution from the neighborhood of the current
solution. Say the next solution is:

24 | 42 5 18 40
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Again, if there is an improvement in the quality measure score, then the algo-
rithm will accept this solution and continue. If not, the algorithm will generate
another solution from the original neighborhood ...

Note also that a hill-climbing algorithm can (a) accept the first solution found
that is better than the current one (as presented above), or (b) accept the best solu-
tion found in the whole neighborhood. These two possibilities represent two ex-
tremes, with plenty of “in between” possibilities (e.g., we can accept the best
solution found from 100 generated solutions in the neighborhood).

The question is, how long should the hill-climbing algorithm generate random
solutions before giving up? Well, we usually have a counter responsible for count-
ing the algorithm’s attempts to improve the current solution. Each time the algo-
rithm finds an improvement the counter is reset to zero, However, if the hill-
climbing algorithm experiences a long sequence of unsuccessful attempts, we stop
the search upon exceeding a predefined threshold. In this particular example, what
should the threshold be? The answer depends on a few factors, with the size of the
neighborhood being the most important. It is difficult to claim that we have found
the “local optimum” if we did not search the whole neighborhood, but the size of
the neighborhood might be too large to evaluate all the neighbors! This problem
can be resolved by defining a neighborhood differently. For example, if a neighbor
differs from the current solution by only 1 on one location, then we will have up to
6,000 neighbors for each current solution and can evaluate all of them before giv-
ing up.

In summary, if it is feasible (time wise) to search the whole neighborhood be-
fore arriving at the local optimum, then we do not need a counter for controlling
the number of unsuccessful attempts because all the solutions in the neighborhood
will be searched. However, if it is not feasible to search the whole neighborhood,
we have to settle for a counter and quit our search after some number of unsuc-
cessful attempts. In our case, let us assume we quit the search after 100,000 un-
successful attempts.

Returning to our example, say we arrive at the following solution after many it-
erations and improvements, and all attempts to improve it have failed:

27 31 9 45 29

Note the significant number of improvements the algorithm went through: the
original assignment for car 2,999 (second to last position in the vector) changed
from auction 19 to auction 45, and all changes were made by adding or subtracting
1. Anyway, in all likelihood we have arrived at the local optimum, and this solu-
tion is the outcome of our hill-climbing exercise. The quality measure score 1s
345 67 and we are confident about the solution’s quality. After all, 100,000
neighboring solutions failed to produce any improvement'

However, we are not sure if this is the best solution. If we started our hill-
climbing exercise from a different solution (which might be located in a very
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“different area” of the search Space), we might finish with a local optimum solu-
tion that looks like:

43 41 32 15 27

and has a quality measure score of 1,457.8] (which is much better than the solu-
tion we discovered earlier!).

Recall our earlier discussion on the “hills and valleys” in a quality measure
score landscape. Clearly, there are many hills (local optimum solutions) and the
hill-climbing algorithm wil produce a solution that represents one of these hills.
However, the problem is that we do not know whether there are other (possibly
much higher) hills somewhere else! And the size of the neighborhood corresponds
to our “visibility” during the search: the larger the neighborhood, the better the
visibility, and the better chances of discovering the highest peak! However, it
might not be feasible to search the whole neighborhood if it is too large ..,

So, what should we do? We can restart out hill-climbing algorithm several
times, each time from a different (possibly random) location, and hope that one of

these runs will provide us with the global optimum solution (which may or may
not happen).

6.3 Stochastic Hill Climber

Getting stuck in local Optima is a serious problem. It is one of the main deficien-
cies of numerical optimization applications, as almost every solution to a real-
world problem in factory scheduling, demand planning, land management, and so
forth is at best only locally optimal.

So what can we do about it? How can we design an optimization technique that
has a chance 1o escape local optima, to balance exploration and exploitation, and
to make the search independent from the injtial configuration? There are a few
possibilities, and we will discuss some of them in this chapter, but keep in mind
that the proper choice is always dependent on the problem, One option, as we
discussed earlier, is to execute a large number of initial configurations for the
chosen technique. Moreover, it is often possible to use the results of previous
attempts to improve the initial confi guration for the next attempt. We-have already
seen one possibility of this in the previous section, where we discussed a proce-
dure called the “iterated hill climber.” Afier reaching a local optimum, the search
1s restarted from a different starting solution. Although we can apply this strategy
to other algorithms, let us discuss some other possibilities of escaping local optima -
within a single run of an algorithm. One way of accomplishing this is by modify-
ing the criteria for accepting new solutions that correspond to a negative change in
the quality measure score. That is, we might want to accept an inferior solution

from the local neighborhood in the hope that it will eventually lead us to some-
thing better,
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To turn an ordinary hill climber into such an algorithm, a few modifications are
required. First, let us recall the detailed structure of a hill climber:

select a current solution s

L
evaluate s

l

N select a new solution x from the
y —————
neighborhood of s

l

evaluate x

1s X better
than s?

