Introduction to Parallel Computing

duclash

Just Another Way To Learn

Parallel vs Distributed System

Computer Architecture

Tightly Coupled~— | Paralll ProcessNgSIStem | Loosely Coupled | BRtAbIEA COmPUINESISE

CPU CPU st?aymW CPU CPU ; Local memory] | Local memory| | Local memory] | Local memory,
CPU CPU CPU CPU
Interconnection hardware
(Communication network)

FB/IG/TW: @educlashco 2

Paralle

v.s. Distributed Systems

Parallel Systems

Distributed Systems

Memory Tightly coupled shared memory Distributed memory
UMA, NUMA Message passing, RPC, and/or used of distributed
shared memory
Control Global clock control No global clock control
SIMD, MIMD Synchronization algorithms needed
Processor Order of Thps Order of Gbps

interconnection

Bus, mesh, tree, mesh of tree, and hypercube (-
related) network

Ethernet(bus), token ring and SCI (ring),
myrinet(switching network)

Main focus

Performance
Scientific computing

Performance(cost and scalability)
Reliability/availability
Information/resource sharing

Serial Computing

Seqguential Processing

* Two approaches of Computing —>Serial and Parallel

* Serial Computing

e Given problem is divided in to discrete series of instruction, and these
instruction executed sequentially in a single processor

» Used in monolithic applications on single machine , which do not have any time

instructions

N 5]

3 2

FB/IG/TW: @educlashco 4

Serial Computing-Benefits and Limitations

e Advantages
Faster execution of smaller tasks
Ease of implementation
Suited for Monolithic application

* Disadvantages
Significant constraints to build faster computers
Hardware limitation on transmission speed
Expensive
Consumes too much power

FB/IG/TW: @educlashco

Parallel Computing

Parallel Processing
problem instructions

~ il -
-l 1 1-=
~ il | I-E=
=il | I-=

FB/IG/TW: @educlashco 6

Parallel Architecture

Parallel Architecture

Ref:Parallel and Distributed systems Kulkarni,Giri,Joshi,Jadhav Chapter 1.3

* Architecture of parallel computers is intended to provide high speed for
computation of complex task using different mechanisms

 Basic Parallel Architecture Components
Processors

Memory = Shared or Distributed?
Communication—> synchronous or Asynchronous ?
Control = Centralized or Distributed?

Parallel Architecture

Ref:Parallel and Distributed systems Kulkarni,Giri,Joshi,Jadhav Chapter 1.3

* Parallel Architecture classified under following categories.
1. Specific Type of Parallel Architecture
2. Classification based on architectural Schemes
3. Classification based on memory access
4,

Classification based on interconnection among processing elements and
memory modules

1. Specific Type of Parallel Architecture

a) Pipeline Computers

b) Array Processors

c) Multiprocessors

d) Systolic Architecture

e) Dataflow Architecture

1.a) Pipeline Computers

* Process of one instruction execution in digital computer have four stages
1. Instruction Fetch
2. Instruction Decoding
3. Operand Fetch
4. Execution

Pipelined computers will execute successive instruction in overlapped
fashion i.e. new inputs are accepted at one end before previously
accepted inputs appear as out put on the other side

Reduces the idle time of Hardware

Multiple Instruction

@same cycle-Superscalar Execution

load R1,., 1000 1. load R, ®1000 1. load BRl1, @&1000
2. load B2, ®1L0O00B 2. add rBrR1l1, @icdoa = add BRl1, @&i10D4
1. add R, @10304 2. add R1, ®=14008 3 load R2, @100B
4. add R=2. @1400C 4. add Ri, 3100C = add RZ2, @1adC
=, add BRI, R2 5. store RL, @&2O0DO = add BRL, RZ2
&. =E=rtores BRI, @2Z2000 = sScore BRI, @2Z2004F

Cak

(RTH

Capak

(ah Three different code fragments for adding a list of four numbers.

