2D TRANSFORMATIONS

Transformations

- Rigid Body Transformations - transformations that do not change the object.
- Translate
- If you translate a rectangle, it is still a rectangle
- Scale
- If you scale a rectangle, it is still a rectangle
- Rotate
- If you rotate a rectangle, it is still a rectangle

Translation

- A translation moves all points in an object along the same straight-line path to new positions.
- The path is represented by a vector, called the translation or shift vector.
- We can write the components:

$$
\begin{aligned}
& x^{\prime \prime}=x+t_{x} \\
& y^{\prime \prime}=\mathbf{y}+t_{y}
\end{aligned}
$$

- or in matrix form:

$$
P^{\prime}=P+T
$$

$$
\left(\begin{array}{ll}
\mathbf{x}^{\prime} & \mathbf{y}
\end{array}\right)=\left[\begin{array}{ll}
\mathbf{x} & \mathbf{y}
\end{array}\right)+\left(\begin{array}{ll}
t_{x} & t_{y}
\end{array}\right)
$$

Example:

Q. Translate the polygon with coordinate $\mathrm{A}(2,5), \mathrm{B}(7,10)$ and $\mathrm{C}(10,2)$ by 3 units in x direction and 4 units in y direction.
Q. Translate the polygon with coordinate $\mathrm{A}(12,15)$,
$B(-17,10)$ and $C(10,21)$ by 5 units in x direction and 7 units in y direction.

Rotation

- Rotation - Repositions an object along a circular path
- Rotation requires an Θ and a pivot point
- First, we'll assume the pivot is at the origin.

Rotation

- Review Trigonometry
$\Rightarrow \cos \phi=\mathbf{x} / \mathbf{r}, \sin \phi=\mathbf{y} / \mathbf{r}$
- $\mathbf{x}=\mathbf{r} \cdot \cos \phi, \mathbf{y}=\mathbf{r} \cdot \sin \phi$
$\Rightarrow \cos (\phi+\theta)=x^{\prime} / \mathbf{r}$
$\quad \mathrm{x}^{\prime}=\mathbf{r} \cdot \cos (\phi+\theta)$
$\cdot x^{\prime}=r \cdot \cos \phi \cos \theta-r \sin \phi s \sin \theta$
$\cdot \mathrm{x}^{\prime}=\mathbf{x} \cdot \boldsymbol{\operatorname { c o s }} \theta-\mathbf{y} \cdot \boldsymbol{\operatorname { s i n }} \theta$
$\Rightarrow>\sin (\phi+\theta)=y^{\prime} / \mathbf{r}$
$\mathrm{X}^{2}=\mathbf{r} \cdot \sin (\phi+\theta)$
$\cdot y^{\prime}=$ r. $\cos \phi \sin \theta+$ r.sin ϕ oos θ
$\cdot y^{\prime}=\mathbf{x} \cdot \boldsymbol{\operatorname { s i n }} \theta+\mathbf{y} \cdot \boldsymbol{\operatorname { c o s }} \theta$

Rotation

- We can write the components:

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta
\end{aligned}
$$

- or in matrix form:

$$
P^{\prime}=R \cdot P
$$

- θ can be clockwise (-ve) or counterclockwise (+ve as our example).
- Rotation matrix

$$
R=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

- Default direction of rotation is anticlockwise direction.

$$
\left[\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right]=\left(\begin{array}{ll}
\mathrm{x} & \mathrm{y}
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\operatorname{Sin} \theta & \cos \theta
\end{array}\right]
$$

example

- A point $(4,3)$ is rotated counterclockwise by an angle of 45°. Find the rotation matrix and resultant point.

Scaling

- Scaling changes the size of an object and involves two scale factors, S_{x} and $\mathrm{S}_{\mathbf{y}}$ for the x and y - coordinates respectively.
- Scales are about the origin.
- We can write the components:

$$
\begin{aligned}
\mathbf{x}^{\prime} & =s_{x} \bullet p_{x} \\
Y^{\prime} & =s_{y} \bullet p_{y}
\end{aligned}
$$

or in matrix form:

$$
\mathbf{P}^{\prime}=\mathrm{S} \cdot \mathbf{P}
$$

Scale matrix as:

$$
S=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Scaling

- If the scale factors are in between 0 and $1 \rightarrow$ the points will be moved closer to the origin \rightarrow the object will be smaller.
- Example :
$\cdot P(2,5), S x=0.5, S y=0.5$
\cdot Find P^{\prime} ?

Scaling

- If the scale factors are in between 0 and $1 \rightarrow$ the points will be moved closer to the origin \rightarrow the object will be smaller.
- Example :
$\cdot P(2,5), S x=0.5, S y=0.5$
-Find P^{\prime} ?
-If the scale factors are larger than 1
\rightarrow the points will be moved away from the origin \rightarrow the object will be larger.