| o select x as new
current solution s

no

Note again that the inner loop afways returns the local optimum. The only way
for this technique to “escape” local optima is by starting a new search (outer loop})
from a new (random) location. After some maximum number of attempts, the best

overall solution is the final outcome of the algorithm.
By modifying this procedure so that acceptance of a new solution is dependent

upon some probability — which is based on the difference between the quality
measure score for these two solutions — we obtain a new technique called the sto-

chastic hill climber:
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select a current solution s

1

evaluate s

1

»  select a new solution x from the
neighborhood of s

l

evaluate x

l

Select x as a new current solution s
with probability P

The slight (but significant) difference between an ordinary and stochastic hill
climber lies in a single box inserted in the flowchart that replaces the condition
box. During the execution of the hill climber’s internal loop (where the hill-
climbing searches for a better solution in the neighborhood of the current one),
only a superior solution s accepted as a new current solution. On the other hand,
the same internal loop in the stochastic hill climber procedure may accept an infe-
rior solution as a new current solution. This feature does not appear in local opti-
mization techniques. This insertion represents a probabilistic decision on the ge-
ceptance of a new solution (as opposed to a deterministic decision in classic hill
climbers), and is done to escape local optima . ..

Let us discuss this feature carefully. A new solution x is accepted with some
probability P, which means that the rule of moving from the curren; solution to
4 new neighbor is probabilistic. Consequently, it is possible for the newly accepted
solution x to be inferior to the current solution s, and it is also possible that a supe-
rior solution will not be accepted! This probability of acceptance depends on the
quality measure score difference between these two solutions, as well as on the

value of an additional parameter T (which remains constant during the execution
of the algorithm).
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Rather than providing a mathematical function for calculating the values of
probability P (which is based on a constant value of parameter 7), we will instead
ex¥nlain how this function works. In general terms, the probability function is con-
structed in a such way that:

e If the new solution x has the same quality measure score as the current solution
s, then the probability of acceptance is 50% (it does not matter which one is
chosen, because each is of equal quality).

o If the new solution x is superior, then the probability of acceptance is greater
than 50%. Moreover, the probability of acceptance grows together with the
(negative) difference between these two quality measure scores.

e If the new solution x is inferior, then the probability of acceptance is smaller
than 50%. Moreover, the probability of acceptance shrinks together with the
(positive) difference between these two quality measure scores.

The probability of accepting a new solution x also depends on the value of pa-
rameter T, and the general principle is as follows:

¢ [f the new solution x is superior, then the probability of acceptance is closer to
50% for high values of parameter 7, or closer to 100% for low values of pa-
rameter 7.

e [f the new solution x is inferior, then the probability of acceptance is closer to
50% for high values of parameter T, or closer to 0% for low values of parame-
ter 7T,

This is interesting, because it means that a superior soluticn x would have
a probability of acceptance of ar least 50% (regardless of the value of parameter T).
Likewise, an inferior solution would have a probability of acceplance of at most
50% (varying between 0% for low values of 7 and 50% for high values of 7). The
general conclusion is clear: The lower the value of T, the more the algorithm be-
haves like a classic hill climber that rejects inferior solutions and accepts superior
ones. On the other hand, if the value of T is very high, then the algorithm resembles
a random search, because the probability of accepting inferior or superior solutions
is close to 50%. Thus, we have to find a value for parameter T that is neither too
low nor too high for a particular problem.

The stochastic hill climber technique is also a forerunner to another optimiza-
tion technique called sinudared annealing, which is covered in the next section.

6.4 Simulated Annealing

The simulated annealing technigue (also known as Monte Carlo annealing, statis-
tical cooling, probabilistic hill-climbing, stochastic relaxation, and the probabilis-
tic exchange algorithm) is based on an analogy taken from thermodynamics, To
grow a crystal, we begin by turning the raw material into a molten state through
heating. Then we reduce the temperature of this crystal melt until the crystal struc-
ture is frozen. However, if the cooling process is done too quickly, then the results




6.4 Simulated Annealing o]

are detrimental, In particular, some irregularities are locked into the Ccrystal struc-
ture and the trapped energy level is much higher than in 3 perfectly structured
crystal.®* The analogy between the physical system and an optimization problem is
evident; the basic “equivalent” concepts are listed below:

* State - feasible solution

* Energy - evaluation function

* Ground state — optimal solution

* Rapid quenching - local search

* Temperature - contro] parameter T
Careful annealing — simulated annealing

Simulated annealing is similar to 3 stochastic hill climber in that it may accept
an inferior solution as g NEW current solution, and the acceptance decision is based
on the value of parameter T. However, unlike the stochastic hill climber (which
has a fixed value for parameter T), simulated annealing changes the valye of pa-
rameter T’ (commonly referred lo as temperature) during the run. Simulated an-
nealing starts with high values of parameter T — making the Process similar to g
random search — and then gradually decreases this value during the run. The value
of parameter T is quite small toward the end of the run, so the final stages of simy-
lated annealing resemble an ordinary hill climber. Another difference between the
stochastic hill climber and simulated annealing is that the latter always accepts
superior solutions. Recall from the previous section that the Stochastic hill climber
used some probability for accepting both inferior ang superior solutions, which js
not the case in simulated annealing,

The following flowchart represents a simulated annealing algorithm:

—

A similar problem OCCurs in metallurgy when heating and cooling metals,