Instraction cycles

IF: Insuruction Felck
IEr: Fmvsereection Dhecocde
3z Orperand Fetch

E: Instmuction Exccutc
WE: Wirme—hack

0 2 4 & =
| 0 | oF | 1caa ri, =100
| IF o | OF | load RZ, @100B
i | o | oF | E | aaa mri1, @icoa
w | b | oF | LE | =4 R2, a@icoc
Lo | D | ma | E | agda r1, m=
| = | i | na | wB | store ra

(b)) Execution schedule

Clock cycle

o
4
— -1 -
5 - -_. D Full issue sloks
o = Haoartzontal wasoe
=~ L
i 1 T, Wertical wasie | Empay issue slots

Audder Llhtilizatiom

(e Hardware mtilization trace for schedulce in (b

o code Fragment (i) abowve,

B N MSuciiomn

et O DO

12

Pipeline Computer

* Instruction cycle consists of multiple pipeline cycles
* Pipelined computer will execute the instruction in every pipeline cycle
* Non-Pipeline computer takes 4 pipeline cycles to execute one instruction

* Once pipeline in filled an out put result is produces from the pipeline of
each cycle

Instruction 1 2 3 4

P P

Instruction 1 2 3 4

‘ h | Pipelined

Cycles/ Time -

Mon-Pipelined

1.b) Array Processors

* Synchronous Parallel Computer with multiple ALU called Processing
Element(PE) that operate in Parallel

* All PE Synchronized and connected by interconnection network
* Each PE have some register and Local memory
* Instruction for the PEs are fetched by a common control unit

* Array Processors are used to solve problems that are expressed in
matrix or vector format

[Array Control Unlit J

I______________I_________I_____I__________________I_ _________

] ¥ L3 :
Proc. 0 Proc. 1 Proc. 2 Proc. n-1
(mem.o | || [Mem.1] || [mem.2 |
ID-EItﬂ links t I I

Interconnection Network |-:— -

1.c)Multiprocessors

* TWO Or more processors

* All share common sets of memory modules,|O Channels and
peripheral Devices

* Entire system is controlled by single integrated operating system
* OS controls interaction between Processors

* Hardware organization decided by interconnection structure between
memory and devices

1. Bus-Based Interconnection
2. Switch-Based Interconnection

1.c)Multiprocessors e

 Bus-Based interconnection

e Switch-Based interconnection

Memaries
A
' N
M M] M
(
C h—-
C
CPUs ﬁ
- &
Cc ?—
Y

Crosspoint switch

FB/IG/TW: @educlashco

16

1.d)Systolic Architecture

* Highly synchronized, multi processing with high degree of pipelining Array
Architecture ,which consist of an array of PE called cells connected to
neighboring cells

* Data to be processed is taken from memory and is processed by first cell
,processed data passed to neighboring cell for further processing

* Each cell performs an operation or a small number of operation on a data
item and passes to neighbor

* Processed data by last cell stored in memory
» Useful for dataflow with high throughput with less memory access\

Instead of

e 1 L 2 Uy

5 million

100 nis operations per
second st mosi

FE

We have -

= e Ory———

30 MIOPS
L :
100 ms possible

L ¥FE| PE| PE | PE | PE | PE —
| - | e — 17
The syvastolic arrav

1.d)Dataflow Architecture

* Data Driven Model in which data is represented using directed acyclic graph
* Graph contains nodes and edges

* Node represent instruction edge represent data dependency relationship
between connected nodes

 Firing rule : A node can be scheduled for execution if and only if its input data is
valid for the consumption
* Example a*b+c*d
« ©High potential for parallelism &High throughput for complex computation
* ®Time loss-Waiting for unnecessary arguments, a a b b
High control overhead, Difficult to manipulate

data structure t1 t2

t3

Classification based on architectural Schemes

* Flynn’s Classification
* Shore’s Classification

Flynn’s Classification

* By Michel Flynn classification in terms of number of instruction
streams over data streams

» SISD-Single Instruction, Single Data Stream

* MISD-Multiple Instruction Multiple Data Stream

e SIMD-Single Instruction Multiple Data Stream
 MIMD-Multiple Instruction Multiple Data Stream.

