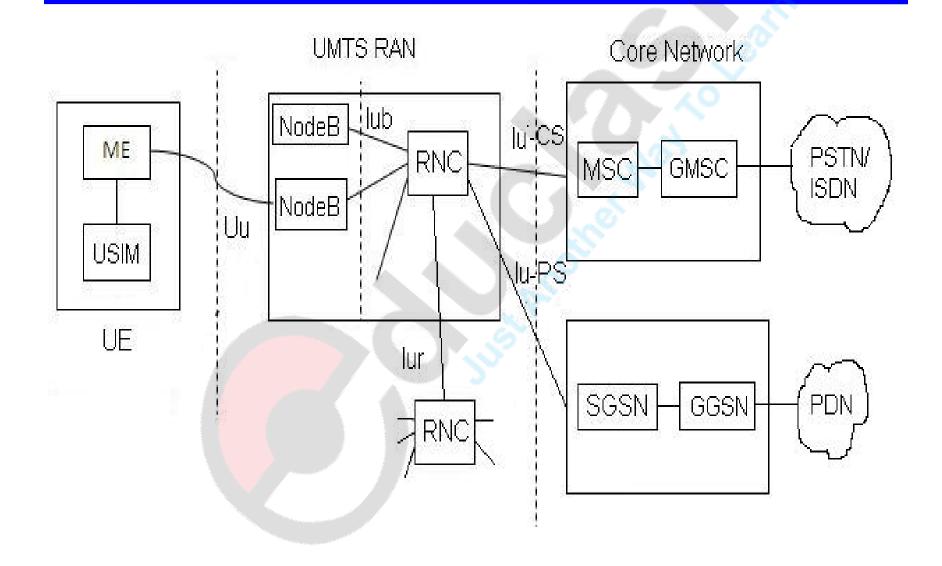
Module 4- UMTS


Contents:

- Network Architecture
- Interfaces
- Network Evolution
- Release 5
- FDD and TDD
- Time Slots
- Protocol Architecture
- Bearer Model

- Universal Mobile Telecommunication Systems
- 3G standard
- Delivers high bandwidth data and voice services to mobile users
- Based on wideband CDMA technology
- To support voice, video and data together.
- Evolutions:
 - Release 99: based on WCDMA, part of GSM/GPRS can be used
 - Release 4: merge CS and PS into a single entity
 - Release 5: special control layer for multimedia- using IP multimedia subsystem(IMS)- extension to PS network

1. UMTS Network Architecture-R99

UMTS Network Architecture Components-I

- 3 main functional entities:
 - User Equipment (UE)
 - UMTS Radio access network (UTRAN)
 - Core network (CN)
- RAN is based on WCDMA and ATM(Asynchronous mode of transmission)

User Equipment (UE)

- Replaces MS in GSM/GPRS
- New handset and new SIM, USIM(Universal SIM)
- Every UE can contain one or more USIM simultaneously.
- USIM is downloadable and can be accessed via the air interface and be modified by the network.

UMTS Network Architecture Components-II

• Node B

- Base station in UMTS
- Support higher data rates
- Termination point between air interface and transmission network of the RAN.
- Functions:
 - Power control
 - Reports the RNC
 - Combines the received signals coming from multiple sectors of the antenna that a UE is connected to.

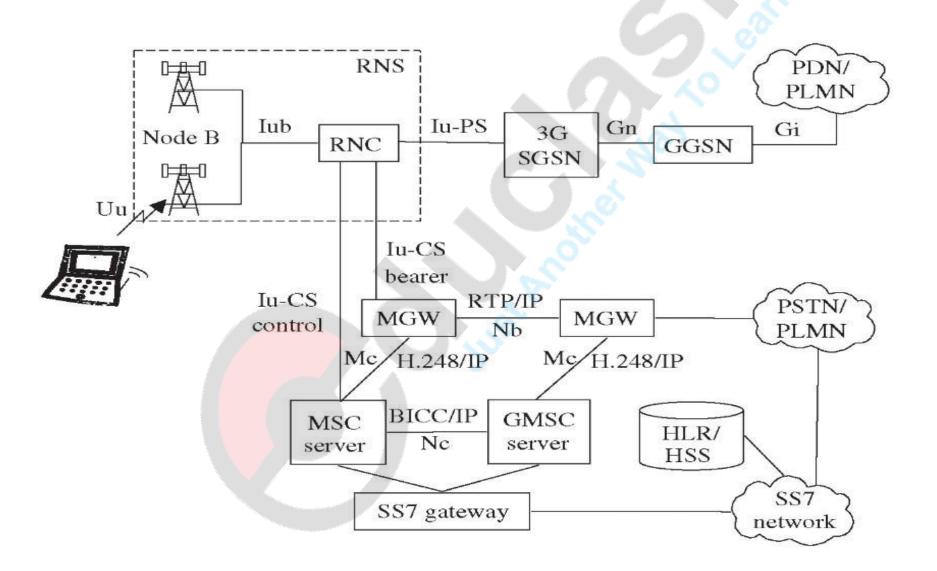
UMTS Network Architecture Components-III

