Circle Drawing Algorithm

Bresenhams circle drawing algorithm

Mid point circle drawing algorithm

- Circle is eight way symmetrical figure.
- If one point is calculated with circle algorithm seven more points could be found by reflection.

plot (y, x)
plot (y, - x)
plot (x, - y)
plot (- x, - y)
plot (- y, - x)
plot (- y, x) and
plot (- x, y)

Fig. 1.29 Eight-way symmetry of the circle

- Circle can be define using two methods.
- Polynomial method:
- Equation of circle

$$x^2+y^2=r^2$$

where

x : The x-co-ordinate

y: The y-co-ordinate

r: Radius of the circle

Using this method we find y for the value of x. this will generate 1/8th portion of the circle.

Disadvantage: for each point both a and r must be squared, x2 subtracted from r2 and square root of result

Trigonometric method:

It uses trigonometric function,

 $x = r \cos \theta$ and $y = r \sin \theta$

where θ: Current angle

r: Radius of the circle

x: The x coordinate

y: The y coordinate

- In this method Θ is stepped from 0 to $\prod/4$ and each x and y is calculated.
- Disadvantage: It is more inefficient than polynomial method because the computation of cos and sin values is more time consuming

Bresenham's Circle Algorithm

- We have to select those pixel in raster that fall the least distance from the true circle.
- If points are generated from 90° to 45°, each new point closest to the true circle can be found by taking either of two actions:
 - Move in positive x direction by one unit.
 - Move in positive x direction by one unit and move in the negative y direction by one unit

Fig. 1.27 1/8 part of circle

The distances of pixels A and B from the origin are given as

$$D_A = \sqrt{(x_{i+1})^2 + (y_i)^2}$$
 and $D_B = \sqrt{(x_{i+1})^2 + (y_i - 1)^2}$

Distance of pixel A and B from true circle are given by ,

$$\delta_A = D_A - r$$
 and $\delta_B = D_B - r$

• To avoid the square root , $\delta_A = D_A^2 - r^2 \quad \text{and} \quad \delta_B = D_B^2 - r^2$

 δ_A is always positive and δ_B always negative.

define decision variable di as

$$d_i = \delta_A + \delta_B$$

$$d_{i} = \delta_{A} + \delta_{B}$$

$$= (x_{i} + 1)^{2} + (y_{i})^{2} - r^{2} + (x_{i} + 1)^{2} + (y_{i} - 1)^{2} - r^{2}$$

$$= (0 + 1)^{2} + (r)^{2} - r^{2} + (0 + 1)^{2} + (r - 1)^{2} - r^{2}$$

$$= 1 + r^{2} - r^{2} + 1 + r^{2} - 2r + 1 - r^{2}$$

$$= 3 - 2r$$

if $d_i < 0$, i.e., $\delta_A < \delta_B$ then only x is incremented; otherwise x is incremented in positive direction and y is incremented in negative direction. In other words we can write,

For
$$d_i < 0$$
, $x_{i+1} = x_i + 1$ and
For $d_i \ge 0$, $x_{i+1} = x_i + 1$ and $y_{i+1} = y_i - 1$

For
$$d_i < 0$$
, $d_{i+1} = d_i + 4 x_i + 6$ and $d_{i+1} = d_i + 4 (x_i - y_i) + 10$

Algorithm to plot 1/8 of the circle

- 1. Read the radius (r) of the circle.
- d=3-2r
 [Initialize the decision variable
- 3. x = 0, y = r
 [Initialize starting point]
- 4. do
 {
 plot (x, y)
 if (d < 0) then
 {
 d = d + 4x + 6
 }
 else

$$d = d + 4(x - y) + 10$$

y = y - 1

$$x = x + 1$$

$$\}$$
 while $(x < y)$

Stop

Questions

- Discuss the logic of Bresenhams circle drawing algorithm .Give the algorithm for a circle with center at the origin and radius R unit.
- Indicate which location would be chosen by Bresenham's algorithm
 when scan-converting a circle of radius 10.