
Simple GA 
 

1. Start with a randomly generated population 
2. Calculate the fitness of each chromosome in the population 
3. Repeat the following steps until n offspring have been created 

a. Select a pair of parent chromosomes from the current population 
b. With probability pc crossover the pair at a randomly chosen point to from 

two offspring 
c. Mutate the two offspring at each locus with probability pm 

4. Replace the current population with the new population 
5. Go to step 2 

 Steps in each iteration 
1. Selection  

a. Selects individual for reproduction 
b. Selection is done randomly 
c. Considers probability depending on the relative fitness of the individual 
d. Best ones are often chosen for reproduction rather than poor ones  

2. Reproduction 
a. Offspring are bred by selected individuals 
b. To generate new chromosomes, algorithm can use both recombination 

and mutation 
3.  Evaluation 

a. Fitness of new chromosomes is evaluated 
4.  Replacement 

a. Individuals from the old populations are killed  
b. Replaced by new ones 

 Algorithm is stopped when population converges towards optimal solution 
 

 Simple GA 
BEGIN 
  Generate initial population; 
  Compute fitness of each individual; 
  WHILE NOT finished DO LOOP 
     BEGIN 
       Select individuals from old generations 
         For mating; 
       Create offspring by applying recombination and/or mutation to the selected 

individuals; 
       Compute fitness of new individuals; 
        Kill old individuals to make room for new chromosomes and 
          insert offspring in the new generalization; 
         IF Population has converged 
           THEN finishes: =TRUE; 
       END 
 END 



 

General Genetic Algorithm 
 

Step 1: Create a random initial state 
o An initial population is created from a random selection of solutions 
o In symbolic AI systems, initial state in a problem is already given 

 

Step 2: Evaluate fitness 
o A value for fitness is assigned to each solution 
o It depends on how close it is to solving problem 

 

Step 3: Reproduce  
o Those  chromosomes with a higher fitness value are more likely to reproduce 

offspring 
o Offspring is a product of the father and mother 

 

Step 4: Next generation 
o If new generation contains a solution that produces desired output then 

problem is solved 
o Else new generation will go through same process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Operators in GA 
 Encoding  

• It is a process of representing individual genes 

• It can be performed using  
o Bits 
o Numbers 
o Trees 
o Arrays 
o Lists 

 
Representation 
Chromosomes could be: 

 Bit strings        (0101 ... 1100) 
 Real numbers   (43.2 -33.1 ... 0.0 89.2)  
 Permutations of element  (E11 E3 E7 ... E1 E15) 
 Lists of rules           (R1 R2 R3 ... R22 R23) 
 Program elements   (genetic programming) 
 ... any data structure ... 

 

 Binary Encoding 
o Each chromosome encodes a binary string 
o Each bit in the string can represent some characteristics of solution 
o It is not natural for many problems 
o Sometimes corrections must be made after generic operation is completed 

 Octal Encoding 
o Uses string made up of octal numbers(0-7) 

 Hexadecimal Encoding 
o It uses string made up of hexadecimal numbers(0-9, A-F) 

 Permutation Encoding 
o Every chromosome is a string of numbers, represented in a sequence 
o It is only useful for ordering problems 
o Sometimes corrections have to be done after generic operation is complete 

 Value Encoding 
o Every chromosome is a string of values  
o Values can be anything connected to the problem 
o It produces best results for some special problems 
o It is often necessary to develop new genetic operators specific to the problem 
o Direct value encoding can be used in problems, where some complicated 

values, such as real numbers are used 

 Tree Encoding 
o It is mostly used for genetic programming 
o Every chromosome is a tree of some objects such as functions and commands of 

a programming language 



Chromosome 1

Chromosome 2

03467216

15723314

Chromosome 1

Chromosome 2

1 1 0 1 0 0 0 1 1 0 1 0

0 1 1 1 1 1 1 1 1 1 0 0

Binary Encoding

Octal encoding

Chromosome 1

Chromosome 2

9CE7

3DBA

Hexadecimal Encoding

 

 

  