Radio Network Controller (RNC)

- Main element of RNS (radio network system)
- Controls the usage and reliability of radio resources
- Similar to BSC in GSM
- Interfaced with MSC as well as SGSN
- Interconnection to other RNCs
- Main functionalities:
 - Call admission control
 - Radio bearer management
 - Power control
 - General Management control in connection to OMC

UMTS Network Architecture Components-IV

- 3 types of RNC
 - Serving RNC (SRNC)
 - Controlls user's mobility within UTRAN
 - Drift RNC (DRNC)
 - Receives connected Users that are drifted or handed over from SRNC cell connected to a different RNS.
 - Controlling RNC (CRNC)
 - Controls, configures and manages an RNS
 - Handles access request from UE


2. UMTS Interfaces

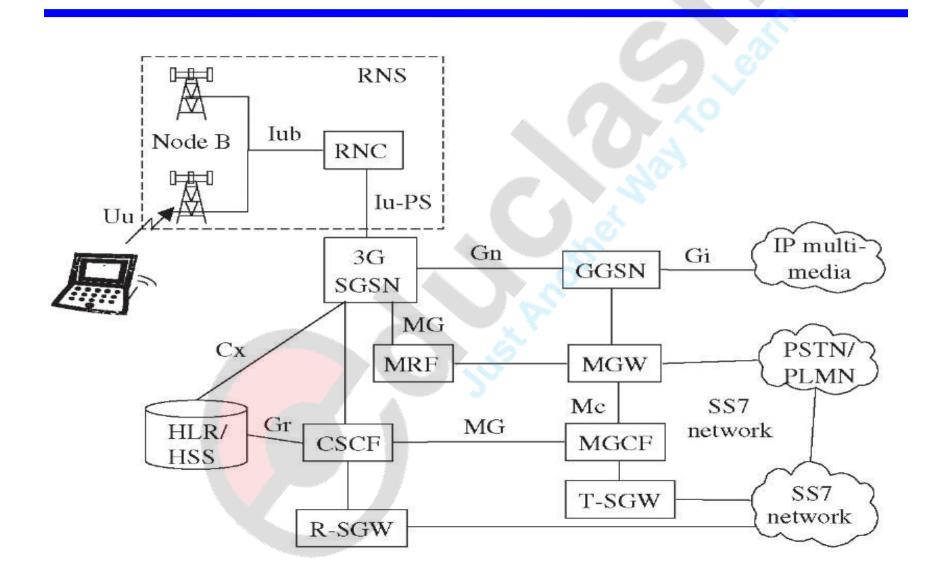
- New Interfaces:
 - Uu- radio interface between UE and Node B
 - lub-interface between Node B and RNC
 - lur- interface between RNC and RNC
 - lu(CS)-interface between RNC and MSC for circuit switching
 - lu(PS)-interface between RNC and SGSN for packet switching

3. Network Evolution-Release 4

- Merges separate circuit switched(MSC/VLR, GMSC) and packet switched(SGSN/SLR,GGSN) data into one based on IP network infrastructure
- Supports VoIP (Voice over internet protocol) technology
- New nodes are added to support VoIP:
 - MSC server
 - Media gateway (MGW)
 - Gateway MSC (GMSC)
- MGW
 - User traffic handling inside core network
 - Adaptation of circuit switched voice traffic to VoIP
 - Converts protocol for radio subsystem for fixed network like PSTN or pre-release 4 PLMN

Network Evolution-Release 4-Cont..

Network Evolution-Release 4- Cont..


- GMSC and MSC:
 - Call control and mobility management
- Uses ATM or IP in between MGW
- For IP, SGSN and MGW can be merged
- Core network consists of 2 parts:
 - IP based traffic network
 - SS7 signalling network
- GMSC and MSC are connected through H.248 protocol
- MGWs are connected through RTP(real time protocol)/UDP/IP protocols
- 2 additional gateways within IP based core network:
 - Transporting signalling gateway(T-SGW): call related signalling
 - Routing signalling gateway(R-SGW)-roaming, mobility management

Network Evolution-Release 4-cont..

