CORBA.:
Architecture, Concepts and S/W
Development

duclash

Just Another Way To Learn

The Problem

* Today’s computing, telecommunication and service environments are
inherently distributed and heterogeneous

* inter-networked computing and telecommunication devices running different
operating systems

* Distributed applications are needed in most areas

* banking, retail, education, medical, government, telecommunication,
management, etc.

* Developing distributed applications whose components collaborate
efficiently, reliably, transparently and scalably is very hard

Existing Tools?

* A major problem stands in the way:

* There is no single, commercially available, widely recognized & standardized
integration approach and framework

Existing tools (Sockets, Sun
RPC, DCE) are too low-level;
do not offer a unified view of
all distributed applications.

FB/IG/TW: educlashco

Distributed Object Technology

* It is widely believed that an approach based on distributed object
technology simplifies the problem:
 offers a single view of a distributed, heterogeneous system

* three key concepts in object technology help
integration of distributed systems:
* Encapsulation
* Inheritance
* Polymorphism

FB/IG/TW: educlashco

Candidate Solution: CORBA

Goals:

* Simplify development of
distributed applications

* Provide flexible foundation
for higher-level services

FB/IG/TW: educlashco

CORBA Overview

Contents

e Background & History

* Object Management Architecture (OMA)
* CORBA Architecture

* Internet Inter-ORB Protocol (IIOP)

* CORBA Services

* CORBA Facilities

* CORBA Implementations

Background & History

* Object Management Group's (OMG) answer to the need for
interoperability among the rapidly proliferating number of hardware and
software products available today

* CORBA Specification Version 1.1 in 1991

* failed to provide out-of-box multi-vendor interoperability among ORB
implementations

* CORBA 2.0 in December 1997

 defined true interoperability by specifying how ORBs from different vendors can
interoperate

» defined “CORBA interoperability and the IIOP protocol”

* CORBA 3.0in June 2002
* defines “CORBA Component Model”

Object Management Group

* Non-profit Consortium based in US, with representations in UK,
Japan & Germany

* Founded in April 1989

* Dedicated to creating and popularizing object-oriented standards for
application integration based on existing technology

* Object World subsidiary for market studies, training, seminars and
conferences

* No internal development carried out — produces standard
specifications only

e Over 500 members from around the world

FB/IG/TW: educlashco ;‘

Object Management Architecture (OMA)

* A high-level vision of a complete distributed environment

* System Oriented Components
* Object Request Broker (ORB)
 Common Object Services

* Application Oriented Components
* Application Objects
 Common Facilities

OMA

Application Objects

O

User
Interfac

Common Facilities

rtical C@ Faciliti

Hq¢

Task
Makagement|

S

Object Request Broker

@ @a Life Cycl

P@

/1G/TW: educlashco

Externalizatfon \Events / Transactions Query Refationships Time hange Ljcensin
Marnagement

Common Objgct Services

11

OMA Components (1)

* Object Request Broker (ORB)

* The mechanism and interfaces that enables objects to make requests and
receive responses.

* Provides an infrastructure allowing objects to converse, independent of the
specific platforms and technigues used to implement the objects.

* Application Objects
* specific end-user client/server applications

OMA Components (2)

« Common Object Services
A collection of services for maintaining objects

* Interfaces are provided to create objects, to control access to objects, to
keep track of relocated objects, and to control the relationship between
objects

* Event Notification, Persistence, Lifecycles, Naming, Concurrency Control,
Relationships, Transactions, Collections, Externalization, Time, Security,
Query Service, Licensing, Trading, Change Management, Properties, etc.

OMA Components (3)

* Common Facilities
* a set of generic application functions that can be configured to the specific
requirements of a particular application

* e.g., printing, document management, database, and electronic mail facilities

* Horizontal Common Facilities
* User Interface
* Information Management
* Systems Management
* Task Management

* Vertical Common Facilities support various vertical market segments:
* Healthcare, Retailing, CAD, Telecom, Air Traffic, etc.

