Module 3 Cellular Wireless Networks

Chricki pte sacid a le let network

- Cellular network organization
- Operation of cellular systems
- Handoff
- Generation of cellular networks- 1G, 2G, 2.5G, 3G, 4G.

1. Principles of Cellular Networks

- •Underlying technology for mobile phones, personal communication systems, wireless networking etc.
- Developed for mobile radio telephone
 - —Replace high power transmitter/receiver systems
 - Typical support for 25 channels over 80km
 - —Use lower power, shorter range, more transmitters

2. Cellular Network Organization

- Multiple low power transmitters
 - -100w or less
- Area divided into cells
 - —Cell- radio coverage area by a single base station.
 - —Each with own antenna
 - —Each with own range of frequencies
 - —Served by base station
 - Transmitter, receiver, control unit
 - Adjacent cells on different frequencies to avoid crosstalk
 - —To increase system capacity- Frequency reuse, use of smaller cells, use of antenna within a sector.

Shape of Cells

Square

- Width d cell has four neighbors at distance d and four at distance $\sqrt{2} d$
- Better if all adjacent antennas equidistant
 - Simplifies choosing and switching to new antenna

Hexagon

- Provides equidistant antennas
- Radius defined as radius of circum-circle
 - Distance from center to vertex equals length of side
- Distance between centers of cells radius R is $\sqrt{3}$ R
- Not always precise hexagons
 - Topographical limitations
 - Local signal propagation conditions
 - Location of antennas

Cellular Geometries

(a) Square pattern

(b) Hexagonal pattern

Cell types

Omni-directional cell

- —Base station antenna- omnidirectional.
- —Center- base station is situated.

Sector cell

- —Base station in each cell with directional antenna.
- —Cells divided into sectors with fixed angular distribution.

Cell Cluster

- Cluster- a group of cells with different frequency.
- Different standards for cell structuring:
 - —4 cell standrard with all omni directional cells.
 - —7 cell standrard with all omni directional cells.
 - —12 cell standrard with all omni directional cells.
 - —21 cell standrard with 7 base stations, each associated with 3 sector cells.
 - —24 cell standrard with 4 base stations, each associated with 3 sector cells.

Frequency Reuse

- Simultaneous use of same frequency in different distinct set of cells.
- Power of base transceiver controlled
 - Allow communications within cell on given frequency
 - Limit escaping power to adjacent cells
 - —Allow re-use of frequencies in nearby cells
 - Use same frequency for multiple conversations
 - 10 50 frequencies per cell
- E.g.
 - N cells all using same number of frequencies
 - K total number of frequencies used in systems
 - —Each cell has K/N frequencies
 - Advanced Mobile Phone Service (AMPS) K=395, N=7 giving 57 frequencies per cell on average

Characterizing Frequency Reuse

- D = minimum distance between centers of cells that use the same band of frequencies (called cochannels)
- R = radius of a cell
- d = distance between centers of adjacent cells (d = R)
- N = number of cells in repetitious pattern-frequency reuse factor
 - Reuse factor
 - Each cell in pattern uses unique band of frequencies
- Hexagonal cell pattern, following values of N possible
 - $N = I^2 + J^2 + (I \times J)$, I, J = 0, 1, 2, 3, ...
- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- D/R= $\sqrt{3}N$
- D/d = \sqrt{N}

Co-channel and Adjacent channel interference

- Intra-cell interference- interference from other mobiles residing at the same cell.
- Inter cell interference- interference between different cells.
- Frequency reuse introduces co-channel interference.
- Co-channel interference- interference from co-channel cells.
- Adjacent channel interference- results from signals, which are adjacent in frequency to the desired signal.

