
2-D Clipping

2-D Clipping

 Clipping: The procedure that identifies the portions of a picture that are

either inside or outside of a specified region of space is referred to as

clipping.

 clipping window : The region against which an object is to be clipped is called

a clip window or clipping window.

 It is rectangular in shape.

 The clipping algorithm determines which points, lines or portions of

lines lie within the clipping window.

 These points, lines or portions of lines are retained for display.

 All others are discarded.

 Clipping algorithms can be applied in world coordinates, so that only

the content of the window interior are mapped to device coordinates

Type of Clipping

 Clipping algorithm have the following primitive types

 Point Clipping

 Line Clipping

 Polygon Clipping

Point Clipping :

 The points are said to be interior to the clipping window if

and

The equal sign indicates that points on the window boundary are included

with in the window.

Line Clipping

 First of all ,we have to test the given line segment.

 Lines that do not intersect the clipping window are either completely inside

the window or completely outside the window.

 A lines is said to be interior to the clipping window and hence visible if both

end points are interior to the window,

 If both end points of a line are completely to the right or, completely to the

left or, completely above, or completely below the window, then the line is

completely exterior to the window and hence invisible.

 If a line is not identified as a line completely inside or completely outside the

window, we have to perform intersection calculations with one or more

clipping boundary.

 To minimize the intersection calculations and to increase the efficiency of the

clipping algorithm, initially, completely visible and invisible lines are

identified and then intersection points are calculated for remaining lines.

P4 P2

P1P1

P2

P5 P6

P9

P10

P8

P7

P3

P6P’5

P’7

P’8

Before clipping After clipping

Cohen-Sutherland Line Clipping

 It is Developed by Dan Cohen and Ivan Sutherland.

 To speed up the processing this algorithm performs initial tests that reduce the

number of intersections that must be calculated.

 In this, the clipping process is divided into two phases:-

 Identify those lines which intersect the clipping window & need to be clipped.

 Perform the clipping.

 All lines fall into one of the following clipping categories:

 Visible- Both endpoints of the line lie within the window.

 Not visible- The line definitely lies outside the window.

 Clipping candidate- The line is in neither category 1 nor 2.

Cohen-Sutherland Line Clipping

 Assign a 4-bit code to each endpoint of

the line. The four bit codes are called

region codes or out codes. These

codes identify the location of a point

relative to the boundaries of the

clipping window.

The rightmost bit is the first bit & the

bits are set to 1 based on the following

scheme:-

Cohen-Sutherland Line Clipping

Set Bit 1 – if the end point is to the left of the window (0001)

Set Bit 2 – if the end point is to the right of the window (0010)

Set Bit 3 – if the end point is to the below of the window (0100)

Set Bit 4 – if the end point is to the above of the window (1000)

Otherwise, the bit is set to zero.

 Line is visible: If both region codes are 0000,

 Line not visible: If the bitwise logical AND of the codes is not 0000

 Line for clipping : If the bitwise logical AND of the region codes is 0000.

Example

 Consider the clipping window and the lines shown in the figure . Find the

region codes for each point and identify whether the line is completely

visible , partially visible or completely invisible.

P3

P4

P1

P2

P6

P9

P10

P8

P7

P5

P4

P1

P2

P5 P6

P9

P10

P8

P7

P3

P4

P1

P2

P5
P6

P9

P10

P8

P7

P3

1000

0001

0110

1001

0101 0100

1010

00100000

Fig .
Clipping window &

lines with region code

Fig .
Clipping window &

lines

line End Point code Logical

ANDing

Result

P1 P2 0000 0000 0000 Completely

visible

P3 P4 0001 0001 0001 Completely

Invisible

P5 P6 0001 0000 0000 Partially

visible

P7 P8 0100 0010 0000 Partially

visible

P9 P10 1000 0010 0000 Partially

visible

Cohen-Sutherland Line Clipping

 For a line in category 3 we proceed to find the intersection point of the line

with one of the boundaries of the clipping window

 The Sutherland – Cohen algorithm begins the clipping process for a

partially visible line by comparing an outside endpoint to a clipping

boundary to determine how much of the line can be discarded.

 Then the remaining part of the line is checked against the other boundaries,

and the process is continued until either the line is totally discarded or a

section is found inside the window.