• New interfaces:

- Mc- between MGW and MSC servers
- Nc- classical SS7 interface/ IP based
- BICC(Bearer Independent Call Control)/ SIP(Session Initiation Protocol)- between MSC and GMSC servers
- SCTP(Stream control transmission protocol) for transporting SS7 message on an IP interface
- On Mh interface- SS7 implemented over SCTP/IP

4. UMTS Release 5

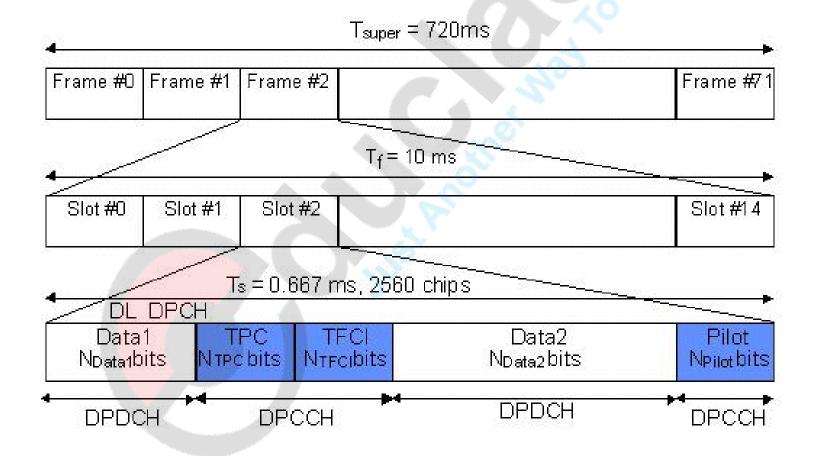
UMTS Release 5- Cont..

- To provide IP oriented services by the operators
- Conventional Circuit switched domain replaced by enhanced IP based access completed by packet switching
- IP Multimedia subsystems(IMS) based network
- 2 components of IMS:
 - CSCF- Call state control function- entry point for signalling of incoming signals
 - MGCF- media gateway control function- internetworking with PSTN of CS network
- Contains integrated database HSS- Home Subscriber Serverprovides subscriber profile information
- Session initiation protocol(SIP)- call and session control protocol

5. FDD and TDD

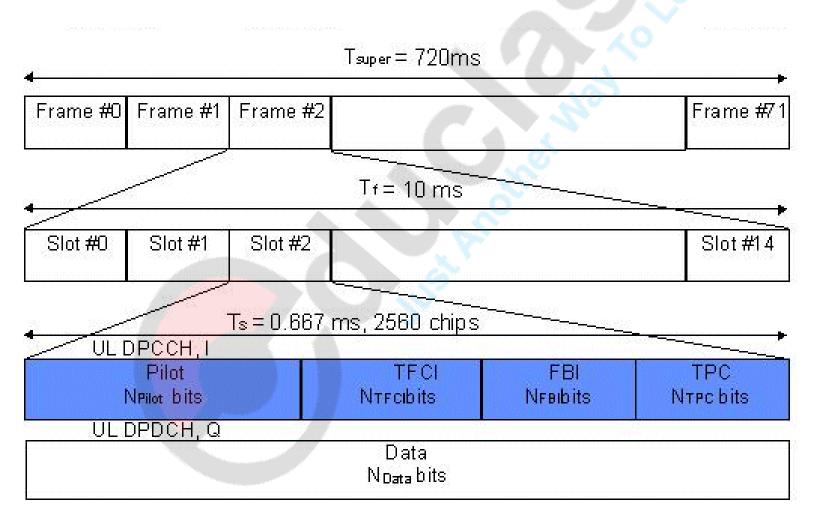
 Physical layer access is based on Wideband Direct Sequence CDMA with 2 duplex modes: FDD and TDD

- FDD- defined by code and frequency
- TDD- defined by code and time
- FDD
 - 1920-1980 MHz for uplink
 - 2110-2170 MHz for downlink
 - Min paired frequency allocation- 5 MHz
 - Frequency separation between uplink and downlink- 190 MHz
- TDD
 - 5 MHz unpaired band
 - Satellite uplink and downlink is 1980-2010 MHz and 2170-2200 MHz


6. Time Slots

- DPDCH- dedicated physical channel at the physical layer
- DPCCH- dedicated physical Control channel
- DPDCH and DPCCH are separated using different channelization codes for uplink transmission
- DPDCH and DPCCH are combined using TDM for downlink transmission
- **TPC** Transmit Power Control
 - Used to control power in the downlink
 - 1 bit information
 - 0- power needs to be decreased
 - 1- power is up
- **FBI** Feedback information- used to apply diversity techniques in the BTS, getting feedback from MS.

• **TFCI**- Transport Format Combination Indicator- used in order to inform the receiving side of the currently valid Transport Format Combination


Time Slots- Cont..

• Downlink DPCH(Dedicated Physical channel) slot allocation

Time Slots- Cont..

