3D transformation: Translation

1. Translation: matrix for translation with homogeneous coordinate is given as,

$$
\mathrm{T}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t_{x} & t_{y} & t_{z} & 1
\end{array}\right]
$$

$$
P^{\prime}=P . T
$$

3D transformation : Translation

$$
\begin{aligned}
{\left[\begin{array}{lll}
X^{\prime} Y^{\prime} & Z^{\prime} & 1
\end{array}\right] } & =\left[\begin{array}{lll}
X & Y & 1
\end{array}\right]\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t_{x} & y_{y} & t_{z} & 1
\end{array}\right) \\
& =\left[\begin{array}{llll}
X+t_{x} & y+t_{y} & z+t_{z} & 1
\end{array}\right]
\end{aligned}
$$

3D transformation : Translation

3D transformation: Scaling

2. Scaling: matrix for scaling with homogeneous coordinate is given as,

$$
T=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
P^{\prime}=P . S
$$

3D transformation: Scaling

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{lll}
X^{\prime} & Y^{\prime} & Z^{\prime}
\end{array} \quad 1\right.}
\end{array}\right]=\left[\begin{array}{lll}
X & Y & Z
\end{array} \quad 1\right]\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]
$$

3D transformation: Scaling

Scaling of an object with respective to selected point:

- It can be represented with the following transformation sequence:

1. Translate the fixed point to the origin
2. Scale the object
3. Translate the fixed point back to its original position

3D transformation: Rotation about Z axis

3. Rotation : matrix for each coordinate axis rotation with homogeneous coordinate is given as,

Θ is positive indicate counter clockwise (anticlockwise) Rotation Otherwise $\boldsymbol{\Theta}$ is negative indicate clockwise Rotation

3D transformation: Rotation about Z axis

3D transformation: Rotation about x axis

Rotation about x axis

$$
R x=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3D transformation: Rotation about x axis

3D transformation: Rotation about Y axis

Rotation about y axis

$$
\mathrm{Ry}=\left(\begin{array}{cccc}
\cos \theta & 0 & -\sin \theta & 0 \\
0 & 1 & 0 & 0 \\
\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D transformation: Rotation about y axis

Reflection

- Reflection ralative to XY plane

RF

$$
Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Reflection

Reflection ralative to XZ plane

RFy $=$

$$
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}
$$

Reflection

- Reflection ralative to YZ plane

shear

- It is used to modify the shapes of objects and they are useful in 3D viewing for obtaining general projection transformation

$$
S H_{Z}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
a & b & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad S H_{X}=\left(\begin{array}{llll}
1 & a & b & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \dashv_{Y}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
a & 1 & b & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Problems

Q Explain 3 D object representation?
10m
Q. Give the 3D transformation matrix for translation , scaling, rotation ?
Q. Derive single 4×4 matrix for following transformation Rotation by 180° around y axis

Translate by 3 units in x axis and 4 units in y axis scale by 4 unit in y axis

Rotation by $\mathbf{1 8 0}$ around y axis:

$$
R y=\left\{\begin{array}{c}
\cos (180) \\
0 \\
\sin (180) \\
0
\end{array}\right.
$$

$\left.\begin{array}{ccc}0 & -\sin (180) & 0 \\ 1 & 0 & 0 \\ 0 & \cos (180) & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left.\cos (180)=-1 \quad(180)=0 \quad \begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

Translate by 3 units in x axis and 4 units in y axis

- so , $t_{x}=3 t_{y}=4 t_{z}=0$

$$
T=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
t_{y} & t_{y} & t_{z} & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right)
$$

scale by 4 unit in y axis

$$
S=\left(\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
T_{\text {final }} & =R y, \mathbf{T}, \mathbf{S} \\
& =\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
3 & 4 & 0 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -1 \\
3 & 16 & 0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$$
\left.\left.\begin{array}{rl}
{\left[X^{\prime} Y^{\prime} Z^{\prime} 1\right.}
\end{array}\right]=\left[\begin{array}{lll}
X & Y & Z_{1}
\end{array}\right]\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & -1 & 0 \\
3 & 16 & 0 & 1
\end{array}\right]\right)
$$

Halftone shading

- Many displays and hardcopy devices are bi-level
- They can only produce two intensity levels
- In such devices we can increase the number of available intensities by considering combine intensity of multiple pixels is known as half toning.
- This is commonly used in printing black and white photographs in newspaper, magazines and books
- The pictures produced by half toning process are called halftones.
- Following figures shows 2×2 halftone patterns

- Following figures shows 3×3 halftone patterns

Dithering Techniques

- It refers to the technique for approximating halftones without reducing resolution
- It is also applied to halftone approximation methods using pixel grids
- Random values added to pixel intensities to break up contours are often refer as dither noise.
- To obtain n^{2} intensity levels, it is necessary to setup an $n X n$ dither matrix Dn whose elements are district positive integers in the range of o to $\mathrm{n}^{2}-1$

Matrix shows four and nine intensity levels

$$
D_{2}=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \quad D_{3}=\left[\begin{array}{lll}
7 & 2 & 6 \\
4 & 0 & 1 \\
3 & 8 & 5
\end{array}\right]
$$

- Explain Halftone shading technique and compare it with dithering technique. 10M
- Write a note on Halftone shading technique.
- Write a note on dithering technique

Fractals

Topological dimension

- If the object can be deformed into the line we assign its dimension $\mathrm{Dt}=1$
- If the object can be deformed into the plane or half plane or disk we assign its dimension $\mathrm{Dt}=2$
- If the object can be deformed into the space or half space or sphere we assign its dimension $\mathrm{Dt}=3$ The dimension Dt is referred as topological dimension

Fractal dimension

- Object dimension can be measured using fractal dimension.
- Imagine that the line segment of length L is divided into N identical pieces, the length of each line segment can be given as I

$$
\mathrm{I}=\mathrm{L} / \mathrm{N}
$$

- Scaling factor: ratio of length of original line segment (L) and the length of each part of line segment(I) is called scaling factor.

$$
S=L / I
$$

(a) Line

(b) Square

(c) Cube

$\mathrm{N}=8$
$\mathrm{~S}=2$

Koch curve

- It can be drawn by dividing line into 3 equal segments with scaling
 factor $1 / 3$ and replace the middle one by two pieces
like a tent The same is done for all 4 sections.

properties

- Each repetition increases the length of the curve by factor $4 / 3$
- Length of the curve is infinite.
- It doesn't much deviate from its original shape
- Koch curve topological dimension is 1 and fractal dimension is 1.2618

Koch Snowflake

- Basically the Koch Snowflake are just three Koch curves combined to a regular triangle. The construction rules are the same as the ones of the Koch curve.

Sierpinski triangle

- Take a triangle
- Create four triangles out of that one by connecting the centers of each side
- Cut out the middle triangle
- Repeat the process with the remaining triangles
- The number of triangles in the Sierpinski triangle can be calculated with the formula:
- Where n is the number of triangles and k is the number of iterations.

$$
\mathbf{A B A}_{\mathbf{A}}^{\mathbf{A}}
$$

- What is fractal ? List and explain different types of fractals?

10 M

- Explain Koch curve? 5 M
- What is fractal ? What are its different types? how is a fractal
dimension measures? 10m

