Types of Image

- Monochrome image(Binary Image)
- Grey scale image
- Color image (24 bit)
- Half toned image

Monochrome image(Binary Image):

Pixel is stored as a single bit (0 or 1). 0 represent black and 1 represent white.

These image are also called bit mapped images.

• Grey Scale Image:

Each pixel is stored as byte (8 bits).each pixel have values ranging from 0 (black) to 255 (white).

The image have black, white and various shades of grey.

• Color image(24 bit):

Each pixel is composed of RGB values and each of these color require 8 bits for its representation. Hence each pixel is represented by 24 bit $\{R(8bit), G(8bit), B(8bit)\}$

IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

Introduction: Image enhancement

- The principle objectives of image enhancement techniques is to process an image so that the result is more suitable than the original image for a specific application .
- Image enhancement techniques can be divided into two broad categories:
 - 1. Spatial domain methods.
 - 2. Frequency domain methods.

SPATIAL DOMAIN METHODS

- The term spatial domain refers to the aggregate of pixels composing an image.
- Spatial domain methods are procedures that operate directly on these pixels.
- Spatial Domain processes will be denoted by the expression

$$g(x,y) = T[f(x,y)]$$
 $g(x,y) = T[f(x,y)]$

Where f(x,y) is an input image g(x,y) is an output image and T represents an operation on 'f' define over some neighborhood of (x,y)

• Let us consider,

r = intensity of the pixel in given original image and

s = intensity of the pixel in the enhanced image.

BASIC INTENSITY TRANSFORMATION FUNCTIONS

- Image Negative
- Log transformation
- Pawerlaw transformation

IMAGE NEGATIVES

 Negatives of digital images are useful in numerous applications, such as displaying medical images.

For eg. Displaying X Ray image.

• Negative means inverting grey levels that is, black in original image will looks white and vice versa.

Transform function, s=(L-1)-r where L is grey level (L=256)

Digital negative image cab be obtained

Using,
$$s=255-r$$

$$r=0$$
 then $s=255$

$$r=255$$
 then $s=0$

LOG TRANSFORMATION (COMPRESSION OF DYNAMIC RANGE)

Log Transformation:-

- Sometimes the dynamic range of a processed image far exceeds the capability of the display device, in which case only the brightest parts of the images are visible on the display screen.
- For example, Stars are not visible in daytime due to intensity of sun.
- An effective way to compress the dynamic range of
- pixel values is using log operator is known as log transformation
- Transformation function:

$$s = c \log(1+|r|)$$

where c is a scaling constant, and the logarithm function performs the desired compression.

POWER LOW TRANSFORMATION (GAMMA TRANSFORMATION)

• The basic formula for power low transformation is,

$$S = c r^{\gamma}$$

Where, y is called gamma, and due to this transformation is also called gamma transformation

FIGURE 3.9

(a) Aerial image (b)–(d) Results (applying the transformation i Eq. (3.2-3) with c = 1 and $\gamma = 3.0, 4.0,$ and 5.0, respectively.

PIECEWISE LINEAR TRANSFORMATION FUNCTION

- Contrast stretching and thresholding
- Grey level slicing
- Bit Plane Slicing

CONTRAST STRETCHING AND THRESHOLDING

- Low-contrast images can result from poor illumination, lack of dynamic range in the image sensor, or even wrong setting of a lens aperture during image acquisition.
- The idea behind contrast stretching is to increase the dynamic range of the gray levels in the image by making the dark portion darker and the bright portions brighter.

• The location of the points (r1, s1) and (r2, s2) controls the shape of the transformation function. if r1=r2 and s1=0 and s2=l-1, the transformation becomes the thresholding function and creates the binary image.

Threshold Image
Threshold values of
R,G,B= 127,127,127

Low cost Image

Image after contrast stretching

EXAMPLE

• Calculate the threshold image.

1	2	3	1	6
5	2	4	5	2
4	6	0	7	0
2	3	6	5	1
5	2	3	2	2

EXAMPLE

• Calculate the threshold image.