OMG Object Model

* Underlying specification for all OMG compliant technologies
* The goal is to support interoperability and application portability

* Provides the semantics that define the interfaces that are used to
interact with the object

* The basic core concepts of Object Model:

* Objects: instances of types

* Operations: the actions that can be performed on data in objects and are
defined by a signature (name, parameters)

* Subtyping: defining a type via inheritance

Common Object Request Broker Architecture (CORBA)

* An OMA-compliant ORB specification of an architecture and
interface that allows an application to make request of objects
(servers) in a transparent, independent manner, regardless of
platform, operating system or location considerations

* Based on the OMG Object Model

CORBA Architecture

o h‘m':gsl Wi
operation() OBJECT

out args + return value IMPLEMENTATION
-0 4

IDL
(OBJECT
ﬂDﬂPTER}

FB/IG/TW: educlashco 17

CORBA Components (1)

* Object Implementation

* Client

* Object Request Broker (ORB) Core
* ORB Interface

* CORBA IDL Stubs & Skeletons

* Dynamic Invocation Interface (DlI)
* Dynamic Skeleton Interface (DSI)
* Object Adapter

* Interface Repository

* Implementation Repository

CORBA Components (2)

* Object Implementation
 defines operations that implement a CORBA IDL interface.
e can be written in various languages including C, C++, Java, etc.

* Client
* the program entity that invokes an operation on an object implementation

* Object Request Broker (ORB)

* provides a mechanism for transparently communicating client requests to target
object implementations

* makes client requests appear to be local procedure calls

CORBA Components (3)

* ORB Interface
* an abstract interface for an ORB
* de-couples applications from implementation details

 provides various helper functions such as converting object references to strings
and vice versa, and creating argument lists for requests made through the
dynamic invocation interface

e CORBA IDL Stubs & Skeletons

* the static interface between client and server
* generated by an IDL compiler

* Dynamic Invocation Interface (Dll)

* allows a client to directly access the underlying request mechanisms provided by
an ORB

CORBA Components (4)

* Dynamic Skeleton Interface (DSI)
 the server side's analogue to the client side's DI
* allows an ORB to deliver requests to an object implementation that does not
have compile-time knowledge of the type of the object it is implementing
* Object Adapter
 provides the run-time environment for instantiating server objects, passing
requests to them, and assigning them object references
* Interface Repository
* arun-time database that contains machine-readable versions of the IDL-
defined interfaces
* Implementation Repository

* arun-time repository of information about the classes a server supports, the
objects that are instantiated, and their IDs

CORBA Inter-ORB Architecture

Object
Request
Semantics
Trangfer and Ervironment Specific
Message Inter-CRE Protocols (ESIOF)
Syrtax DCE/ESIOP
DCE RPC qi
oer L ete.
Transporte oSt B

Ilm‘cmat |
=) d

~ | Mandatory for CORBA 2.0
Optional

EDI/I(“I/T\I\I: educlachego

Interoperability Protocols

* General Inter-ORB Protocol (GIOP)

* specifies request format and transmission protocol that enables ORB-to-
ORB interoperability

* Internet Inter-ORB Protocol (IIOP)
* specifies a standardized interoperability protocol for the Internet
» works directly over TCP/IP, no RPC necessary
* can be used with any transport mechanism that meets certain requirements

* Environment-specific inter-ORB protocols (ESIOPs)
* e.g.,, DCE

Commercial CORBA Implementations

* |ONA Orbix, OrbixWeb, ORBacus
* http://www.iona.com

* Sunsoft NEO
* http://www.sun.com/software/neo/

e Borland Visibroker
* http://www.borland.com/corba/

* Top Graph’x ORBriver
* http://www.topgraphx.com/orbriver.htm

* Objective Interface ORBexpress
* http://www.ois.com/products/prod-1.asp

* Vertel e*ORB
 http://www.vertel.com

Free CORBA Implementations

* TAO - The ACE ORB
* http://www.cs.wustl.edu/~schmidt/TAO.html

* JacORB
* http://jacorb.inf.fu-berlin.de

* Mico
* http://www.mico.org

* omniORB
* http://omniorb.sourceforge.net

* OpenORB
* http://sourceforge.net/projects/openorb/

* ORBIit
* http://orbit-resource.sourceforge.net

For more details on these, visit http://cmeerw.org/freeorbwatch/
Or http://patriot.net/~tvalesky/freecorba.html

S/W Development with
CORBA

Contents

* CORBA Interface Definition Language (IDL)

* Application Development Steps using CORBA

 Servers Launching Modes

* Web-based Application Development using Java/CORBA

CORBA IDL (1)

» Used to specify the interfaces (operations and data) of an object
* Not a programming language itself
* Provides no implementation details

* IDL compilers are used to compile IDL definitions and generate
language specific client and server stubs

» Actual body of client and server applications are written in ordinary
programming languages (C, C++, Java, Smalltalk, etc.)