Chromosome A

Chromosome B

Chromosome C

1.2324 5.3243 0.4556 2.3293 2.4545

ABDJEIFJDHDIERJFDLDFLFEGT

(back), (back), (right), (forward), (left)

Chromosome A

Chromosome B

1 5 3 2 6 4 7 9 8

8 5 6 7 2 3 1 4 9

Value Encoding

Permutation Encoding

  



 

 Selection/Reproduction 
 It is a process of choosing two parents from population for crossing 

 Two types 
o Proportionate-based selection- selection based upon their fitness values 

relative to the fitness of other individuals in the population 
o Ordinal-based selection- selection based upon their rank within population 

 The purpose of selection is to emphasize fitter individuals in the population in 
hopes that their offspring have higher fitness 

 Chromosomes are selected from population to be parents for reproduction 
 
 

 

Selection/Reproduction

Mating 

Pool

Two best 

individuals

New 

population

 
 
 
 
 



 Roulette Wheel selection 
 It is a linear search through a Roulette wheel  

 Slots in the wheel weighted in the proportion to the individual’s fitness values 

 Target value is set 

 Target value is a random proportion of sum of the fitnesses in the population 

 Population is stepped through until target value is reached 
 
 
 
 
 

Example 

Chromosome                                 Fitness

A: 00000110                                       2

B: 11101110                                       6

C: 00100000                                       1

D: 00110100                                       3

Fitness function= number of 1 bits in chromosome

A

C

D

B

 
 
 
 
 
 
 
 
 



 Random Selection 

• It randomly selects a parent from the population 

• It is little more disruptive, on average, than Roulette wheel selection 
 Rank Selection 

• It ranks the population 

• Every chromosome receives fitness from the ranking 

• The worst has fitness 1 

• Best has fitness N 

• It preserves diversity and hence is a successful search 

•  It can be achieved in two ways as  
1.  

o Select a pair of individuals at random 
o Generate random number R between 0, 1 
o r is a parameter 
o If R<r first individual is a parent 
o If R>r second individual is a parent 
o Repeat to select second parent 

2.  
o Select to individual at random 
o One with highest evaluation becomes parent 
o Repeat to find second parent 

 Tournament Selection 
o Provides selective pressure by holding a tournament competition among N 

individuals 
o Winner is one with highest fitness 
o Tournament and winner are inserted into mating pool 
o Competition is repeated until mating pool for generating new offspring is filled  
o The mating pool comprising the tournament winner has higher average 

population fitness 
o The fitness difference provides the selection pressure 
o This method is more efficient and leads to an optimal solution 

 Boltzmann Selection 
o A continuously varying temperature controls rate of selection according to 

preset schedule 
o The temperature starts out high, which means that the selection pressure is 

low 
o Temperature is gradually lowered, which gradually increases the selection 

pressure 
o Probability based 
o Probability that best string is selected and introduced into mating pool is very 

high 
o Few best chromosomes are copied to new population 



o Remaining individuals can be lost if they are not selected to reproduce or if 
crossover or mutation destroys them 

o It significantly improves GA’s performance 

 Stochastic Universal sampling 
o It provides 0 bias 
o Individuals are mapped to contiguous segments of a line 
o Each individual’s segment is equal in size to its fitness 
o Equally spaced pointers are placed over line 
o Number of pointers same as number of individuals to be selected(N) 
o Distance between two pointers are 1/N Pointer 
o Position of first pointer is given by random number in the range [0, 1/N Pointer] 

 
 
 

 For 6 individuals to be selected, the distance between 

the pointers is 1/6=0.167

 Select any Random number in the range [0, 0.167] as 

first position of pointer         0.1

 After selection the mating population consists of the 

individuals : 1,2,3,4,6,8

Stochastic Universal 

sampling-Example

0.0 0.820.18 0.34 0.49 0.62 0.73 0.95 1.0

Random number

Individual 

Pointer 1 Pointer 3 Pointer 3 Pointer 4 Pointer 5 Pointer 6

1 1098765432

 
 
 



