Circle Drawing Algorithm

Bresenhams circle drawing algorithm
Mid point circle drawing algorithm

- Circle is eight way symmetrical figure.
- If one point is calculated with circle algorithm seven more points could be found by reflection.

$$
\begin{aligned}
& \text { plot }(y, x) \\
& \text { plot }(y,-x) \\
& \operatorname{plot}(x,-y) \\
& \operatorname{plot}(-x,-y) \\
& \operatorname{plot}(-y,-x) \\
& \text { plot }(-y, x) \text { and } \\
& \operatorname{plot}(-x, y)
\end{aligned}
$$

Fig. 1.29 Eight-way symmetry of the circle

- Circle can be define using two methods.
- Polynomial method:
- Equation of circle

$$
x^{2}+y^{2}=r^{2}
$$

where \quad| x | $:$ The x -co-ordinate |
| :--- | :--- |
| y | $:$ The y-co-ordinate |
| r | $:$ Radius of the circle |

Using this method we find y for the value of x. this will generate $1 / 8$ th portion of the circle.
Disadvantage: for each point both a and r must be squared, x 2 subtracted from $r 2$ and square root of result

- Trigonometric method:
- It uses trigonometric function,

$$
\begin{aligned}
& x=r \cos \theta \text { and } y=r \sin \theta \\
& \text { where } \theta: \text { Current angle } \\
& r: \text { Radius of the circle } \\
& x: \text { The } x \text { coordinate } \\
& y: \text { The } y \text { coordinate }
\end{aligned}
$$

- In this method θ is stepped from 0 to $\Pi / 4$ and each x and y is calculated.
- Disadvantage: It is more inefficient than polynomial method because the computation of cos and sin values is more time consuming

Bresenham's Circle Algorithm

- We have to select those pixel in raster that fall the least distance from the true circle.
- If points are generated from 90° to 45°, each new point closest to the true circle can be found by taking either of two actions:
- Move in positive x direction by one unit.
- Move in positive x direction by one unit and move in the negative y direction by one unit

Fig. 1.27 1/8 part of circle

The distances of pixels A and B from the origin are given as

$$
\begin{aligned}
& D_{A}=\sqrt{\left(x_{i+1}\right)^{2}+\left(y_{i}\right)^{2}} \text { and } \\
& D_{B}=\sqrt{\left(x_{i+1}\right)^{2}+\left(y_{i}-1\right)^{2}}
\end{aligned}
$$

- Distance of pixel A and B from true circle are given by ,

$$
\delta_{A}=D_{A}-r \text { and } \delta_{B}=D_{B}-r
$$

- To avoid the square root, $\delta_{A}=D_{A}^{2}-r^{2}$ and

$$
\delta_{\mathrm{B}}=\mathrm{D}_{\mathrm{B}}^{2}-\mathrm{r}^{2}
$$

δ_{A} is always positive and δ_{B} always negative.
define decision variable d_{i} as

$$
d_{i}=\delta_{A}+\delta_{B}
$$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{i}} & =\delta_{A}+\delta_{\mathrm{B}} \\
& =\left(\mathrm{x}_{\mathrm{i}}+1\right)^{2}+\left(\mathrm{y}_{i}\right)^{2}-\mathrm{r}^{2}+\left(\mathrm{x}_{1}+1\right)^{2}+\left(y_{i}-1\right)^{2}-\mathrm{r}^{2} \\
& =(0+1)^{2}+(r)^{2}-\mathrm{r}^{2}+(0+1)^{2}+(r-1)^{2}-r^{2} \\
& =1+r^{2}-r^{2}+1+r^{2}-2 r+1-r^{2} \\
& =3-2 r
\end{aligned}
$$

if $d_{i}<0$, i.e., $\delta_{A}<\delta_{B}$ then only x is incremented; otherwise x is incremented in positive direction and y is incremented in negative direction. In other words we can write,

$$
\begin{aligned}
& \text { For } d_{i}<0, \quad x_{i+1}=x_{i}+1 \text { and } \\
& \text { For } d_{i} \geq 0, \quad x_{i+1}=x_{i}+1 \text { and } y_{i+1}=y_{i}-1
\end{aligned}
$$

$$
\begin{array}{ll}
\text { For } d_{i}<0, & d_{i+1}=d_{i}+4 x_{i}+6 \\
\text { For } d_{i} \leq 0, & d_{i+1}=d_{i}+4\left(x_{i}-y_{i}\right)+10
\end{array}
$$

Algorithm to plot $1 / 8$ of the circle

1. Read the radius (r) of the circle.
2. $\mathrm{d}=3-2 \mathrm{r}$
[Initialize the decision variable
3. $x=0, y=r$
[Initialize starting point]
4. do

1

$$
\operatorname{plot}(x, y)
$$

$$
\text { if }(\mathrm{d}<0) \text { then }
$$

I

$$
d=d+4 x+6
$$

$$
1
$$

else
$1 d=d+4(x-y)+10$ $y=y-1$
)
$x=x+1$
| while ($x<y$)
5. Stop

Questions

- Discuss the logic of Bresenhams circle drawing algorithm .Give the algorithm for a circle with center at the origin and radius R unit.
- Indicate which location would be chosen by Bresenham's algorithm when scan-converting a circle of radius 10 .