Flynn’s Classification of Computer Architectures
(Derived from Michael Flynn, 1972)

IS

=g

IS DS
PU e o MU

SRR

/O -« €YU

¥

(a) SISD Uniprocessor Architecture

Capftions:
CU - Control Unit = PU — Processing Unit
MU — Memory Unit 2 IS — Instruction Stream

DS — Date Stream

FB/IG/TW: @educlashco

Flynn’s Classification of Computer Architectures
(Derived from Michael Fiynn, 1972) (Cﬂlltd. . .)

“
Program " PE, o " LM, 5 DS
ILoaded IS - . I oaded
_ —* CU IS ® " >
From . ; » . From
DS DS
Host | PEq ["| LM, Host
o

(b) SIMD Architecture (with Distributed Memoryv)

Captiorns:

CU - Control Unit : PU - Processing Unit

MU - Memory Unit : IS - Instruction Stream

DS - Date Stream : PE — Processing Element

LM — Local Memory

FB/IG/TW: @educlashco 22

Flyvnn’s Classification of Computer Architectures
(Derived from Michael Flynn, 1972) ({.‘(}Iltd. . .)

IS
Vo SLET O Ll Shared |
: : Memory :
'O CcuU, 1S » PU,_ [+ 8 >
IS
(c) MIMD Architecture (with Shared Memorv)
Captions:
CU - Control Unit E PU - Processing Unit
MU - Memory Unit : IS - Instruction Stream
DS - Date Stream : PE — Processing Element

LM — Local Memory

FB/IG/TW: @educlashco

IS

Flvnn’s Classification of Computer Architectures
h P
(Derived from Michael Fiynn, 1972) (contd...)

DS

Gk, vyr CU,

IS IS

¥ DS ' T
PLLER "2 & " PU, ”

(d) MISD Architecture (the Svstolic Array)

!
s & @ Is CUl
Memory

IS
(Program - 1
And Data) — PU,
*
/O 1
Captions:

CU - Control Unit
MU - Memory Unit

DS - Date Stream

LM — Local Memory

o

PU - Processing Unit

IS - Instruction Stream

PE — Processing Element

FB/IG/TW: @educlashco

DS

24

Two Approaches to Parallel Programming

a) Implicit Parallelism

Source code written 1in sequential languages (C. Fortran. Lisp or Pascal)

h 4

Parallelizing Compiler produces Parallel Object Code

b) Explicit Parallelism

Source code written in concurrent dialects of C. Fortran. Lisp or Pascal

k4

Concurreny preserving compiler produces concurrent Object Code

FB/IG/TW: @educlashco

25

Two Categories of Parallel Computers

1. Shared Memory Multiprocessors (tightly coupled
Ssystems

!d

Message Passing Multicomputers

SHARED MEMORY MULTIPROCESSOR MODEL.S:
a. Uniform Memory Access (UMA)

b. Non-Uniform Memory Access (NUMA)

C. Cache-Only Memory Architecture (COMA)

FB/IG/TW: @educlashco

26

SHARED MEMORY
MULTIPROCESSOR MODELS

Processors

Pl - & ® P

¥

Interconnect Network

(BUS. CROSS BAR. MULTISTAGE NETWORK)

o

k4

/'O SM, ¢eew. SM,,

Shared Memory

The UMA multiprocessor model (e.g.. the Sequent Symmetry S-81)

FB/IG/TW: @educlashco

27

SHARED MEMORY

MULTIPROCESSOR MODELS (contd...)

