duclash

Just Another Way To Learn

Distributed Computing

Synchronization

FB/IG/TW: @educlashco

Synchronisation and Communication

UAn important consideration in distributed systems is how processes cooperate and
synchronize with each other.

UThe correct behaviour of a concurrent program depends on synchronisation and
communication between its processes.

QSynchronisation: the satisfaction of constraints on the interleaving of the actions of
processes (e.g. an action by one process only occurring after an action by another).

L Communication: the passing of information from one process to another.

* Concepts are linked since communication requires synchronisation, and
synchronisation can be considered as content less communication.

e Data communication is usually based upon either shared variables or
message passing.

* Rules for enforcing correct interaction=>synchronization mechanism

Issues of synchronization

* Clock synchronization
* Event ordering

* Mutual exclusion

* Deadlock handling

* Election algorithms

Issues of synchronization contd..

*Clock synchronization

"|ntroduction

®Clocks synchronization in distributed system
" Drifting of clocks

= Types of clock synchronization

®Clock synchronization algorithms

Issues of synchronization contd..

Introduction
® |n a non-distributed system, time is unambiguous.

— When a process needs to know the time it makes a system call and the kernel
returns the time maintained by the hardware.

= When multiple CPUS are present in a distributed system we can not count on all
clocks running at exactly the same rate. (cpu utilization time, on _line reservation
etc)

= Even if all clocks are initialized to exactly the same time at exactly the same
instance, over time the clocks will differ — Due to clock skew because not all
timers are exact.

= |f it is not possible to synchronize all clocks in a distributed system to produce a
single, unambiguous time standard, then can it be permissible to have
distributed processes agree on a consistent view of logical time?

Implementation of computer clocks

L Components of a computer clock
® Quartz crystal
= Counter register
» Constant register (based on the freq. of oscillation of the quartz crystal e.g; 60)
L Drifting of clocks
the rate at which two clocks differ (10 raised to -6)
- Cp(t) =t forall p,t.
where
C - time value of clock p
t — real time
- a clock is non-faulty if —

(1-g<= dC/dt <=1+q)
where g is max drift rate allowable

Clocks should be resynchronized periodically by del/2q
del =specified constt
Clock skew =diff. in time values of the two clocks

Drifting of clocks

dC/dt=1

»
»

dC/de>1

Clock time

Real time

FB/IG/TW: @educlashco

Types of clock synchronization in D.S

 Synchronization with real-time clocks (external) : are
internally synchronized, converse is not true

- UTC (coordinated universal time) is used as international
std.comparison with radio, satellite etc.

- used for real-time applications.

* Mutual Synchronization of clocks of different nodes of
system (internal)

- used across all nodes in distributed system for distributed
activities.

Clock synchronization issues

 Max allowable time difference (del)

 Clock skew (difference in time between two clocks) < del

* Unpredictable communication delays

* Time must never run backwards (repetition of certain operations)
e Readjust the time gradually and not at once

»Introduce the Interrupt routine

Clock synchronization algorithms
Centralized

* Time server node

* Passive time server centralized algo : server responds to requests from
other nodes periodically (<del/2q)

clock readjusted =T+(T1-T0-1)/2

* Active time server centralized algo : time server broadcasts time
periodically , clock readjusted =T+Ta; drawback is that it is not fault
tolerant (in case broadcast msg. is received late)

Drawbacks of centralized clock synchronization algorithms

 Single point of failure, unreliable
* Scalability
Hence distributed algos

10

Clock synchronization algorithms

Centralized contd..

Cristian's Algorithm

Both Tg and T1 are measured W|th the same clock

l, Interrupt handling time

Getting the current time from a time server.

Client sends a
request for a time
to the server.

Server will send a
message with
time T.

Client will
readjusted its
clock with
T+(T1-TO)/2.

With interrupt
time as T+ (T1-
TO-1)/2.

11

Clock synchronization algorithms
Distributed

* Global averaging distributed algorithm

= Each node broadcast its local clock time = TO+iR where TO is fixed time
agreed upon by nodes is a system, R is a parameter such as no. of
nodes, max drift rate, as a “resync” message.

" The clock process collects all resync messages.
" |t records the time,according to its own clock..