Cohen-Sutherland Line Clipping

P1

P2

P1

P2 P2

P2 P’2

P’1 P’1

P’1 P’1

P’2

Cohen-Sutherland Line Clipping

 The intersection points with a clipping boundary can be calculated using the

slope-intercept form of the line equation.

 The equation of the line passing through points P1 (x1, y1) and P2 (x2, y2) is

y = m (x – x1) + y1 or

y = m (x –x2) + y2

where

(y2 – y1)

m = ------------

(x2 – x1)

 Therefore, the intersections with clipping boundaries of the

window are given as:

Left: xL, y = m (xL –x1) + y1; m ∞

Right: xR, y = m (xR –x1) + y1; m ∞

Top: yT, x = x1 + (1 / m) (yT – y1); m 0

Bottom: yB, x = x1 + (1 / m) (yB – y1); m 0

Cohen-Sutherland Line Clipping Algorithm

1. Read two end points of the line say P1(x1 , y1) P2(x2 , y2)

2. Read two corner(left top , right , bottom) of the window

(say Wx1 , Wy1 & Wx2 , Wy2)

3. Assign region code for two end points P1 & P2 using following

steps.

Initialize code with bit 0000

set bit 1 – if (x < Wx1)

set bit 2 – if (x > Wx2)

set bit 3 – if (y < Wy2)

set bit 4 – if (y > Wy1)

P1

P2

(Wx2 , Wy2)

(Wx1 , Wy1)

4. Check for visibility of line P1 P2

a) If region code for both end points P1 & P2 are zero then the line

is completely visible . Hence draw the line & go to step 9

b) If region code for both end points are not zero & logical ANDing

of them is also nonzero then the line is completely invisible so

reject the line & go to step 9

c) It region code for two end points do not satisfy the condition in

4 a) and 4 b) the line is partially visible

5. Determine the intersecting edge of clipping window by inspecting region code of

two endpoints

a) If the region code for both end points are nonzero find intersection point

P1, & P2, with boundary edges of clipping window with respect to point

P1 or P2 respectively

b) If the region code for any one end points is nonzero then find intersection

point P1, & P2, with boundary edges of clipping window with respect to it

6. Divide the line segment considering intersection point

7. Reject the lines segment if any one end point of it appears outside the clipping

window

8. Draw the remaining line segment

9. stop

EXAMPLES
Q Use Sutherland algo to clip to lines P1(40,15)-P2(75,45) , p3(70,20)-p4(100,10)against

window A(50,10)B(80,10),C(80,40),D(50,40) 10m

Q. Identify below given lines which are visible , rejected , clip when applied cohen-

sutherland algo for line clipping find new coordinates of clipped lines if any.

Lower left of window is (10 ,10)& upper right is (20 ,20)

 Line AB (12 , 18) (16 ,12)

 Line CD (13 ,15) (25 ,15)

 Line EF (12 ,4) (25 , 8)

 Line GH (8,13)(13,24)

 Line IJ(5,25),(25,25) 10m

Q. Discuss cohen-sutherland line clipping algo & its implementation issues

10m

EXAMPLES

 Explain sutherland-cohen line clipping algo ? Given clipping window

A(20,20),B(60,20),C(60,40),D(20,40)Using sutherland-cohen algo find visible portion of

line segment joining the points

P1(40,80),P2 (120,30) 10m

 Determine region code & clip the following line using cohen-sutherland algo windows

boundary are

 windows left corner =(100,100),

 upper right corner=(200,200),

 end points of the line are

1) A= (250,150),B=(260 ,180)

2) C=(150,50) D=(150,300)

3) E=(150,90) F=(300 ,110)

4) G=(70,170),H=(130,180) 10m

References:
Chap 6 : computer graphics by Donald

Chap 5: Windowing and clipping from computer graphics

by A.P.Godse

Chap 5 : computer graphics by zhigang xiang - schaum’s

Mid point subdivision algorithm:

 It repetitively subdividing line at its mid point.

 Initially line is tested for visibility. if line is completely visible it

is drawn & if it is completely invisible then it is rejected.