LM,

LM,

LM,

Inter-
connection
Network

|

(a) Shared local Memories (e.g.. the BBIN Butterflvy)

MNUMA Models for Multiprocessor Syvstemns

FB/IG/TW: @educlashco

28

SHARED MEMORY MULTIPROCESSOR MODEL.S (contd...)

GSI\.}I {:-}Sh[EEEEEE GSI’&,'{
Global Interconnect Network
P CSM P CSM
C C
P I CSM P I CSM
- N . - N -
P CSM P CSM
Cluster 1 Cluster 2

(b) A hierarchical cluster model (e.g.. the Cedar system at the University of Illinois)

MNUMA Models for Multiprocessor Syvstems

FB/IG/TW: @educlashco

N

o U kW

Types of Parallelism

Data Parallelism: Identical operations on data performed concurrently

Task Parallelism/Function Parallelism/Control Parallelism:
independent task together

Hybrid Parallelism: data + task Parallelism
Stream Parallelism : different process in different pipeline
Instruction —Level Parallelism :more than one instruction simultaneously

Thread-Level Parallelism: split program to independent small parts and run as
threads

Bit —level parallelism :Passing multiple bits of data parallel

FB/IG/TW: @educlashco 30

Parallel Algorithm Models

Parallel Algorithm Models

* An algorithm model is the representation of a parallel algorithm by
selecting a strategy for dividing the data and processing technique and
applying the appropriate method to reduce interactions. The various
models available are:

1) The data parallel model
2) The task graph model

3) The work pool model
4) The master slave model

5) The pipeline or producer consumer model
6) Hybrid models

FB/IG/TW: @educlashco

Data Parallel Model

tasks are assigned to processes and each task performs similar types of
operations on different data.

single operations being applied on multiple data items

Interaction overheads can be reduced by
 selecting a locality preserving decomposition
* using optimized collective interaction routines
e overlapping computation and interaction.

the intensity of data parallelism increases with the size of the problem,
which in turn makes it possible to use more processes to solve larger
problems.

FB/IG/TW: @educlashco 33

Data Parallel Model

* Example — Dense matrix multiplication.

Cantrol Unit

Instruction
Stream

Processor 1

Data

Stream 1

Processor 2

i
-

Data
Stream 2

Processor 3

Processorn

Data
Stream 2

Data
Stream n

&

FB/IG/TW: @educlashco

Memary
Unit

34

Task Graph Model

* Parallelism is expressed by a task graph

* The correlation among the tasks are utilized to promote locality or to
minimize interaction costs.

* This model is enforced to solve problems in which the quantity of
data associated with the tasks is huge compared to the number of
computation associated with them.

* The tasks are assigned to help improve the cost of data movement

among the tasks. -

/

|
l‘ v
\

Work Pool Model

* Tasks are dynamically assigned to the processes for balancing the load.

* This model is used when the quantity of data associated with tasks is
comparatively smaller than the computation associated with the tasks.

* No desired pre-assigning of tasks onto the processes.
* Assigning of tasks is centralized or decentralized.

Pointers to the tasks are saved in a physically shared list, in a priority queue, or in a hash table or tree, or they
could be saved in a physically distributed data structure.

* The task may be available in the beginning, or may be generated dynamically.

If the task is generated dynamically and a decentralized assigning of task is done, then a termination
detection algorithm is required so that all the processes can actually detect the completion of the
entire program and stop looking for more tasks.

FB/IG/TW: @educlashco

36

Work Pool Model

]
|
|
X
N
s \
%

Process
6 |

Process
3

Process

4

FB/IG/TW: @educlashco

37

Master-Slave Model

* one or more master processes generate task and allocate it to slave
processes.

* The tasks may be allocated beforehand if -
* the master can estimate the volume of the tasks, or
e a random assigning can do a satisfactory job of balancing load, or
* slaves are assigned smaller pieces of task at different times.

* suitable to shared-address-snace or message-bassing paradigms

Master
Process
"~ /V{' ,' /i 3 - \ » » R > -
;/// //" . 1 re N
3 / \ : 2 .

