Module 4-Introduction to LTE

LTE

- Long Term Evolution
- Evolution of WCDMA
- also referred to as evolved universal terrestrial radio access (E-UTRA) or Super 3G (S3G)
- Uses OFDM downlink and single-carrier FDMA uplink- to increase data rates
- Targeted data rates of 100 Mbit/s in the downlink and 50 Mbit/s in the uplink

Requirements for LTE

Parameter	Target figures		
Peak data rates	100 Mbit/s for downlink 50 Mbit/s for uplink		
Average user throughput per MHz compared to HSPA Release 6	3-4 times higher for downlink 2-3 times higher for uplink		
Spectrum efficiency in bit/s/Hz/cell compared to HSPA Release 6	3-4 times higher for downlink 2-3 times higher for uplink		
Mobility	0-15 km/h (optimized for this range) 15-120 km/h (high performance guaranteed) 120-350 km/h (connection maintained)		
Supported bandwidths	1.25-20 MHz		
Spectrum allocation	Operation in paired spectrum (FDD) and unpaired spectrum (TDD) should be supported		
Latency	5 ms user-plane latency at IP layer, for one-way 100 ms control-plane latency from idle to active state		
Number of users per cell	At least 200 at 5 MHz bandwidth At least 400 at bandwidth higher than 5 MHz		

RAN (Radio Access Network) Architecture

RAN (Radio Access Network) Architecture-Cont..

- A radio network controller (RNC) is omitted with LTE, which reduces the latency in the RAN.
- This leads LTE to shift more complexity into the eNodeB, which in LTE terminology refers to the base station.
- Tasks of eNode:
 - Physical layer processing
 - Mobility management
 - Radio Resource management
- The eNodeBs in the LTE RAN are directly connected to each other and the handover decisions are taken by the eNodeB.

Radio Protocol Architecture

Radio Protocol Architecture-Cont...

- The LTE protocol stack is split into the user plane and the control plane.
- All protocols are located in the base station (eNodeB) and mobile terminal station (UE).

Radio Resource Control (RRC)

- part of the control plane
- responsible for configuring the layer 1 and layer 2 protocols PDCP, RLC, MAC, and PHY.
- Main functions- admission control, handover management, QoS management, terminal station measurement reporting and control, paging.

Packet Data Convergence Protocol (PDCP)

- At the user plane: IP header compression, transfer of user data, and ciphering.
- At the control plane: transfer of control data and ciphering.

Radio Protocol Architecture-Cont...

Radio Link Control (RLC)

- Segmentation and reassembly of packets from higher layers
- error correction through ARQ(Automatic Repeat Request)
- flow control between the eNodeB and the mobile terminal

Medium Access Control (MAC)

- scheduling in the up- and downlink
- error correction through hybrid ARQ (HARQ)
- adaptive modulation
- resource and power assignment
- antenna mapping

Physical Layer (PHY)

coding, modulation, and multiple antenna transmission

Downlink Transmission Scheme

LTE Downlink Frame Structure

Uplink Transmission Scheme

Figure 5-11 DFT-spread OFDM transmission scheme

Figure 5-12 Block diagram of the LTE uplink

Uplink Frame Structure

Supported Bandwidths

E-UTRA band	Uplink (UL) (MHz)	Downlink (DL) (MHz)	UL-DL guard band (MHz)	Duplex mode
1	1920-1980	2110-2170	130	FDD
2	1850-1910	1930-1990	20	FDD
3	1710-1785	1805-1880	20	FDD
4	1710-1755	2110-2155	355	FDD
5	824-849	869-894	20	FDD
6	830-840	875-885	35	FDD
7	2500-2570	2620-2690	50	FDD
8	880-915	925-960	10	FDD
9	1749.9-1784.9	1844.9-1879.9	60	FDD
10	1710-1770	2110-2170	340	FDD
11	1427.9-1452.9	1475.9-1500.9	23	FDD
12	[TBD]	[TBD]	[TBD]	FDD
33	1900-1920	1900-1920	N/A	TDD
34	2010-2025	2010-2025	N/A	TDD
35	1850-1910	1850-1910	N/A	TDD
36	1930-1990	1930-1990	N/A	TDD
37	1910-1930	1910-1930	N/A	TDD
38	2570-2620	2570-2620	N/A	TDD
39	1880-1920	1880-1920	N/A	TDD
40	2300-2400	2300-2400	N/A	TDD

Reference book

 Multi-Carrier and Spread Spectrum Systems - From OFDM and MC-CDMA to LTE and WiMAX, Second Edition, K. Fazel, S. Kaiser, wiley publications- Chapter 5- Section 5.2