1	2	3	1	6
5	2	4	15	2
4	6	0	7	0
2	3	6	5	1
5	2	3	2	2

8 T											_
7 +											_
6 +											_
5 +											_
4 +											_
3 +											_
$_2 \downarrow$		_	_								_
1 +	-	_									_
$_{0}\downarrow$		1	<u> </u>						-		_
	1	2		3	4	5	6	7		8	

gray level	number of pixel
	per level
0	2
1	3
2	7
3	3
4	2
5	4
6	3
7	1

ANSWER:

number of pixel
per level
2
3
7
3
2
4
3
1

From the histogram of image, largest two values are occur at gray level 2 and 5 and minimum between these two values occur at gray kevel 4. there fore threshold value will be at T=4

$$f_{\text{new}}(x,y)=0$$
 if $f_{\text{old}}(x,y) \le 4$
 $f_{\text{new}}(x,y)=$ L-1 if $f_{\text{old}}(x,y) \ge 4$

This transformation makes all gray level less than or equal to 4 will be black (0)

And >4 will be white (7).

0	0	0	0	7
7	0	0	7	0
0	7	0	7	0
0	0	7	7	0
7	0	0	0	0

GRAY-LEVEL SLICING

Highlighting a specific range of gray levels in an image Applications include enhancing flaws in x-ray image.

This technique is having two approaches:

- 1.Gray level slicing without background
- 2. Gray level slicing with background

1.Gray level slicing without background: All the gray levels in the range of requirement are displayed using a high value and all other gray level values are displayed using low values. That is we completely loss the background.

2. Gray level slicing with background: we only enhance the band of gray levels along with background.

Slicing with background

BIT PLANE SLICING:

Q. EXPALIN IN BRIEF PROCESS OF BIT PLANE SLICING

- In which we can find out contribution made by each bit to final image.
- Each pixel will be represented by 8 bits.
- Black is represented with 00000000
- White will be 11111111
- Consider the LSB value of each pixel and draw the image.
- Continue doing this for each bit till we come to MSB .we will get 8 different images

110	111	110	110	111
000	000	000	001	010
001	001	001	010	011
100	101	101	100	010
110	110	110	111	111

1	1	1	1	1
0	0	0	0	0
0	0	0	0	0
1	1	1	1	0
1	1	1	1	1

MSB plane

1	1	1	1
0	0	0	1
0	0	1	1
0	0	0	1
1	1	1	1
	1 0 0 0	1 1 0 0 0 0 0 0 1 1	1 1 0 0 0 0 0 0 1 1 1 1

Centre bit plane

LSB plane

IMAGE SUBTRACTION

- It takes two images as input and produce difference between two image pixel values as a output.
- This method is used for background removal and illumination equalization.
- Function : Z(x,y) = f(x,y) g(x,y)

0	1	2
5	6	4
3	4	7

0	1	1
4	5	3
1	1	6

0	0	1
1	1	1
2	3	1

Original Image

Blur Image

Subtracted Image

IMAGE AVERAGING

- It average multiple image to create a stable image
- It is used to eliminate pixel vibration or high frequency image changes.
- The noisy image Z(x,y) is obtained by adding some noise term $\eta(x,y)$ to the original image f(x,y).
- Function: $z(x,y)=f(x,y)+\eta(x,y)$.
- The noisy term can be taken randomly, hence average value of noisy result in zero value. So averaging technique is used to remove noise from image.

• Let us assume that there are m number of noisy images available and it is denoted as,

$$\overline{Z}(x,y) = \frac{1}{M} \sum_{i=1}^{M} Z_i(x,y)$$

• As M increases, the variability of the pixel values at each location decreases.

QUESTION:

• Consider a 3 bit image

$$\begin{array}{cccc}
5 & 3 & 6 \\
0 & 7 & 4 \\
6 & 5 & 1
\end{array}$$

what will be the output image of this after performing following operations,

Image negative transformation

Threshold T=4

Intensity level slicing with background a=3 and b=5

QUESTION:

• For the following 4 bit image perform following transformation

$$\begin{pmatrix}
 2 & 13 & 4 \\
 15 & 6 & 12 \\
 0 & 9 & 3
 \end{pmatrix}$$

Image negative transformation

Threshold T=8

Intensity level slicing with background a=6 and b=12

HISTOGRAM

Image Histogram:

- Histogram of image provide a global description of the appearance of the image.
- Histogram can be plotted in two ways.

HISTOGRAM: METHOD 1

• It is bar chart with x axis contain gray levels and y axis has the number of pixels in each gray level.

HISTOGRAM: METHOD 2

• x axis contain gray levels and y axis represents the probability of occurrences of that gray level.