Slave Slave Slave Slave
Process Process Process Process
1 2 3 n

L wyiNgy 1 v ugrivw

Ve reuunl

Pipeline Model

* Also known as the producer-consumer model.

* Set of data is passed on through a series of processes, each of which
performs some task on it.

* Here, the arrival of new data generates the execution of a new task by a
process in the queue.

* The processes could form a queue in the shape of linear or
multidimensional arrays, trees, or general graphs with or without cycles.

* Chain of producers and consumers.

 Each process in the queue can be considered as a consumer of a sequence of
data items for the process preceding it in the queue and as a producer of data for
the process following it in the queue.

FB/IG/TW: @educlashco 39

Hybrid Models

* A hybrid algorithm model is required when more than one model may
be needed to solve a problem.

* A hybrid model may be composed of either multiple models applied
hierarchically or multiple models applied sequentially to different
phases of a parallel algorithm.

Topologies in Processor
Organization

Ref:introduction to parallel computing

Ananth Grama,Anshul gupta,George karypis,vipin kumar

Interconnection Networks for Parallel Computers

e carry data between processors and to memory.
* Interconnects are made of switches and links (wires, fiber).
* Interconnects broadly classified as static or dynamic.

» Static networks = point-to-point communication links among processing
nodes and are also referred to as direct networks.

* Dynamic networks—> using switches and communication links. Dynamic
networks are also referred to as indirect networks.

FB/IG/TW: @educlashco

42

Static and Dynamic
Interconnection Networks

Static network Indirect network

- \\\
-7 S o
// \\
s ~N
2 E -
7z \ ——_
/ \ ~
’ \ .
/ \ o
/ \ .
/ \
/ \

Network interface/switch Switching element
Processmg node

Classification of interconnection networks: (a) a static network; and (b) a dynamic network.

FB/IG/TW: @educlashco

43

Interconnection Networks

* Switches map a fixed number of inputs to outputs.
* The total number of ports on a switch is the degree of the switch.

* The cost of a switch grows as the square of the degree of the switch, the
peripheral hardware linearly as the degree, and the packaging costs linearly
as the number of pins.

FB/IG/TW: @educlashco 44

Interconnection Networks : Network Interfaces

* Processors talk to the network via a network interface.

* Responsibilities:
* Packetizing Data
 Computing routing info
e Buffer incoming and out going data
* Error checking

* The network interface may hang off the 1/O bus or the memory bus.

FB/IG/TW: @educlashco

45

Network Topologies

* A variety of network topologies have been proposed and implemented.
* These topologies tradeoff performance against cost and scalability .

 Commercial machines often implement hybrids of multiple topologies
for reasons of packaging, cost, and available components.

Network Topologies: Buses

* Some of the simplest and earliest parallel machines used buses.
* All processors access a common bus for exchanging data.

* The distance between any two nodes is O(1) in a bus.

* Convenient broadcast media.

. @bandwidthﬂ as # of nodes || = bus based machines are limited to dozens
of nodes.

e Sun Enterprise servers and Intel Pentium based shared-bus multiprocessors
are examples of such architectures.

Network Topologies: Buses

i
R B I S i -
(20
= e 3
Cache
Melenmory”
== iﬁ | L
BUS-DAsed mtercﬁg:lnneas (@) WITtn no locai cacnes; (b) with local
memory/caches.

Since much of the data accessed by processors is local to the processor, a
local memory can improve the performance of bus-based machines.

Network Topologies: Crossbars

A crossbar network uses an pxm grid of switches to connect
p inputs to m outputs in a non-blocking manner.

Memory Banks

o 1 2 3 4 5 b-1

1 e I O] A switehin
) element
o [}
2
g | s [}
g | —— i e e e
% 4
:= s []
£l O
| p-1 |: __ — —

A completely non-blocking crossbar network connecting p processors to b

memory banks.
FB/IG/TW: @educlashco 49

Network Topologies: Crossbars

* The cost of a crossbar of p processors grows as O(p?).