 If the line is partially visible then it is subdivided in two equal

parts . Then visibility test is applied to each half

 This subdivision process is repeated until we get completely

visible and completely invisible line segment

Mid point subdivision algorithm:

1. Read two end points of the line say P1(x1 , y1) P2(x2 , y2)

2. Read two corner(left top , right bottom) of the window

(say Wx1 , Wy1 & Wx2 , Wy2)

3. Assign region code for two end points P1 & P2 using following steps.

Initialize code with bit 0000

set bit 1 – if (x < Wx1)

set bit 2 – if (x > Wx2)

set bit 3 – if (y < Wy2)

set bit 4 – if (y > Wy1)

4. Check for visibility of line P1 P2

 If region code for both end points P1 & P2 are zero then the line is

completely visible . Hence draw the line & go to step 6

 If region code for both end points are not zero & logical ANDing of

them is also nonzero then the line is completely invisible so reject the

line & go to step 6

 It region code for two end points do not satisfy the condition in 4 a)

and 4 b) the line is partially visible

5. Divide the partially visible line segment in equal parts & repeat step 3

through 5 for both subdivided line segment until you get completely

visible and completely invisible line segment.

6. Stop

 Example :

Line clipping with midpoint subdivision

 Line P1 P2 is partially visible

 It is sub divided into 2 equal parts

P1 P3 & P3 P2 .both line segment tested for
visibility & found to

be partially visible .

P1

P2

P1

P2

P3

 so both line segments are

subdivided into two equal parts to

get midpoint P4 & P5

 Line segment P1 P4 and P5 P2

are completely invisible & hence

rejected

 Line segment P3 P5 is completely

visible hence draw

P1

P2

P3
P4

P5

P3
P4

P5

 Line P4 P3 is partially visible it is

subdivided to get midpoint P6

 Line segment P6 P3 is completely

visible & hence it is draw

P6

P3
P4

P5

P6

P5

Q Explain mid point subdivision algorithm. Prove that it work

successfully with lines that are partially inside and partially

outside the viewing window . 10m

Cyrus Beck algorithm:

 This algo applicable for arbitrary convex region

 It uses parametric equation of line segment to find

intersection point of a line with the

clipping edges.

 Parametric equation of line segment

from P1 P2 is,

P (t) = P1 + (P2 - P1) t 0<= t < =1

Where t is parameter t=0 at P1 and t=1 at P2

Consider a convex clipping region R , f is a boundary

point of convex region R & n is inner normal for one of its

boundaries

y

x

f

o

R

Boundary
point

Convex
region

Fig : convex region ,
boundary point
inner normal

 Using value of dot product n.[P(t) – f] as shown in figure.

 If . Product is negative n.[P(t) – f] < 0

Then vector P(t)-f is pointed away from interior of R

 If . Product is zero n.[P(t) – f] = 0

Then vector P(t)-f is pointed parallel to plane containing f

& perpendicular to the normal

 If . Product is positive n.[P(t) – f] > 0

Then vector P(t)-f is pointed towards the interior of R

f

P2

n

n

n.[P(t) – f] = 0

n

n.[P(t) – f] > 0

P1

n.[P(t) – f] < 0

Fig: Dot product of three point
inside outside & on boundary of
the clipping region

Cyrus Beck algorithm:

1. Read two end points of line say P1 & P2

2. Read vertex coordinate of the clipping window

3. Calculate D= P2 – P 1

4. Assign boundary point (f) with particular b edge

5. Find inner normal vector for corresponding edge

6. Calculate D.n and W= P1 – f

7. If D.n > 0

W . n
tL = --------

D . n
Else

W . n
tu = --------

D . n
end if

Cyrus Beck algorithm:

8. Repeat steps 4 through 7 for each edge of clipping window

9. Find maximum lower limit & minimum upper limit

10. If maximum lower limit & minimum upper limit do not satisfy condition

0 < = t <= 1 then ignore the line

8. Calculate intersecting point by substituting values of maximum lower limit &

minimum upper limit in parametric equation of line P1P2

9. Draw the line segment P (tL) to P (tU)

10. stop

Liang Barsky Line Clipping Algorithm

 It uses parametric equation

x=x1 + t ∆x

y=y1 + t ∆y 0<=t<=1

where ∆x = x2-x1

∆y = y2-y1

 Point clipping condition in parametric form can be given as

xwmin < = x1 + t ∆x <= xwmax &

ywmin < = y1 + t ∆y <= ywmax

 Liang Barsky express these 4 inequalities with two parameter p &

q as

t
Pi

< = q
i

i=1 ,2 ,3 4

 Where parameter p & q define as

p1 = - ∆x q1 = x1 - xwmin

p2 = ∆x q2 = xwmax - x1

p3= - ∆y q3 = y1 – ywmin

p4 = ∆y q4 = ywmax – y1

 If P1=0 : Line is parallel to left clipping boundary

 If P2=0 : Line is parallel to right clipping boundary

 If P3=0 : Line is parallel to bottom clipping boundary

 If P4=0 : Line is parallel to top clipping boundary

 If Pi=0 : Line is parallel to one of the clipping boundary corresponding

to value of i

 If qi<0 : Line is completely outside the boundary & can be eliminated

 If qi>=0 : Line is inside the clipping boundary

 If pi<0 : Line proceed from outside to inside of the clipping boundary

 If pi>0 : Line proceed from inside to outside of the clipping boundary

 For non zero values of Pi line cross the clipping boundary & we

have to find parameter t.
qi

t = -------- i = 1 , 2 3 4
pi

 This algo calculate two values of parameter t : t1 & t2 that

define part of line that lies within the clip rectangle

 Value of t1 is taken by checking the rectangle edge for which line

proceeds from outside to the inside (p < 0) t1 is taken as largest

value among various intersection values with all edges.

 Value of t2 is taken by checking the rectangle edge for which

line proceeds from inside to the outside (p > 0) t2 is taken

as minimum value

 If t1 > t2 the line is completely outside the clipping window

& it can rejected

 Otherwise values of t1 & t2 are substituted in parametric

equation to get end point of clipped line

Liang Barsky Line Clipping Algorithm

1. Read two end points of line P1 (X1 , Y1) & P2 (X2 , Y2)

2. Read two corner(left top , right bottom) of the window

(say Xwmin , Ywmax , Xwmax , Ywmin)

3. Calculate value of parameter p
i
& q

i
for i = 1 ,2 3 4

p1 = - ∆x q1 = x1 - xwmin

p2 = ∆x q2 = xwmax - x1

p3= - ∆y q3 = y1 – ywmin

p4 = ∆y q4 = ywmax – y1

4. If p
i

= 0 then

{

line is parallel to ith boundary

Now if q
i
< 0 then

{

Line is completely outside the boundary
hence discard the line segment & go to stop

}

Else

{

Check whether the line is horizontal or vertical & accordingly check
line end point with corresponding boundaries If line end point lie within the
bounded area then used them to draw line otherwise use boundary
coordinates to draw line. Go to stop.

}

}

5. Initialize values for t1 & t2 as t1= 0 & t2 = 1

6. Calculate values for q
i
/ p

i
for i= 1,2,3,4

7. Select values for q
i
/ p

i
where p

i
< 0 & assign maximum out of them

as t1

8. Select values for q
i
/ p

i
where p

i >
0 & assign minimum out of them

as t2

9. If(t1 < t2)

{

calculate the endpoints of the clipped line as follows

xx1 =x1 + t1 ∆x xx2 =x1 + t2 ∆x

yy1 =y1 + t1 ∆y yy2 =y1 + t2 ∆y

draw line (xx1, yy1 , xx2 , yy2)

}

10. stop

Text Clipping

Q . Write a note on text clipping 5m/ 8m

 There are three different method used for character or text

clipping.

1. All or none string clipping

2. All or none character clipping

3. Text clipping

All or none string clipping:
 If all the string is inside the clipped window we keep it otherwise the

string is discarded . This procedure is implemented by considering a

bounding rectangle around the text pattern the boundary position of

the rectangle are then compared to the window boundary & the string

is rejected if there is any overlapped this method gives fastest text

clipping.

STRING 2

STRING 1

Before clipping.

STRING 2

After clipping.

All or none character clipping:

 In this method we discard only those character that are not completely

inside the window Boundary limit of individual character is compared

to the window & character which either overlap or are outside a

window boundary are clipped

STRING 3

Before clipping. After clipping.

Text clipping:
 In this method either a part of character that is not

inside a window boundary or a character outside a

window boundary are clipped.

 We can treat character same as line. individual line

which forms the character are process by the line

clipping algorithm to clipped outside part of

overlapping character with clip window boundary

 When character are define by bit maps they are clip

by comparing relative position of individual pixel in

character grid pattern to th clipping boundaries

Before clipping.

After clipping.