- Example :
$\cdot P(2,5), S x=2, S y=2$
-Find P^{\prime} ?

Scaling

- If the scale factors are the same, $\mathrm{S}_{\mathrm{x}}=\mathrm{S}_{\mathrm{y}} \rightarrow$ uniform scaling
- Only change in size (as previous example)
-If $\mathrm{S}_{\mathrm{x}} \neq \mathrm{S}_{\mathrm{y}} \rightarrow$ differential scaling.
-Change in size and shape
-Example : square \rightarrow rectangle

$\cdot \mathrm{P}(1,3), \mathrm{S}_{\mathrm{x}}=2, \mathrm{~S}_{\mathrm{y}}=5, \mathrm{P}^{\prime}$?

Homogeneous coordinates

- To fit the picture in to proper position many time we required to perform sequence of transformation i.e. translation, rotation and scaling.
- We have a general transformation of a point:

$$
P^{\prime}=P M 1+M 2
$$

- When we scale or rotate, we set M1, and M2 is the additive identity.
i. e. zero matrix
- When we translate, we set M2, and M1 is the multiplicative identity i.e. identity matrix
- To combine multiple transformations, we must explicitly compute each transformed point.

Homogeneous coordinates

- In order to combine sequence of transformation we have to eliminate the matrix addition associated with translation term in M2.
- To achieve this we have to represent M1 as 3X3 matrix instead of 2×2 by introducing dummy coordinate called Homogeneous coordinate
- Homogeneous coordinate is represented by the triplet $\left(X_{w}, Y_{w} W\right)$ Where

$$
X=X_{w} / W, Y=Y_{w} / W
$$

- For 2D transformation W can be any positive value but we take $\mathrm{W}=1$
- Each 2D position can be represented ith homogeneous coordinate as

$$
(x, y, 1)
$$

Homogeneous coordinate for translation are:

$$
\begin{aligned}
T & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
t_{x} & t_{\mathrm{y}} & 1
\end{array}\right) \\
\left(\begin{array}{lll}
X^{\prime} & Y^{\prime} & 1
\end{array}\right) & =\left(\begin{array}{lll}
X & Y & 1
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\mathbf{t}_{\mathrm{x}} & \mathbf{t}_{\mathrm{y}} & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
\mathbf{X}+\mathbf{t}_{\mathrm{x}} & \mathbf{Y}+\mathbf{t}_{\mathrm{y}} & 1
\end{array}\right]
\end{aligned}
$$

Homogeneous coordinate for rotation are:

$$
\left.\left.\begin{array}{rl}
R & =\left(\begin{array}{ccc}
\operatorname{Cos} \Theta & \sin \Theta & 0 \\
-\operatorname{Sin} \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(X^{\prime}, Y^{\prime} \quad 1\right.
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{X} & \mathbf{Y} & 1
\end{array}\right)\left(\begin{array}{ccc}
\operatorname{Cos} \Theta & \sin \Theta & 0 \\
-\operatorname{Sin} \Theta & \cos \Theta & 0 \\
0 & 0 & 1
\end{array}\right)\right]
$$

Homogeneous coordinate for scaling are:

$$
\begin{aligned}
S & =\left(\begin{array}{ccc}
\mathbf{S}_{\mathbf{x}} & 0 & 0 \\
\mathbf{0} & \mathbf{s}_{\mathbf{y}} & 0 \\
0 & 0 & 1
\end{array}\right) \\
{\left[\begin{array}{lll}
\mathbf{X}^{\prime} & \mathbf{Y} & \mathbf{1}
\end{array}\right) } & =\left(\begin{array}{lll}
\mathbf{X} & \mathbf{Y} & \mathbf{1}
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{S}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{s}_{\mathbf{y}} & 0 \\
0 & \mathbf{0} & 1
\end{array}\right) \\
& =\left(\begin{array}{llll}
\mathbf{x} & \mathbf{s}_{\mathbf{x}} & \mathbf{y} & \mathbf{s}_{\mathbf{y}} \\
1
\end{array}\right)
\end{aligned}
$$

Q. Give 3×3 Homogeneous coordinate transformation
matrix for each of the following translation :

1. Shift the image right to 3 unit
2. Shift the image up $\mathbf{2}$ units
3. Move the image down $1 / 2$ unit and right 1 unit
4. Move the image down $2 / 3$ unit and left 4 units
Q. Find transformed matrix that transform the given
square ABCD to half its size with center till remaining at
the same position. The coordinates of the square are
$A(1,1), B(3,1) C(3,3) D(1,3)$ and center at $(2,2)$ also
find resultant coordinates of square.