* Non-Blocking Network

 # of switching = Big Theta(pb).....Number of b must at least p
 Component count (Complexity) ohm(p 2)

e This is generally difficult to scale for large values of p.

* Examples of machines that employ crossbars include the Sun Ultra HPC 10000
and the Fujitsu VPP500.

FB/IG/TW: @educlashco

50

Network Topologies : Multistage Networks

* Crossbars have excellent performance scalability but poor cost
scalability.

* Buses have excellent cost scalability, but poor performance scalability.

* Multistage interconnects strike a compromise between these
extremes.

Network Topologies: Multistage Networks

Processors

Multistage interconnection network

Memory bank:

e R e i . a0 Al e]

Stage 1

Stage 2

Stage n

The schematic of a typical multistage interconnection network.

Network Topologies: Multistage Omega Network

* One of the most commonly used multistage interconnects is the
Omega network.

* This network consists of log p stages, where p is the number of
inputs/outputs.

* At each stage, input i is connected to output j if:

77V 2i+1—p, p/2<i<p—1

Network Topologies: Multistage Omega Network

Each stage of the Omega network implements a perfect shuffle as follows:

000 O O 000 = left rotate(O00QO0)
001 1 1 001 = left _rotate(100)
010 2 2 010 = left rotate(001)
Oo11 3 3 011 = left rotate(101)
100 4 a4 100 = left _rotate(010)
101 s s 101 = left _rotate(110)
110 6 6 110 = left_rotate(O011)
111 7 7 1711 = left rotater1 11D

A perfect shuffle interconnection for eight inputs and outputs.

Network Topologies:Multistage Omega Network

* The perfect shuffle patterns are connected using
2x2 switches.

* The switches operate in two modes — crossover or
passthrough.

>

(a) (b)

Two switching configurations of the 2 x 2 switch:
(a) Pass-through; (b) Cross-over.

Network Topologies: Multistage Omega Network

A complete Omega network with the perfect shuffle interconnects and switches
can now be illustrated:

000 000
001 001

010 o010
Oo11 Oo11

100 100
101 101

110 110
111 111

A complete omega network connecting eight inputs and eight outputs.

An omega network has p/2 x log p switching nodes, and the cost of such a
network grows as (p log p).

Network Topologies:
Multistage Omega Network — Routing

 Let s be the binary representation of processor and t be that of the
memory bank

* The data traverses the link to the first switching node. If the most
significant bits of s and t are the same, then the data is routed in
pass-through mode by the switch else, it switches to crossover.

* This process is repeated for each of the /log p switching stages.
* Note that this is not a non-blocking switch.

Network Topologies:
Multistage Omega Network — Routing

000
001

010
011

100
101

110

111

000
001

010
O11

100
101

110

An example of blocking in omega network: one of the messages

(010to 111 or 110 to 100) is blocked at link AB.

Network Topologies: Completely Connected Network

* Each processor is connected to every other processor.
* The number of links in the network scales as O(p?).

* While the performance scales very well, the hardware complexity is
not realizable for large values of p.

* In this sense, these networks are static counterparts of crossbars.

Network Topologies: Completely Connected and Star Connected Networks

Example of an 8-node completely connected network.

o
<1

(a) (h

(a) A completely-connected network of eight nodes;
(b) a star connected network of nine nodes.

Network Topologies: Star Connected Network

* Every node is connected only to a common node at the center.

 Distance between any pair of nodes is O(1). However, the central
node becomes a bottleneck.

* In this sense, star connected networks are static counterparts of
buses.

Network Topologies: Linear Arrays, Meshes, and k-d Meshes

* In a linear array, each node has two neighbors, one to its left and one
to its right. If the nodes at either end are connected, we refer to it as
a 1-D torus or a ring.