= At the end of waiting period,the clock process estimates the skew of its
clock with respect to each of the nodes.

" |t then computes a fault tolerant average of estimated skews and uses
it to correct the local clock.

= N/W traffic and broadcast facility are the issues

12

Clock synchronization algorithms Distributed
contd..

Localized averaging distributed algorithm

"The nodes of a distributed system are logically
arranged in some kind of pattern, such as a ring or
a grid.

="Each node exchanges its clock time with its
neighbors in the ring.

=Sets the local time as average of its own and
neighbor clock times.

13

Clock synchronization algorithms Distributed
Algorithm — Averaging Algorithm

' TO ' TO +R : TO +2R ' TO +2R
Node 1 i ; | ;
’ 3_time=30
Node 2 i
N1_tme31 N3 time=30
N2_time=32
Node 3 i

sAssumption: R is large enough to wait for all broadcast messages
=All hodes broadcast their time periodically
sEach node computes average.
sImprovement:
sDiscard outlying time messages.
sExchange their time with their local neighbors.

FB/IG/TW: @educlashco 14

Event ordering

e Lamport (1978) showed that clock synchronization
need not be absolute.

e |f two processes do not interact, it is not necessary
that their clocks be synchronized because the lack of
synchronization would not be observable.

e Lamport realized that it is not important that all
processes agree on time, but rather, that they agree on
the order in which events occur.

15

Event ordering contd..

(JHappened-Before Relation

= conditions are —

1. If a and b are events in the same process and a occurs before b, then a
b.

2. If a is the event of sending a message by one process and b is the event
of the receipt of the same message by another process, then

a —b—ftaw of causality, sender to receiver is always positive)
3.1fa bandb ¢ then

4 cana a be true (transitive relation)
—

= Concurrent events : happened in two diff processes which are not related
= not related by the happened-before relation.

16

Event ordering contd..

Space-time diagram

A A A
. / e32
e24
el3 e23
e31
. el2 e22
Time
el
ell
10 €20 e30
P2 P3
P1

Vertical lines = process
dots =event

Msg transfer, concurrent process ?

17

Event ordering contd..

* Logical clock

» To determine which event happened first, we need either common clock
or set of perfectly synchronous clocks.

" Lamport provide a solution with timestamp for each event.

= Each process Pi has a clock Ci associated with it that assigns a number
Ci(a) to any event a in that process.

= C(b) = Cj(b) if b is an event in process Pj.

= The time stamps assigned to the events by the system of logical clocks
must satisfy clock condition

fortwoeventsa&bifa b,themrC(a)<C(b)

18

Event ordering contd..

* Implementation of logical clocks

= C1:if a and b are two events within the same process Pi and a occurs before
b,then Ci(a)<Ci(b).

= C2:if ais the sending of a message by process Pi and b is the receipt of that
message by process Pj, then Ci(a)<Cj(b).

= C3: A clock Ci associated with a process Pi must always go forward, never
backward, i.e. corrections to time of a logical clock must always be made by
adding a positive value to the clock, never by subtracting value.

= |R1: each process Pi increments Ci between any two successive events.=>cl

= |R2: if event a is the sending of a message m by process Pi, the message m
contains a timestamp Tm=Ci(a), and upon receiving the message m a process Pj
sets Cj greater than or equal to its present value but greater than Tm=>c2

example given in the next slide

19

Event ordering contd..

* Implementation of logical clocks.. by using counters
= The counters are initialized to zero.
= |ncrements the counter when an event occurs.

= |f the event is sending of a message,the process includes
the incremented value of the counter in the message.

" |f it is receiving a message,a check to see if the
incremented counter <= timestamp in the received
message. If so it is corrected to 1+ timestamp otherwise let it
be as it is.

20

Event ordering contd..

C1=8 €08 | timestamp =6 4
1\
4 C1=6 el4 C2=6
Cles ypel3 C2=] 5 since 3 < timestamp 4
1= /
Time Cl1=4 e04. timestamp =4
e03
€02 e12 272
Ci=1 e01 e11 271
C1=0 P C2=0

P2
Implementation of logical clocks.. by using counters

21

Event ordering contd..

* Implementation of logical clocks.. by using physical
clocks

= Each process has a physical clock.
=" The ticks may be different for physical clocks.