CORBA IDL (2)

 Basic Types: long, unsigned long, short, unsigned short, float, double,
octet, char, boolean, any

* Constructed Types: structure, discriminated union
* Template Types : sequence, string, array

* Interface
* Inheritance Specification
* Type Declaration
Constant Declaration
Exception Declaration
Attribute Declaration
* Operation Declaration

* Module (can be nested any number of times)
* Type, Constant, and Exception Declaration
* Interface Declaration
* Module Declaration

An IDL Specification Example

// IDL in file grid.idl
interface Grid {
readonly attribute short height;
readonly attribute short width;
void set (in short n, in short m, in long value);
long get (in short n, in short m);

b

From IDL to Executables

Application Development Steps using CORBA

. Allocate Tasks

. Define Remote Object Interfaces
. Implement Remote Objects

. Generate Client Stubs

. Obtain Remote Object References
. Invoke Remote Methods

N OO o B WN R

. Configure the System

Allocate Tasks

* Decide how to allocate responsibilities
* Client Side: Ul & user input error checking

» Server Side: shared resources, software that controls access to the
resources

* Multi-threading allows the user some GUI interaction event while a
remote invocation is pending

FE

FB/IG/TW: educlashco 33

Define Remote Object Interfaces

* Using IDL, define interfaces in terms of the operations that clients can
invoke on the remote objects

interface cMSO : ObjectMIO {
boolean get_attr(in Token my_token,
in SOID so_id,
in OID oid,
out AttrType attr)
raises (InvalidSOID);

Implement Remote Objects (1)

* IDL compiler generate some of the remote object’s server program
(skeleton) which includes
* definitions for the types defined in the IDL
 codes for dispatching incoming requests
* the empty bodies of the methods

CORBA::Boolean cMSO_i::get_attr (
CORBA::Long my_token,
SOID so_id,
const char™ oid, AttrType*& attr,
CORBA::Environment &IT_env) {
// implementation body goes here

}

Implement Remote Objects (2)

* Implement the source code of these methods to provide the remote
object’s capabilities

* Build a server program which activates a server
e e.g., using CORBA Basic Object Adapter (BOA)

int main() {
MIO_i *mio_ptr = new MIO_i("cMSO", "tigris", 1.2);
cMSO_var cmso_ptr = new cMSO_i(mio_ptr);

try {
CORBA::Orbix.impl_is_ready("cMSO");

} catch (CORBA::SystemException &sysEx) {
cerr << "Unexpected system exception” << endl;
cerr << &sysEx;

J

Generate Client Stubs

* Use IDL compiler to generate client-side stub
* Write a client program which invokes the remote object interfaces
* Stub relays an invocation to the real remote object via ORB

CORBA::Boolean cMSO:: get_attr (Token my_token,
SOID so_id, const char * oid,
AttrType*& attr,

CORBA::Environment &IT_pEnv)
throw (CORBA::SystemException,
cMSO::InvalidSOID) {

{

/l compiler generated stub code here

J

Obtain Remote Object References

* Obtain a reference to an instance of the remote object’s class
e Suggested mechanisms

* object_to_string(), string_to_object(): convert ORB-specific object
references to a standard string form and vice-versa

* Naming Service Interface: allows remote object servers to register their
objects by name

try {
cmso_var = cMSO::_bind(":cMSQO", host_name);
} catch (CORBA::SystemException &sysEx) {

cerr << "Unexpected system exception” << endl;
cerr << &sysEXx;

Invoke Remote Methods

* Invoke methods on an object as if it were a local object
* Stub handles all of the transport-level messaging and data marshaling

try {
cmso_var->get_attr(my_token, so_id, buffer, attr);

} catch (const cMSO::InvalidSOID& userEx) {
cerr << "Invalid Server ID" << endl;
cerr << &userEx;
} catch (CORBA::SystemException &sysEx) {
cerr << "Unexpected system exception” << endl;
cerr << &sysEx;

}

Configure the System

* Check if an ORB daemon is running on the server host
* Install the remote server program on the server host
* Make its object reference available

* Install the compiled stub class files and a client program on each client
host

FB/IG/TW: educlashco 40

Servers and Implementation Repository

* Each server has a uniqgue name within its host machine

* The name of an object (object reference) contains:
* A unique name within its server (object's marker)
* Its server name (implementation name)
* The host name of its server

* Implementation Repository maintains a mapping from a server's name
to the file name of the executable code which implements that server --
> the developer of the server must register it