* A generalization to 2 dimensions has nodes with 4 neighbors, to the
north, south, east, and west.

* A further generalization to d dimensions has nodes with 2d
neighbors.

* A special case of a d-dimensional mesh is a hypercube. Here, d = log
p, where p is the total number of nodes.

Network Topologies: Linear Arrays

N e) A XaN

(a) (b)

Linear arrays: (a) with no wraparound links; (b) with wraparound
link.

Network Topologies: Two- and Three Dimensional Meshes

O—O0—0—0— OG0 Y
/ J
I W N W H—r—+—) ”‘(\ A
() ——) (‘(/ T T D J \/(5/ \(/\5)
e /)/\
I e N W H—+—O+— \/Cj /\)‘/ /7/\
N N A A (</ TN ND @ \}\E/ \(/\> s
e -
) N N M (-O O @) C \/C/ /‘2\/ (f\f\)
YT YW J I D O0—=0C
(a) (b) ()

Two and three dimensional meshes: (a) 2-D mesh with no wraparound;
(b) 2-D mesh with wraparound link (2-D torus); and (c) a 3-D mesh with
no wraparound.

FB/IG/TW: @educlashco

64

Network Topologies: Hypercubes and their Construction

O

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

Construction of hypercubes from hypercubes of lower dimension.

FB/IG/TW: @educlashco

65

Network Topologies:
Properties of Hypercubes

* The distance between any two nodes is at most /og p.
* Each node has log p neighbors.

* The distance between two nodes is given by the number of bit
positions at which the two nodes differ.

Network Topologies: Tree-Based Networks

O Processing nodes

/@\ Switching nodes

ol ®
AN AN A AN

(a) (b)

Complete binary tree networks: (a) a static tree network; and (b) a
dynamic tree network.

Network Topologies: Tree Properties

* The distance between any two nodes is no more than 2/logp.

* Links higher up the tree potentially carry more traffic than those at
the lower levels.

* For this reason, a variant called a fat-tree, fattens the links as we go
up the tree.

* Trees can be laid out in 2D with no wire crossings. This is an attractive
property of trees.

Network Topologies: Fat Trees

LON:AN=ON§-N

A fat tree network of 16 process ing nodes.

Evaluating Static Interconnection Networks

* Diameter: The distance between the farthest two nodes in the network. The diameter of a
linear array is p /b, that of a mesh is 2(- 1), that of a tree and hypercube is log p, and that of
a completely connected network is O(1).

* Bisection Width: The minimum number of wires you must cut to divide the network into two
equal parts. The bisection width of a linear array and tree is 1, that of a meshis , that of a
hypercube is p/2 and that of a completely connected network iwz/4.

* Cost: The number of links or switches (whichever is asymptotically higher) is a meaningful
measure of the cost. However, a number of other factors, such as the ability to layout the
network, the length of wires, etc., also factor in to the cost.

Evaluating Static Interconnection Networks

Network Diameter \?\i/isdetck;]tion érocnnectivity ?I\?os.tof links)
Completely-connected 1 p2/4 p—1 p(p—1)/2
Star > 1 1 p—1
Complete binary tree 2log((p +1)/2) 1 1 p—1
Linear array p—1 1 1 p—1

2-D mesh, no wraparound 2(\/3_9 —1) /D 2 2(p — \/15)
2-D wraparound mesh 2 L\/ﬁ/ 2J 2\/3_9 4 2p
Hypercube logp p/2 logp (plogp)/2

Wraparound k-ary d-cube d k/2] 2k4—1 2d dp

Evaluating Dynamic Interconnection Networks

Network Diameter 5vi}°’detﬁ“°” Connectivity (No. of links)
Crossbar 1 P

Omega Network 10gp p/Q

Dynamic Tree 2 105.’;}'3 1 pP— 1

FB/IG/TW: @educlashco

72

Control Structure of Parallel Programs

Parallelism can be expressed at various levels of granularity - from
instruction level to processes.