= A message sending event send the message and its current
physical time.

= A message receiving event check its current physical time.

" |f it is less than time included in the message,it is corrected
by receiving time +1.

22

Event ordering contd..

e08

time

el1

Phy. clock times if no

Phy. clock times after

corrections were made

L

120

Time stamp =60

60

10

0

Pl

corrections if any

Time stamp =85

P2

96 |101
80 |93
56 |61
16
8
0

Implementation of logical clocks.. by using physical clocks

23

eld

el3

ell

Total ordering of events

* If two events of two different processes, have the
same timestamps, then Lamport proposed total
ordering of processes.

* Process identity numbers may be used to break
ties.

For ex. the time stamps of A & B are
A=100.001, B=100.002 if

process id of A & Bare 001 002 resp

24

Mutual exclusion

e Several resources in a system should not be used simultaneously by
multiple processes.

for ex. File, tape drive ,printer etc.
e Exclusive access to such a shared resource by a process must be ensured.

e This exclusiveness of access is called mutual exclusion between
processes.

e Means to prevent processes from executing concurrently within their
associated critical sections.

e An algorithm must satisfy two requirements for M.E.-
» 1. Mutual exclusion (acquire, use release)

» 2. No starvation (req . eventually granted)

25

Mutual exclusion Contd...

* Mutual Exclusion : exclusiveness of access e.g updation of a file

— Systems that involve multiple process often utilize critical regions (sections of a prog.
that need exclusive access to shared recourses).

— When a process has to read or update certain shared structures it
e Enters a critical section

e Performs its operation

e Leaves the critical section

- —We use special constructs to serialize access to critical sections
(semaphores, monitors, ... for single processor sys.)

« Most of the techniques that we know do not support distributed systems
because there is no single shared memory image.

e Need new techniques to achieve mutual exclusion
— Centralized and distributed techniques.

26

Mutual exclusion Centralized approach (for entering

the critical section)

Initial status

Initial
status

Status
after 3

Status

v

after 4

P1 - Pc)
1
Where P1,P2,P3 - prqces;g_/‘

Pc- coordinator process

1-request,2-reply,3-request,4-request, 5-
release
6-reply,7-release,8-reply,9-release

Mutual exclusion

No starvation

But a single point of failure

Status
after 5

Status
after 7

RRR

P2

P3 P2

P3

Status of request queue

27

Mutual exclusion
Centralized approach contd..

Simulate how mutual exclusion is performed in a shared memory
system.

e One process acts as a coordinator.

e Coordinator maintains a queue of requests for access to a critical
section

e All processes send a message to the coordinator specifying the
critical region that it wants to enter.

e The coordinator either grants permission to the requesting process

or queues the request if another process is using the critical section.

e When a process exits the critical section it sends a message to the
coordinator.

e The coordinator now grants permission to the next process in the
request queue, if any exists.

28

Mutual exclusion
Centralized approach contd..

Algorithm guarantees mutual exclusion.
e Algorithm is fair (FIFO ordering)
e Algorithm is easy to implement
— RPC'’s
— Message Passing
— Need 3 messages: Request, Grant, Release
e The coordinator is a single point of failure.
e |f the coordinator crashes the entire system will go down.

e Process can not tell the difference between a request denied (blocking)
and a dead coordinator. (elect a new coordinator and build up a new status req
gueue)

e A single coordinator may become a performance bottleneck .

29

Mutual Exclusion:
A Centralized Algorithm

o) () (o () (2) (o) (1) (2)

Request Release

OK

Request iT % OK
No reply

e p :

Coordinator

(@) () (c)

Process 1 asks the coordinator for permission to enter a critical region.
Permission is granted

Process 2 then asks permission to enter the same critical region. The

coordinator does not reply.

When process 1 exits the critical region, it tells the coordinator, which

then replies to 2

30

Mutual Exclusion
Distributed Approach

(A) P1 and P2 send request messages
(B) P4 is in critical section.
TS=6

OK
-

TS= TS=4 K
Already in
critical section (C) P4 eX|ts from critical section.