Solution:

1. Translate the square so that its center coincides with origin
2. Scale the square with respective the origin
3. Translate the square back to the original position.

$$
t x=t y=2 \quad s x=s y=0.5
$$

Q. find transformation of triangle $\mathrm{A}(1,0) \mathrm{B}(0,1) \mathrm{C}(1,1)$ by

1. Rotating 45° about the origin and then translating 1 unit in x and y direction
2. Translating 1 unit in x and y direction and then rotating 45° about the origin

$$
6^{0^{0} 0^{a^{0}}}
$$

Composite Transformation

- We can represent any sequence of transformations as a single matrix.
- Composite transformations:
- Rotate about an arbitrary point - translate, rotate, translate
- Scale about an arbitrary point - translate, scale, translate
- Change coordinate systems - translate, rotate, scale

Order of operations

So, it does matter. Let's look at an example:

Composite Transformation Matrix

General Pivot- Point Rotation

Operation :-

1. Translate (pivot point is moved to origin)
2. Rotate about origin
3. Translate (pivot point is returned to original position)
$\mathbf{T}($ pivot $) \cdot \mathbf{R}(\theta) \cdot \mathbf{T}(-$ pivot $)$

Composite Transformation Matrix

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\operatorname{tx} & -\operatorname{ty} & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lcc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\text { tx } & \text { ty } & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lcl}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
-\operatorname{tx} \cos \theta+\operatorname{ty} \sin \theta & -\operatorname{tx}_{\sin } \theta-\operatorname{ty}_{\cos \theta} & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
\text { tx ty } & 1
\end{array}\right)
$$

$$
\left[\begin{array}{lcc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
-\mathrm{tx} \cos \theta+\mathrm{ty} \sin \theta+\mathrm{tx} & -\mathrm{tx} \sin \theta-\mathrm{ty} \cos \theta+\mathrm{ty} & 1
\end{array}\right.
$$

Q. Perform counter clockwise 45° rotation of
triangle $\mathrm{A}(2,3) \mathrm{B}(5,5) \mathrm{C}(4,3)$ about point $(1,1)$

Composite Transformation Matrix

- Example
- Perform 60° rotation of a point $\mathrm{P}(2,5)$ about a pivot point $(1,2)$. Find P^{\prime} ?

Composite Transformation Matrix

General Fixed-Point Scaling

Operation :-

1. Translate (fixed point is moved to origin)
2. Scale with respect to origin
3. Translate (fixed point is returned to original position)
$\mathbf{T}($ fixed $) \cdot \mathbf{S}($ scale $) \cdot \mathbf{T}($-fixed $)$

- Find the matrix that represents scaling of an object with respect to any fixed point?
- Given $\mathrm{P}(6,8), \mathrm{Sx}=2, \mathrm{Sy}=3$ and fixed point $(2,2)$. Use that matrix to find P^{\prime} ?

Other transformations

Reflection: It is a transformation that produce mirror image of an object relative to an axis of reflection

Other transformations

Reflection: about y axis

$$
y \text {-axis }
$$

Other transformations

Reflection: about origin

Other transformations

Reflection: about $y=x$

Other transformations

Reflection: about $y=-x$

Other transformations

Shear : Transformation that slant the shape of an object.
X shear: preserve the y coordinate but change x value which causes vertical line to tilt right

Other transformations

y shear: preserve the x coordinate but change y value which causes horizontal line to transform in to lines which slope up or down

Inverse Transformation

- When we apply any transformation to point $\mathrm{P}(\mathrm{x}, \mathrm{y})$, we get a new point ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$).
- Sometimes it may require to get undo the applied transformation.
- In this case we have to get original point (x, y) from (x^{\prime}, y^{\prime}).
- This can be achieved by inverse transformation
- If the inverse of matrix T is T^{-1} then,

$$
\mathrm{TT}^{-1}=\mathrm{T}^{-1} \mathrm{~T}=\mathrm{I} \text {, Identity matrix }
$$

- The elements of inverse matrix can be calculated from the elements of T as ,

$$
\mathrm{t}_{\mathrm{ij}}{ }^{-1}=\left[(-1)^{\mathrm{i}+\mathrm{j}} \operatorname{det} \mathrm{M}_{\mathrm{ij}}\right] / \operatorname{det} \mathrm{T}
$$

Determinant of a 2×2 matrix is ;
$\operatorname{det}\left|\begin{array}{ll}\mathbf{t}_{11} & \mathbf{t}_{12} \\ \mathbf{t}_{21} & \mathbf{t}_{22}\end{array}\right|=\mathbf{t}_{11} \mathbf{t}_{22}-\mathbf{t}_{12} \mathbf{t}_{21}$

- Inverse of homogeneous coordinate transformation matrix can be given as ,

$$
\left(\begin{array}{lll}
a & d & 0 \\
b & e & 0 \\
c & f & 1
\end{array}\right)^{-1}=\begin{gathered}
1 \\
\text { ae-bd }
\end{gathered}\left(\begin{array}{ccc}
e & -d & 0 \\
-b & a & 0 \\
b f-c e & \text { cd-af } & \text { ae-bd }
\end{array}\right)
$$

