
 Water jug problem

• Problem statement:

– Given two jugs, a 4-gallon and 3-gallon having no measuring markers on them. There is

a pump that can be used to fill the jugs with water. How can you get exactly 2 gallons of

water into 4-gallon jug?

 Defining the problem as a state space search :

– State space: State for this problem can be described as the set of ordered pairs of integers

(X, Y) such that

• X represents the number of gallons of water in 4-gallon jug and

• Y for 3-gallon jug.

– Initial state: Start state is (0,0)

– Goal state: is (2, N) for any value of N

– Action/ Rules: Following are the production rules for this problem

R1 :(X, Y | X < 4)  (4, Y) {Fill 4-gallon jug}

R2:(X, Y | Y < 3)  (X, 3) {Fill 3-gallon jug}

R3:(X, Y | X > 0)  (0, Y) {Empty 4-gallon jug}

R4:(X, Y | Y > 0)  (X, 0) {Empty 3-gallon jug}

R5:(X, Y | X+Y >= 4  Y > 0) (4, Y – (4 – X)) {Pour water from 3- gallon jug into 4-gallon

 jug until 4-gallon jug is full}

R6:(X, Y | X+Y >= 3  X > 0) (X – (3 – Y), 3) {Pour water from 4-gallon jug into

3-gallon jug until 3-gallon jug is full}

R7:(X, Y | X+Y <= 4  Y > 0) (X+Y, 0) {Pour all water from 3-gallon jug into

4-gallon jug }

R8:(X, Y | X+Y <= 3  X > 0) (0, X+Y) {Pour all water from 4-gallon jug into 3-

gallon jug }

R9:(X, Y | X > 0) (X – D, Y) {Pour some water D out from 4-gallon jug}

R10:(X, Y | Y > 0) (X, Y - D) {Pour some water D out from 3- gallon jug}

 Using appropriate control strategy production rules can be applied to get solution for

this problem as:

Number Rules applied 4-g 3-g

of Steps jug jug

1 0 0 Initial State

2 R2 {Fill 3-g jug} 0 3

3 R7{Pour all water from 3 to 4-g jug } 3 0

4 R2 {Fill 3-g jug} 3 3

5 R5 {Pour from 3 to 4-g jug until it is full} 4 2

6 R3 {Empty 4-gallon jug} 0 2

7 R7 {Pour all water from 3 to 4-g jug} Goal State

 BFS vs DFS

BFS DFS

BFS traverse tree level wise DFS traverse tree depth wise

No backtracking is required DFS uses backtracking

Data structure used is

queue(FIFO)

Data structure used is stack(LIFO)

BFS never gets trapped into

infinite loop

DFS generally gets trapped into

infinite loop

When succeeds, the goal node

found is minimum depth

When succeeds, the goal node found

is not necessarily minimum depth

Guarantees complete, optimal

solution

Does not guarantee complete,

optimal solution

Large tree may require excessive

memory

Large tree may take excessive long

time to find even a nearby goal node

2 0

00 0

Algorithm:

Step 1: Place the root node inside

the queue.

Step 2: If the queue is empty then

stops and return failure.

Step 3: If the FRONT node of the

queue is a goal node then stop

and

 return success.

Step 4: Remove the FRONT

node from the queue.

 Process it and find all its

neighbors that are in ready state

 then place them inside

the queue in any order.

Step 5: Go to Step 3.

Step 6: Exit

Algorithm:

Step 1: PUSH the starting node into

the stack.

Step 2: If the stack is empty then

stops and return failure.

Step 3: If the top node of the stack is

the goal node, then stop and

 return success.

Step 4: Else POP the top node from

the stack and process it.

 Find all its neighbors that are

in ready state and PUSH them

 into the stack in any order

Step 5: Go to step 3.

Step 6: Exit

Example

A, B, C, D, E, F, G, H, I, J, K, L

Example:

A, B, E, F, C, G, H, K, L, D, I, J

 Hill climbing

Refer ppt