Modes for Launching Servers

* Shared Mode

* at most one process for any given server

* Unshared Mode

* one process per active object

* Per-method-call Mode
* a separate process for each operation call

* Persistent Mode
* always active (i.e., not started by Object Adaptor)

Distributed Applications
Development using
Java/CORBA

Introduction of CGI vs. Java/CORBA for Web-based
applications

* Various applications are being developed and used in
Internet/Intranet environments

« Common Gateway Interface (CGI) has been used widely for
providing simple Web-based client/server applications

« WWW, Java and CORBA can provide a powerful set of tools for
developing and deploying distributed applications

* Java applets for WWW-downloadable client software and CORBA
objects for server software

Display request form

WWW CGl-based Application

Displ

ests

User host

e}

User host

HTTP:Request URL

HTTP:Download HTML with forms
HTTP:Request URL of CGI program

HTTP:Download HTML with results

FB/IG/TW: educlashco

Server host

Resulting
HTML file

45

WWW Java/CORBA-based Application

Display request form | jser host Server host

HTTP: Request URL of applet

HTTP: Download executable applet code

Display requests applet CORBA.

Remote R
User host CORBA

Object

FB/IG/TW: educlashco 46

CGl vs. JAVA/CORBA Approach

CGl

Java/CORBA

Flexibility

Ul and operations definitions are
coupled in HTML forms.

Client limited to displaying Ul
and invoking remote operations.
Remote operation arguments
are string only; no structured
types.

Ul and remote operations are
defined separately.

Client may perform other tasks in
addition to managing Ul and
invoking remote operations.

Remote operation arguments may
be of any type, including structured.

Maintainability

Changes to an HTML form must
be manually accounted for in its
corresponding CGI program.

Changes to IDL can be
automatically propagated to both
client and server via output of IDL
copiler.

Server
Configuration

HTML files are installed on the
WWW server host.

A CGI program is written to
handle one distinct remote
operation.

The WWW server spawns a new
CGl program instance to handle
each remote invocation.

Java applet client software s
installed on the WWW server host.

A remote object server program
may be written to handle many
distinct remote operations.

A single remote object server
instance may handle many remote
invocations.

CGl vs. JAVA/CORBA Approach

CGl Java/CORBA
Client Automatic, on demand, via Automatic, on demand, via WWW
Deployment WWW Platform independent. Platform independent.

User Interface
Intuitiveness

Developer has limited control
over Ul component layout.
Developer limited to using HTML
INPUT tag components.

Developer has broad control over
Ul component layout.

Developer may create new
components with available ones.

Responsiveness

Simple Ul update requires down
loading a new HTML files.

Each remote invocation is
slowed by the spawning of a CGl
program.

Each remote invocation slowed
by acquisition of needed
resources.

Client is single-threaded.

Simple Ul updates are handled by
the client applet.

Each remote invocation may be
handled by an already executing
server program.

Remote object server may already
have acquired needed resource
when remote invocation arrives.
Client can exploit multi-threading.

Application Development Steps using Java/CORBA

* The development steps are almost identical to using CORBA only
1. Allocate Tasks

. Define Remote Object Interfaces

Implement Remote Objects

. Generate Remote Object Proxies

. Obtain Remote Object References

. Invoke Remote Methods

7. Configure the System

* The differences are in steps 4 and 7

Generate Remote Object Proxies

* Use IDL-to-Java compiler to generate client-side proxy class (stub)
e e.g., OrbixWeb IDL compiler

* Proxy relays an invocation to the real remote object via ORB

public boolean get_attr (int my_token,

short so_1d,

String oid, MSO.AttrType attr)
throws MSO. cMSO.InvalidSOID,
IE.Iona.Orbix2.CORBA.SystemException

{

/I compiler generated Java stub code here

J

Configure the System

* Install the remote server program on the server host
* Make its remote object’s reference available

* Install the compiled Java class files of each client applet on the
WWW server host

* Install an HTML file for each applet on the WWW server host

 User sites need not install any executable or data files other than
those for a Java-enabled browser

FB/IG/TW: educlashco 51

Ssummary

* CORBA is more than a “hype”
* Most widely-used distributed object technology today

* Applications
* building distributed systems and applications
* telecommunication network & management software

* many other areas (such as healthcare, banking/finance, retail, and
transportation) are beginning to use CORBA

* WWW, Java and CORBA combination can provide a powerful set of
tools for developing and deploying distributed applications