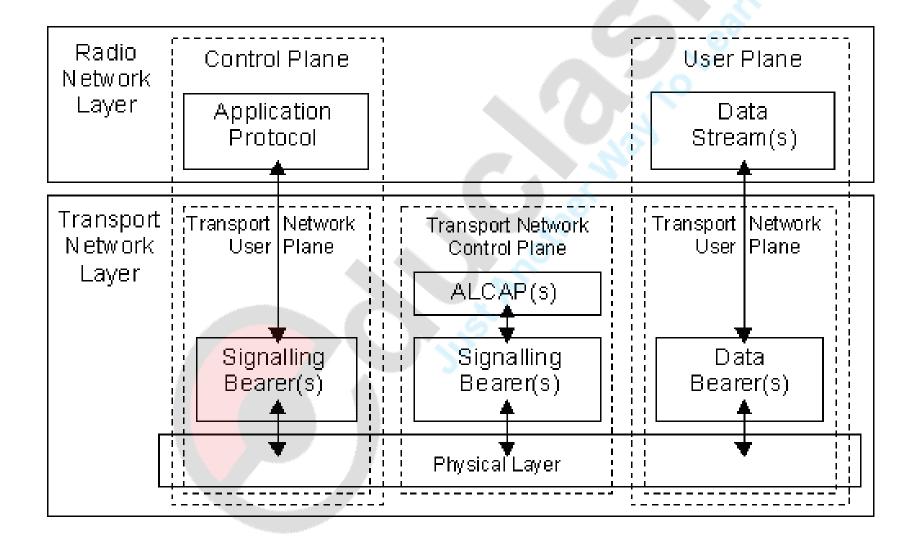
• Uplink DPCH slot allocation

7. Network Protocol Architecture

- Divided into 3 layers:
 - Transport network layer
 - Radio network layer
 - System network layer
- Each layer is divided into user plane and control plane.

Transport network layer

Allows communication between UTRAN and Core network


Radio network layer

 Provide management of radio interface and communication between UTRAN components and between UTRAN and UE.

System Network layer:

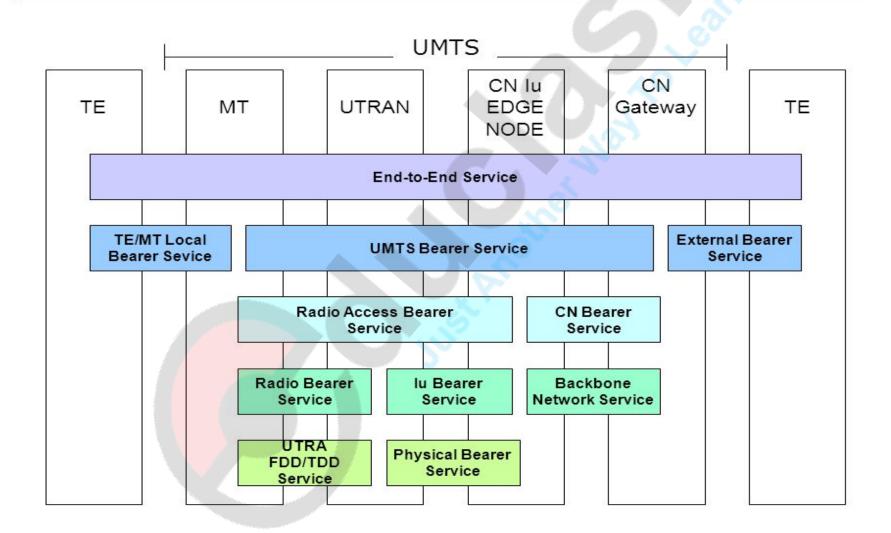
- Allows communication between CN and UE.

General Protocol Model

General Protocol Model-Cont..

Control plane:

- Application protocols
 - RANAP- RAN application part
 - RNSAP- Radio network subsystem application part
 - NBAP- Node B application part
 - Signalling Bearer- to transport application protocol messages


User plane:

Data streams and data bearers

Transport network control plane:

- ALCAP- Access link control application protocol

8. Bearer Model

• A bearer service is a link between two points, which is defined by a certain set of characteristics.

• Whenever a UE is being provided with any service (CS/PS service), the service has to be associated with a Radio Bearer specifying the configuration for Layer-2 and Physical Layer in order to have its QOS clearly defined.

• Radio bearers are channels offered by Layer 2 to higher layers for the transfer of either user or control data.

• In other words, Layer 2 offers to the upper layers the service of information transmission between the UE and the UTRAN by means of the Radio Bearers (RBs) and Signaling Radio Bearers (SRBs).

Reference book

• Wireless Communications and Networks, 3G and Beyond, Second Edition, ITI Saha Misra, McGraw Hill Education-Chapter 11