Between these extremes exist a range of models, along with corresponding
architectural support.

FB/IG/TW: @educlashco

73

Control Structure of Parallel Programs

* Processing units in parallel computers either operate under the centralized
control of a single control unit or work independently.

« |f there is a single control unit that dispatches the same instruction to various
processors (that work on different data), the model is referred to as single
instruction stream, multiple data stream (SIMD).

 If each processor has its own control control unit, each processor can
execute different instructions on different data items. This model is called
multiple instruction stream, multiple data stream (MIMD).

FB/IG/TW: @educlashco 74

SIMD and MIMD Processors

PE: Processing Element

PE

+
control unit

PE

+

control unit

Global
control

unit

+8
SRIOM LAN NOLLOAINNODYALNI

ROMLAN NOLLOFINNODYHLNI

control unit

o
e
+

control unit

(a) (h

A typical SIMD architecture (a) and a typical MIMD architecture (b).
FB/IG/TW: @educlashco

75

SIMD Processors

Some of the earliest parallel computers such as the
llliac IV, MPP, DAP, CM-2, and MasPar MP-1 belonged
to this class of machines.

Variants of this concept have found use in co-processing
units such as the MMX units in Intel processors and DSP
chips such as the Sharc.

SIMD relies on the regular structure of computations
(such as those in image processing).

It is often necessary to selectively turn off operations on
certain data items. For this reason, most SIMD
programming paradigms allow for an "activity mask",
which determines if a processor should participate in a

computation or NOLg & mw: @educlashco

/6

Conditional Execution in SIMD
Processors

if B==0)
C=A;
else
C=A/B;

(@)

A A Al] Al o]
B[o] B B[1] B[o]
c[o] cl o] cl_ o] cl o]
Processor 0 Processor 1 Processor 2 Processor 3
Initial valu
Idle 1dle
A A Al 1] Al o
B[o] B[2] B[1] B[o]
c[5] c[o] c[o] cl o]
Processor 0 Processor 1 Processor 2 Processor 3
Step 1
Idle Idle
Al 5] A Al 1] Al o
B[o] B B[1] B[o]
c c c[1] c[_ o]
Processor 0 Processor 1 Processor 2 Processor 3
Step 2

(b

Executing a conditional statement on an SIMD computer with four
processors: (a) the conditional statement; (b) the execution of the
SRS mdht@etvolatbes.

MIMD Processors

In contrast to SIMD processors, MIMD processors can execute different
programs on different processors.

A variant of this, called single program multiple data streams (SPMD)
executes the same program on different processors.

It is easy to see that SPMD and MIMD are closely related in terms of
programming flexibility and underlying architectural support.

Examples of such platforms include current generation Sun Ultra Servers,
SGl Origin Servers, multiprocessor PCs, workstation clusters, and the IBM
SP.

FB/IG/TW: @educlashco 78

SIMD-MIMD Comparison

SIMD computers require less hardware than MIMD computers (single control
unit).

However, since SIMD processors ae specially designed, they tend to be
expensive and have long design cycles.

Not all applications are naturally suited to SIMD processors.

In contrast, platforms supporting the SPMD paradigm can be built from
iInexpensive off-the-shelf components with relatively little effort in a short
amount of time.

FB/IG/TW: @educlashco 79

Parallel Architecture

Ref:Parallel and Distributed systems
Kulkarni,Giri,Joshi,Jadhav
Chapter 1.3

FB/IG/TW: @educlashco

80

P i pe ' i n i n g(Ref:Arun Kulkarni,Nupur Giri Chapter 2)
» Synchronous Pipeline

* Asynchronous Pipeline
« Advantages and limitations

FB/IG/TW: @educlashco

81

Parallel Architecture

Pipeline Computers
Array Processors

Multi Processors
Systolic architecture
Data Flow Architecture

FB/IG/TW: @educlashco

82