Frequency Reuse Patterns

- (a) Frequency reuse pattern for N = 4
- (b) Frequency reuse pattern for N = 7

Increasing Capacity (1)

Add new channels

—Not all channels used to start with

Frequency borrowing

- —Taken from adjacent cells by congested cells
- Or assign frequencies dynamically

Cell splitting

- —Non-uniform distribution of topography and traffic
- —Smaller cells in high use areas
 - Original cells 6.5 13 km
 - 1.5 km limit in general
 - More frequent handoff
 - More base stations

Cell Splitting

Increasing Capacity (2)

Cell Sectoring

- —Cell divided into sectors
- -3 6 sectors per cell
- —Each with own channel set
 - Subsets of cell's channels
- —Directional antennas

Microcells

- —Move antennas from tops of hills and large buildings to tops of small buildings and sides of large buildings
 - Even lamp posts
- —Form microcells
- —Reduced power
- Good for city streets, along roads and inside large buildings

Frequency Reuse Example

(a) Cell radius = 1.6 km

(b) Cell radius = 0.8 km

Channel Assignment Schemes-I

- Assignment channels to base stations.
- Fixed channel assignment(FCA)
 - A fixed set of channels assigned to each cell.
 - Blocking of excess calls
 - Types:
 - Flexible Borrowing- 2 channels one for local use and other for borrowing.
 - Borrowing with Channel Ordering- borrowing based on priority
- Dynamic channel assignment(DCA)
 - Channels are allocated to users on demand from a central pool based on a cost function.
 - Types:
 - Random DCA- randomly
 - Channel Ordering- based on priority
 - Weighted carrier ordering- based on favourite channels based on past experiences.

Channel Assignment SchemesII

- Hybrid Assignment:
 - Fixed channels allotted to each cell.
 - Channel shortage- set of flexible channels according to DCA strategy.
 - Flexible channel assignment types:
 - Scheduled scheme- assumes future changes in traffic distribution.
 - Predictive schemes- continuously monitors the traffic in each cell for dynamic allocation.
 - Converges to Fixed channel assignment under heavy traffic.

3. Operation of Cellular Systems

- Base station (BS) at center of each cell
 - —Antenna, controller, transceivers
- Controller handles call process
 - Number of mobile units may in use at a time
- BS connected to mobile telecommunications switching office (MTSO)
 - —One MTSO serves multiple BS
 - —MTSO to BS link by wire or wireless
- MTSO:
 - Connects calls between mobile units and from mobile to fixed telecommunications network
 - —Assigns voice channel
 - Performs handoffs
 - Monitors calls (billing)
- Fully automated

Overview of Cellular System

Channels

- Available between mobile unit and base station.
- Control channels
 - —Setting up and maintaining calls
 - —Establish relationship between mobile unit and nearest BS
- Traffic channels
 - —Carry voice and data

Typical Call in Single MTSO Area (1)

- Mobile unit initialization
 - Scan and select strongest set up control channel
 - Automatically selected BS antenna of cell
 - Usually but not always nearest (propagation anomalies)
 - Handshake to identify user and register location
 - —Scan repeated to allow for movement
 - Change of cell
 - Mobile unit monitors for pages
- Mobile originated call
 - —Check set up channel is free
 - Monitor forward channel (from BS) and wait for idle
 - —Send number on pre-selected channel
- Paging
 - —MTSO attempts to connect to mobile unit
 - Paging message sent to BSs depending on called mobile number
 - Paging signal transmitted on set up channel

Typical Call in Single MTSO Area (2)

- Call accepted
 - Mobile unit recognizes number on set up channel
 - Responds to BS which sends response to MTSO
 - —MTSO sets up circuit between calling and called BSs
 - MTSO selects available traffic channel within cells and notifies BSs
 - —BSs notify mobile unit of channel
- Ongoing call
 - —Voice/data exchanged through respective BSs and MTSO
- Handoff
 - Mobile unit moves out of range of cell into range of another cell
 - —Traffic channel changes to one assigned to new BS
 - Without interruption of service to user

Call Stages

(a) Monitor for strongest signal

(b) Request for connection

(c) Paging

(d) Call accepted

(e) Ongoing call

(f) Handoff

Other Functions

- Call blocking
 - During mobile-initiated call stage, if all traffic channels busy, mobile tries again
 - After number of fails, busy tone returned
- Call termination
 - User hangs up
 - MTSO informed
 - Traffic channels at two BSs released
- Call drop
 - BS cannot maintain required signal strength
 - Traffic channel dropped and MTSO informed
- Calls to/from fixed and remote mobile subscriber
 - MTSO connects to PSTN
 - MTSO can connect mobile user and fixed subscriber via PSTN
 - MTSO can connect to remote MTSO via PSTN or via dedicated lines
 - Can connect mobile user in its area and remote mobile user

