4 Water jug problem

Problem statement:

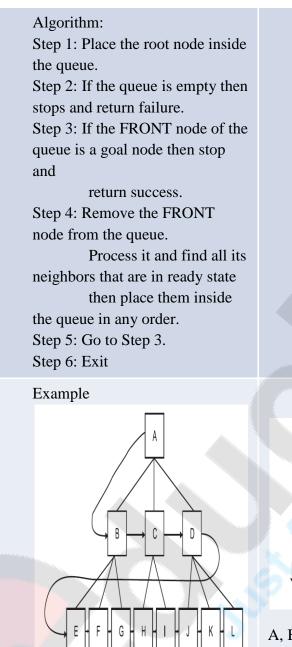
- Given two jugs, a 4-gallon and 3-gallon having no measuring markers on them. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of water into 4-gallon jug?
- Defining the problem as a state space search :
 - State space: State for this problem can be described as the set of ordered pairs of integers (X, Y) such that
 - X represents the number of gallons of water in 4-gallon jug and
 - Y for 3-gallon jug.
 - **Initial state**: Start state is (0,0)
 - Goal state: is (2, N) for any value of N
 - Action/ Rules: Following are the production rules for this problem

R1 :(X, Y X < 4)	\rightarrow	(4, Y)	{Fill 4-gallon jug}			
R2:(X, Y Y < 3)	\rightarrow	(X, 3)	{Fill 3-gallon jug}			
R3:(X, Y X > 0)	\rightarrow	(0, Y)	{Empty 4-gallon jug}			
R4:(X, Y Y > 0)	\rightarrow	(X, 0)	{Empty 3-gallon jug}			
R5:(X, Y X+Y >= 4 ∧ Y > 0) →(4, Y – (4 – X)) {Pour water from 3- gallon jug into 4-gallon						
			jug until 4-gallon jug is full}			
R6:(X, Y X+Y >= $3 \land X > 0$) \rightarrow (X - (3 - Y), 3) {Pour water from 4-gallon jug into 3-gallon jug until 3-gallon jug is full}						
R7:(X, Y X+Y <= 4 4-gallon jug }	·ΛY>	$0) \rightarrow (X+Y, 0)$	{Pour all water from 3-gallon jug into			
R8:(X, Y X+Y <= $3 \land X > 0$) \rightarrow (0, X+Y) {Pour all water from 4-gallon jug into 3-gallon jug }						
R9:(X, Y $X > 0$)		\rightarrow (X – D, Y)	{Pour some water D out from 4-gallon jug}			
R10:(X, Y Y > 0)		→ (X, Y - D)	{Pour some water D out from 3- gallon jug}			

Using appropriate control strategy production rules can be applied to get solution for • this problem as:

Number of Steps	Rules applied	4-g jug	3-g jug 0 Initial State
2	R2 {Fill 3-g jug}	0	3
3	R7{Pour all water from 3 to 4-g jug }	3	0
4	R2 {Fill 3-g jug}	3	3
5	R5 {Pour from 3 to 4-g jug until it is full}	4	2
6	R3 {Empty 4-gallon jug}	0	2
7	R7 {Pour all water from 3 to 4-g jug}	2	0 Goal State
FS vs DF S			

	7 K7 {1 our an water nom 5 to 4-g jug}						
4 BFS vs DFS							
	BFS	DFS					
	BFS traverse tree level wise	DFS traverse tree depth wise					
	No backtracking is required	DFS uses backtracking					
	Data structure used is queue(FIFO)	Data structure used is stack(LIFO)					
	BFS never gets trapped into infinite loop	DFS generally gets trapped into infinite loop					
	When succeeds, the goal node found is minimum depth	When succeeds, the goal node found is not necessarily minimum depth					
	Guarantees complete, optimal solution	Does not guarantee complete, optimal solution					
	Large tree may require excessive memory	Large tree may take excessive long time to find even a nearby goal node					



A, B, C, D, E, F, G, H, I, J, K, L

4 Hill climbing

Refer ppt

Algorithm:

Step 1: PUSH the starting node into the stack.

Step 2: If the stack is empty thenstops and return failure.Step 3: If the top node of the stack is

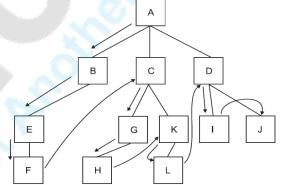
the goal node, then stop and return success.

Step 4: Else POP the top node from the stack and process it.

Find all its neighbors that are in ready state and PUSH them into the stack in any order

Step 5: Go to step 3. Step 6: Exit

Example:



A, B, E, F, C, G, H, K, L, D, I, J