IMAGE EQUALIZATION:

- Perfect image is one which has equal number of pixels in all its gray level s.
- The technique used to have equal pixel in all gray level is known as histogram equalization.
- It is used t obtained uniform histogram for the output image.

IMAGE EQUALIZATION:

- We have to search for a transform that converts any random histogram into flat histogram.
- $\circ S = T(r)$
- We have to find 'T' which produces equal values in each gray levels.
- The Transform should satisfy following 2 conditions:
- (i) T(r) must be single value & monotonically increasing in the interval, $0 \le r \le 1$.
- (ii) $0 \le T(r) \le 1$ for $0 \le r \le 1$ $0 \le S \le 1$ for $0 \le r \le 1$

Here, range of r is [0, 1] (Normalized range) instead of [0, 255].

- The first condition preserve the order from black to white in the gray scale
- Second condition guarantees a mapping that is consistent with given range of pixel values.

Since, the Transformation is single value & monotonically increasing, the inverse Transformation exists.

$$r = T^{-1}(S)$$
; $0 \le S \le 1$

- Gray levels for continuous variables can be characterized by their probability density P_r(r) & P_s(S).
- From Probability theory, we know that,
- If P_r(r) & P_s(S) are known & if T⁻¹(S) satisfies condition (i) then the probability density of the transferred gray level is

$$P_s(S) = [P_r(r). dr/ds]_{r=T^{-1}(S)}$$
 ----(a)

```
S = T(r)
S = \int_{0}^{r} Pr(r) dr \quad ; \quad 0 \le r \le 1
diff. \ wrt. \ r
ds \ / \ dr = Pr(r) \qquad ------(b)
Equating eqn(a) & eqn(b), we get
Ps(s) = [1] \; ; \; 0 \le S \le 1
i.e. Ps(s) = 1
```

Histogram Equalization

Prob. 1) Equalize the given histogram

Gray Levels (r)	0	1	2	3	4	5	6	7
No. of Pixels	790	1023	850	656	329	245	122	81

l= 8 = number of gray levels Original histogram is,

- Remember that take rounded value of pr
- o sk should always end with 1

Gray Levels (r _k)	No. of Pixels	(PDF) Pr(rk) = nk/n	(CDF) Sk =∑ Pk(rk)	(L-1) Sk = 7 x Sk	Rounding off
0	790	0.19	0.19	1.33	1
1	1023	0.25	0.44	3.08	3
2	850	0.21	0.65	4.55	5
3	656	0.16	0.81	5.67	6
4	329	0.08	0.89	6.23	6
5	245	0.06	0.95	6.65	7
6	122	0.03	0.98	6.86	7
7	81	0.02	1	7	7
	n = 4096	1			

• Take 1st 2nd and last column

Gray Levels (r _k)	No. of Pixels	Rounding off
0	790	1
1	1023	3
2	850	5
3	656	6
4	329	6
5	245	7
6	122	7
7	81	7
	n = 4096	

New gray levels have pixels only at 1,3,5,6,7. There are no pixel in gray levels 0, 2 and 4.

Equalized gray levels are,

Equalized gray level	Number of pixels
0	0
1	790
2	0
3	1023
4	0
5	850
6	656+329=985
7	245+122+81=448

Prob. 2) Equalize the given histogram

Gray Levels (r)	0	1	2	3	4	5	6	7
No. of Pixels	100	90	50	20	0	0	0	0

Prob. 3) Equalize the above histogram twice.

Gray Levels (r)	0	1	2	3	4	5	6	7
No. of Pixels	0	0	0	100	0	90	50	20

Prob. 3) Equalize the above histogram twice.

Gray Levels (r)	0	1	2	3
No. of Pixels	70	20	7	3

• Solution:

L=4 i.e.l-1=3

greylev	nk	Nk/n	sk	Sk(l-1) =3*sk	Roundi ng off
0	70	0.7	0.7	2.1	2
1	20	0.2	0.9	2.7	3
2	7	0.07	0.97	2.91	3
3	3	0.03	1.00	3.00	3
	N=100	1.00			

• Solution:

L=4 i.e.l-1=3

greylev el	nk	Roundi ng off
0	70	2
1	20	3
2	7	3
3	3	3

greylev el	nk
0	0
1	0
2	70
3	20+7+3 =30