(D) P2 exits from critical section.
Exit from

Enter ‘ < OK ritical section
critical ‘

section

Enter critical section

Exit fro

‘ critical section

FB/IG/TW: @educlashco 31

Mutual Exclusion

Distributed Approach contd..

pid c¢s name time stamp

! Drawbacks

= Mutual exclusion
= No starvation
= Deadlock free

Fault intolerant messages (n pts of

failure)

Sol:permission denied message

= Expensive cost: 2(n-1)

= Suitable for a small group

of cooperating processes

FB/IG/TW: @educlashco

Fixed member
processes

32

A Distributed Algorithm

Enters
critical
region

o

0 0
oK OK OK
S —. *—. Enters
. 2 w @ critical
OK

region
12
(b) (©)

Two processes want to enter the same critical region
at the same moment.
Process 0 has the lowest timestamp, so it wins.

When process 0O is done, it sends an OK also, so 2 can
now enter the critical region.

33

Mutual Exclusion
Token Ring Algorithm

Mutual
exclusion

=No starvation

PPPPPPPTET

Process failure :
ack.to the neighbor

Lost token: monitor (=) (b)
(c)
An unordered group of processes on a network.

A logical ring constructed in software.(clockwise
or anticlockwise)

Monitor is elected for "who has he token”

34

Comparison

. Messages per Delay before entry
Algorithm entry/exit (in message times) Problems
Centralized 3 2 Coordinator crash
Distributed 2(n=1) 2(n=1) Crash of any
process
. Lost token,
Token ring 110 o Oton-1 process crash

A comparison of three mutual exclusion algorithms.

FB/IG/TW: @educlashco

35

Election Algorithms

= Many distributed algorithms require one process to act as a coordinator.

= |t generally does not matter which process takes on the special coordinator
responsibility.

" The problem is how do we select a coordinator & hold an election.
= |f a coordinator crashes how do we elect a new coordinator.
— Process normally ends.
— Process crashes and abnormally ends.
= Requirements (for an election)
— Every process must have a unique number, for example its network address.
— Every process knows the process number of every other process.

— All process must agree on the new coordinator (i.e; with the highest priority)
when the election ends.

-On recovery the failed process can join the active processes

36

Election Algorithms The Bully Algorithm

= When a process notices that the coordinator is no longer responding to requests,
it initiates an election

Process P holds an election as follows:

P sends and ELECTION message to all processes with higher numbers

If nobody responds, P wins the election and becomes the new coordinator

If one of the higher numbered processes answers, it takes over and P’s job is
done

= Each higher numbered process now holds its own election based on the above
process

= Eventually a process will hold an election and no other process will respond

= This process becomes the new coordinator and announces this fact to all of the
other processes in the system (REC message)

37

The Bully Algorithm

@ & - @

Previous coordinator
has crashed

(@) (b) (c)

The bully election algorithm
Process 4 holds an election
Process 5 and 6 respond, telling 4 to stop
Now 5 and 6 each hold an election

On recovery 7 either initiates an election or bullies
other processes

38

Election Algorithms Ring Algorithm

= The ring algorithm is based on arranging the distributed processes in a
ring

= —No token is used in this algorithm

® Each process knows who its successor is

= When a process notices that the coordinator is not responding it builds
an ELECTION message

= —This message includes the process number of the process that
initiated the ELECTION

» The ELECTION message is then sent to the processes successor

= Once received, the process attaches its process number to the ELECTION
message

39

Election Algorithms Ring Algorithm
contd..

Eventually the message will go around the ring.

= When the original initiator of the ELECTION message
receives the message again (after traversing the ring) the
message will contain the process ID’s of all of the operating
processes in the distributed environment.

= The original initiator of the ELECTION message then extracts
the ID of the largest process and generates a COORDINATOR
message containing the largest processes ID.

= This message is then sent around the ring .

= Each process in the ring then records who is the new
coordinator.

40

A Ring Algorithm

[5,6,0] 1
T Election message
2
@ g
A

[2]

Previous coordinator
has crashed [5,0]

h
[2.3]
No response %

Election algorithm using a ring.

a1

Election Algorithms

Compare the two election algorithms

42

Applications of Distributed
Synchronization

* Distributed synchronization techniques can be
scaled up to enable distributed atomic
transactions.

* Distributed Deadlock Management

43

