2D TRANSFORMATIONS

Transformations

- **Rigid Body Transformations** transformations that do not change the object.
- Translate
 - If you translate a rectangle, it is still a rectangle
- Scale
 - If you scale a rectangle, it is still a rectangle
- Rotate
 - If you rotate a rectangle, it is still a rectangle

Translation

- A translation moves all points in an object along the same straight-line path to new positions.
- The path is represented by a vector, called the translation or shift vector.
- We can write the components:

 $\mathbf{x}' = \mathbf{x} + \mathbf{t}_{\mathbf{x}}$

$$y' = y + t_y$$

 $\mathbf{D'} = \mathbf{D} \perp \mathbf{T}$

• or in matrix form:

$$\left(\begin{array}{cc} \mathbf{x}^{*} & \mathbf{y}^{*} \end{array} \right) = \left(\begin{array}{cc} \mathbf{x} & \mathbf{y} \end{array} \right) + \left(\begin{array}{cc} \mathbf{t}_{x} & \mathbf{t}_{y} \end{array} \right)$$

Example:

- Q. Translate the polygon with coordinate A(2,5), B(7,10) and C(10,2) by 3 units in x direction and 4 units in y direction.
- Q. Translate the polygon with coordinate A(12,15), B(-17,10) and C(10,21) by 5 units in x direction and 7 units in y direction.

Rotation

- Rotation Repositions an object along a circular path
- Rotation requires an Θ and a pivot point
- First, we'll assume the pivot is at the origin.

Rotation

• We can write the components:

 $x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$

• or in matrix form:

 $\mathbf{P'} = \mathbf{R} \bullet \mathbf{P}$

- θ can be clockwise (-ve) or counterclockwise (+ve as our example).
- Rotation matrix

$$R = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$

 Default direction of rotation is anticlockwise direction.

example

• A point (4,3) is rotated counterclockwise by an angle of 45°. Find the rotation matrix and resultant point.

Scaling

- Scaling changes the size of an object and involves two scale factors, S_x and S_y for the x-and y- coordinates respectively.
- Scales are about the origin.
- We can write the components:

$$\mathbf{x}' = s_x \bullet p_x$$
$$\mathbf{Y}' = s_y \bullet p_y$$

or in matrix form:

$$\mathbf{P'} = \mathbf{S} \cdot \mathbf{P}$$

Scale matrix as:

$$S = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

- If the scale factors are in between 0

 and 1 → the points will be moved
 closer to the origin → the object
 will be smaller.
 - Example :

•P(2, 5), Sx = 0.5, Sy = 0.5 •Find P' ?

Scaling

- If the scale factors are in between 0 and 1 → the points will be moved closer to the origin → the object will be smaller.
- Example :

•P(2, 5), Sx = 0.5, Sy = 0.5 •Find P' ?

- If the scale factors are larger than 1
 → the points will be moved away from the origin → the object will be larger.
 - Example :

Scaling

- If the scale factors are the same, $S_x = S_y \rightarrow$ uniform scaling
- Only change in size (as previous example)
- •If $S_x \neq S_y \rightarrow$ differential scaling.
- •Change in size and shape
- •Example : square \rightarrow rectangle

•P(1, 3),
$$S_x = 2$$
, $S_y = 5$, P'?

Homogeneous coordinates

- To fit the picture in to proper position many time we required to perform sequence of transformation i.e. translation, rotation and scaling.
- We have a general transformation of a point:

P' = P M1 + M2

- When we scale or rotate, we set M1, and M2 is the additive identity.
 i. e. zero matrix
- When we translate, we set M2, and M1 is the multiplicative identity .i.e. identity matrix
- To combine multiple transformations, we must explicitly compute each transformed point.

Homogeneous coordinates

- In order to combine sequence of transformation we have to eliminate the matrix addition associated with translation term in M2.
- To achieve this we have to represent M1 as 3X3 matrix instead of 2 X 2 by introducing dummy coordinate called Homogeneous coordinate
- Homogeneous coordinate is represented by the triplet (X $_{\rm w}$, Y $_{\rm w}$ W) Where

 $X = X_w / W$, $Y = Y_w / W$

- For 2D transformation W can be any positive value but we take W=1
- Each 2D position can be represented ith homogeneous coordinate as

(x,y,1)

Homogeneous coordinate for translation are:

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{pmatrix}$$
$$\begin{pmatrix} X' Y' 1 \\ = \begin{pmatrix} X & Y & 1 \\ X' Y' 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_x & t_y & 1 \end{pmatrix}$$
$$= \begin{pmatrix} X + t_x & Y + t_y & 1 \end{pmatrix}$$

Homogeneous coordinate for rotation are:

Homogeneous coordinate for scaling are:

$$S = \begin{pmatrix} S_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} X' Y' 1 \end{pmatrix} = \begin{pmatrix} X & Y & 1 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} x s_x & y s_y & 1 \end{pmatrix}$$

Q. Give 3 x 3 Homogeneous coordinate transformation

matrix for each of the following translation :

- 1. Shift the image right to 3 unit
- 2. Shift the image up 2 units
- 3. Move the image down ¹/₂ unit and right 1 unit
- 4. Move the image down 2/3 unit and left 4 units

Q. Find transformed matrix that transform the given square ABCD to half its size with center till remaining at the same position . The coordinates of the square are A(1,1) , B (3 , 1) C (3 , 3) D (1, 3) and center at (2 , 2) also

find resultant coordinates of square.

Solution:

- 1. Translate the square so that its center coincides with origin
- 2. Scale the square with respective the origin
- 3. Translate the square back to the original position.

 $\mathbf{tx} = \mathbf{ty} = 2 \quad \mathbf{sx} = \mathbf{sy} = \mathbf{0.5}$

Q. find transformation of triangle A(1,0) B(0, 1) C(1,1) by

- Rotating 45° about the origin and then translating 1 unit in x and y direction
- Translating 1 unit in x and y direction and then rotating 45° about the origin

Composite Transformation

- We can represent any sequence of transformations as a single matrix.
- Composite transformations:
 - Rotate about an arbitrary point translate, rotate, translate
 - Scale about an arbitrary point translate, scale, translate
 - Change coordinate systems translate, rotate, scale

Order of operations

So, it does matter. Let's look at an example:

Composite Transformation Matrix

General Pivot- Point Rotation

Operation :-

- 1. Translate (pivot point is moved to origin)
- 2. Rotate about origin
- 3. Translate (pivot point is returned to original position)

 $T(pivot) \bullet R(\theta) \bullet T(-pivot)$

Composite Transformation Matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -tx & -ty & 1 \end{pmatrix} \bullet \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \bullet \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ tx & ty & 1 \end{pmatrix}$$

 $-tx\cos\theta + ty\sin\theta - tx_{\sin}\theta - ty_{\cos}\theta$

 $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \bullet \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ tx & ty & 1 \end{bmatrix}$

cosθ	sinθ	0
-sin0	cosθ	0
-tx co <mark>sθ+ t</mark> y sinθ+tx	$-tx \sin\theta - ty \cos\theta + ty$	1

Q. Perform counter clockwise 45° rotation of

triangle A(2,3) B(5,5) C(4,3) about point (1, 1)

Composite Transformation Matrix

- Example
 - Perform 60° rotation of a point P(2, 5) about a pivot point (1,2). Find P'?

Composite Transformation Matrix

General Fixed-Point Scaling

Operation :-

- 1. Translate (fixed point is moved to origin)
- 2. Scale with respect to origin
- 3. Translate (fixed point is returned to original position)

T(fixed) • S(scale) • T(-fixed)

• Find the matrix that represents scaling of an object with respect to any fixed point?

Given P(6, 8), Sx = 2, Sy = 3 and fixed point (2, 2). Use that matrix to find P'?

Other transformations

Reflection: It is a transformation that produce mirror image of an object relative to an axis of reflection

Other transformations

Shear: Transformation that slant the shape of an object.

X shear: preserve the y coordinate but change x value which

causes vertical line to tilt right

$$\begin{bmatrix} 1 & 0 & 0 \\ sh_x & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Other transformations

y shear: preserve the x coordinate but change y value which causes horizontal line to transform in to lines which slope up or down

Inverse Transformation

- When we apply any transformation to point P(x,y), we get a new point (x', y').
- Sometimes it may require to get undo the applied transformation.
- In this case we have to get original point (x, y) from (x', y').
- This can be achieved by inverse transformation

- If the inverse of matrix T is T⁻¹ then, TT⁻¹=T⁻¹T=I, Identity matrix
- The elements of inverse matrix can be calculated from the elements of T as ,

 $t_{ij}^{-1} = [(-1)^{i+j} \det M_{ij}] / \det T$

Determinant of a 2 x 2 matrix is ;

det $\begin{array}{c|c} t_{11} & t_{12} \\ t_{21} & t_{22} \end{array}$ = $t_{11} t_{22} - t_{12} t_{21}$

• Inverse of homogeneous coordinate transformation matrix can be given as ,

$$\begin{pmatrix} a & d & 0 \\ b & e & 0 \\ c & f & 1 \end{pmatrix}^{-1} = 1 \qquad \begin{pmatrix} e & -d & 0 \\ -b & a & 0 \\ bf-ce & cd-af & ae-bd \end{pmatrix}$$