 Crossover  

• It is a process of taking 2 parents and producing child from them 

• Steps  

o Reproduction operator selects at random a pair of 2 parents 

o A cross site is selected 

o Position values are swapped between two strings 
 
 
 
 

Crossover 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Single –Point Crossover 
o Traditional GA uses single-point crossover 
o 2 mating chromosomes are cut once at corresponding points 
o Sections after cuts are exchanged 
o Crossover point can be chosen randomly 

 

 Two –Point Crossover 

o It chooses 2 crossover points 

o Contents between these 2 points are exchanged 
 
 
 
 

Single –Point Crossover

Two –Point Crossover

 
 
 
 
 



 
 

 Multipoint Crossover/N-Point Crossover 

o Choose n random crossover points 

o  Split along those points 

o  Swap alternating segments to get new off-springs 

o Generalization of 1 point (still some positional bias) 
 
 

Multipoint Crossover/N-Point 

Crossover

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 Uniform Crossover 
 

o For each pair of parents, Binary Crossover mask is generated randomly 

o Length of mask is same as parent chromosomes 

o For every 1 in the crossover mask, gene is copied from first parent 

o For every 0 in the crossover mask, gene is copied from the second parent  

o Make an inverse copy of the gene for the second child 
 
 
 
 

Uniform Crossover

 
 
 
 



 
 

 Three –Parent Crossover 

o Three parents are randomly chosen 

o Each bit of first parent is compared with bit of second parent 

o If both are same, bit is taken for offspring 

o Else bit from third parent is taken for the offspring 
 
 

Three –Parent Crossover

1 1 0 1 0 0 0 1

0 1 1 0 1 0 0 1

0 1 1 0 1 1 0 0

0 1 1 0 1 0 0 1

Parent 1

Parent 2

Parent 3

Child

 
 
 

 Crossover with Reduced Surrogate 

o It restricts the location of crossover points 

o Crossover points only occur where gene values differ 

 Shuffle Crossover 

o It is related to uniform crossover 

o A single crossover position is selected 

o Variables are randomly shuffled in both the parents before they are swapped 



o Variables in offspring are unshuffled 

o This removes positional bias 

 Precedence Preservative Crossover(PPX) 
o It was developed for vehicle routing problems by Blanton and Wainwright(1993) 
o Precedence relations of operations are given in 2 parental permutations 
o Operator passes on theses relations to one offspring at the same rate 
o No new precedence relations are introduced 
o The operator works as follows: 

1. A vector representing the number of operations involved in problem is 
randomly filled with elements of the set {1,2} 

2. This vector defines the order in which operations are successively drawn 
from parent 1 and parent 2 

3. Parent and offspring permutations can be considered as lists 
4. Initialize an empty offspring 
5. Leftmost operation in one of 2 parents is selected in accordance with the 

order of parents given in vector 
6. After operation is selected, it is deleted in both parents 
7. Selected operation is appended to the offspring 
8. Step 7 is repeated until both parents are empty and offspring is filled  

 
  

Precedence Preservative 

Crossover(PPX)

A B C D E F

C A B F D E

1 2 1 1 2 2

A C B D F E

Parent permutation 1

Parent permutation  2

Vector

Offspring  permutation 

 
 



 
 
 

 Ordered Crossover 
o It is used when problem is order based 
o 2 random crossover points are selected 
o These points partition parent chromosomes into left, middle and right portions 
o Child inherits its left and right section from parent 1 
o Its middle section is determined by genes in middle section of parent 1 in the 

order in which values appear in parent 2 
 
 

Ordered Crossover

4 2 3 1 6 5

2 3 1 4 5 6

4 2 1 3 6 5

2 3 4 1 5 6

Parent 1

Parent 2

Child 1

Child 2

 
 
 
 

 Partially Matched Crossover(PMX) 
o It is applied in TSP 
o TSP chromosomes are simply sequences of integers 
o Each integer represents different city 
o Order represents time at which a city visited 
o PMX proceeds as follows 
o 2 chromosomes are aligned 
o 2 crossing sites are selected uniformly at random 
o Matching section is used to effect a cross through position by position exchange 

operation 



o Alleles are moved to their new positions in offspring 
 
 

