
Flowchart for genetic algorithm

Genetic Algorithm vs. Traditional Algorithms

Genetic Algorithm	Traditional Algorithm
GAs operate with coded versions of the	Traditional algorithms directly work on
problem parameters rather than	parameters(points) without coding
parameter themselves i.e. GA works	
with the coding of solution set and not	
with the solution itself	
GAs operate on a whole population of	Almost all traditional algorithms search
points i.e. GA uses population of	from a single point
solutions rather than a single solution	
for searching	
Usually, the size of the population is in	Majority of traditional optimization
the range from 20 to 200 or 300 in the	methods explores 1, 2, or 3 points in the
search space on each iteration	search space on each iteration
GA uses fitness function for evaluation	Traditional algorithms work on derivatives
rather than derivatives	
GAs use probabilistic transition	Traditional algorithms for continuous
operates i.e. GAs do not use	optimization apply deterministic transition
deterministic rules	operates
GA improves the chance of reaching	Traditional algorithms reach the local
the global optimum	optimum
GA is robust	
	TA is not robust
GA helps in avoiding local stationary	TA doesn't avoid local stationary point
point	
In GAs previously found good	TA doesn't use any reproduction, crossover
information is emphasized using	or mutation operators
reproduction operator and propagated	
adaptively through crossover and	
mutation operators	TA people auxiliary information
GA does not require any auxiliary	TA needs auxiliary information
information except the objective function values	
Tunction values	