Partially Matched Crossover(PMX)

 
 
 
 
 

 Crossover Probability 
o It is a parameter that describes how often crossover will be performed 
o If there is a crossover, offspring are made from parts of both parents’ 

chromosome 
o If pc is 100%, all offspring are made by crossover 
o If pc is 0%, all offspring are made from exact copies of chromosomes from old 

population 
 

 Mutation  
o Mutation is performed after crossover 
o It recovers the lost genetic material 
o It is an insurance policy against loss of genetic material 
o Background operator to maintain genetic diversity in the population 
o Different mutation forms for different representation 

 Mutation of bit 
1. Flipping 
2. Interchanging 
3. Reversing 

 
 
 



 Flipping  

• It changes 0 to 1 and 1 to 0 based on a mutation chromosome generated 
 
 

Flipping 

1 0 1 1 0 1 0 1

1 0 0 0 1 0 0 1

0 0 1 1 1 1 0 0

Parent

Mutation chromosome

Child

 
 
 
 
 

 Interchanging  

• Two random positions of string are chosen 

• Bits corresponding to those positions are interchanged 

 Reversing  

• A random position is chosen 

• Bits next to that position are reversed 

 Mutation Probability 

• Pm decides how often parts of chromosome will be mutated 

• If Pm is 100%, whole chromosome is changed 

• If Pm is 0%, nothing is changed 

• Mutation should not occur very often as GA will change to random search 
 
 



 
 
 
 

Interchanging 

1 0 1 1 0 1 0 1Parent

Child 1 1 1 1 0 0 0 0

Reversing 
1 0 1 1 0 0 1 1Parent

1 1 1 1 0 1 1 0Child

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 Replacement Schemes 

 Generational replacement 
o  Entire population is replaced each generation 
o  Non-overlapping population 

 

 Steady state replacement 
o  Single individual (worst, random) is replaced by  
o  One offspring 
o  Overlapping population 

 
 

Generational replacement

10010

01001

11001

Selection

Crossover

Mutation

10111

01000

01011

Steady state replacement

10010

01001

11001

Selection

Crossover

Mutation

10010

01001

11001

01110

 
 
 
 
 
 
 
 



 

Example 

 Maximize function 

where x is permitted to vary between 0 and 31

2)( xxf 

 
 
 
 
 
 



Example

String 

no.

Initial 

popul

ation

x fitness Prob Perce

ntage 

prob

Expec

ted 

count

Actual 

count

1

2

3

4

01100

11001

00101

10011

12

25

5

19

144

625

25

361

0.1247

0.5411

0.0216

0.3126

12.47

54.11

2.16

31.26

0.4987

2.1645

0.0866

1.2502

1

2

0

1

Sum

Avg.

Max.

1155

288.75

625

1

0.2500

0.5411

100

25

54.11

4

1

2.1645

4

1

2

Initial population is of size 4 (randomly chosen)

Evaluate fitness function i.e. 2)( xxf 

 
 
 

 Selection using Roulette wheel

Example

54.11%

12.47%

31.26%

2.16%

1

4

3

2

 
 



 
 
 
 
 

 Crossover 

Example 

String no. Mating 

pool

Cross

over 

point

Offspring 

after 

crossover

X Fitness 

value

1

2

3

4

01100

11001

11001

10011

4

4

2

2

01101

11000

11011

10001

13

24

27

17

169

576

729

289

Sum

Avg.

Max.

1763

440.75

729

 
 
 



Example

 Mutation

 From the tables, it can be observed that after mutation at 

random, a new offspring (11101) is produced which is an 

excellent choice 

String 

no.

Offspring 

after 

crossover

Mutation 

chromosomes

For flipping 

Offspring 

after 

mutation

X Fitness 

value

1

2

3

4

01101

11000

11011

10001

10000

00000

00000

00100

11101

11000

11011

10100

29

24

27

20

841

576

729

400

Sum

Avg.

Max.

2546

636.5

841

 
 
 
 
 
 