Mobile Radio Propagation Effects

- Signal strength
 - Strength of signal between BS and mobile unit strong enough to maintain signal quality at the receiver
 - Not strong enough to create too much cochannel interference
 - Noise varies
 - Automobile ignition noise greater in city than in suburbs
 - Other signal sources vary
 - Signal strength varies as function of distance from BS
 - Signal strength varies dynamically as mobile unit moves
- Fading
 - Even if signal strength in effective range, signal propagation effects may disrupt the signal

4. Handoff(I)

 Procedure for changing the assignment of a mobile unit from one BS to another as the mobile unit moves from one cell to another.

Types:

- Network initiated: decision is made solely by the network measurements of received signals from the mobile unit.
- Mobile unit assisted: enables mobile unit to participate in the handoff decision by providing feedback to the network concerning signals received at the mobile unit.

Handoff process (I)

- Involves identifying new cells.
- Re-association of voice and control channels.
- Two phases:
 - Initiation phase
 - Execution phase
- Initiated when average signal level from new BS exceeds that from the current BS by a specific threshold.
- Normal acceptable voice quality signal -90dBm to -100dBm.
- Slightly stronger signal level is used as a threshold.

Handoff process (II)

- Execution phase: allocation of new radio resource channels and exchange of control message.
- System designer must maintain an optimum signal level at which handoff should be initiated.
- Current BS monitors RSS quality from mobile station.
- If goes below threshold, mobile unit is ask to measure signal from neighboring base stations.
- Two cases:
 - Mobile unit sends collected information to BS.
 - Mobile unit itself selects the most suitable BS.

Types of Handoffs

Hard Handoff

- Break before make.
- GSM uses this technique.
- Types-
 - Intra-cell handoff
 - Inter-cell handoff

Soft Handoff

- Make before break.
- CDMA uses this technique.

Generation of Cellular Networks

- First generation cellular networks (1G)
 - Analog, voice only communications.
- Second generation cellular networks (2G)
 - Digital, Voice and data communications
- 2.5G
 - Digital, Voice and data communications
- Third generation cellular networks(3G)
 - Convergence of wireless and internet
- Fourth generation cellular networks(4G)

1G cellular networks

- Started in 1980s.
- Analog radio transmission and circuit switching.
- Circuit switched voice communication.
- Analog FM for speech transmission.
- Sharing of spectrum using FDMA.
- Different standards:
 - Nordic mobile Telephones (NMT)- Nordic countries
 - Total access communication systems(TACS)- UK and Ireland
 - Advanced Mobile Phone system(AMPS)- North America
 - Nippon Telephone and Telegraph(NTT)- Japan

1G- Architecture

- All 1G systems differ by features such as location of the spectrum band, channel capacity, spacing and also with data rate.
- Mobile station-----Base Station-----Mobile switching centre (MSC)-----PSTN.
- Radio access Network (RAN) consists of BS.
- MS connected to BS to access core network (CN).
- CN- wireline network to connect different RANs and other networks.
- MSC- main entity of RAN.

Drawbacks:

- Roaming between different operators.
- Roaming between different countries not possible.
- Inefficient use of frequency.

2G cellular networks

- Started in early 1990s.
- Use of TDMA and CDMA.
- GSM- popular 2G std. uses TDMA.
- Supports roaming.
- Digital technology.
- Supports Voice, mobile data and internet services.

Standards:

- GSM in Europe.-uses TDMA
- IS-136 in US.-uses TDMA
- IS-95 in North America and South Korea.-uses CDMA

Architecture:

Mobile terminal----Base station----base station controller
 (BSC)----Mobile switching centre(MSC)----PSTN

2.5G cellular networks

- 2G- circuit switched based data service with low rate(9.6 kbps)
- Support for packet switched data service.
- Standards;
 - GPRS- General Packet Radio Service.
 - Packet services over GSM radio systems.
 - Different paths for voice and data transmission.
 - EDGE- Enhanced Data rates for Global GSM Evolution.
 - Advanced modulation and channel encoding techniques for increased data rates – 384 kbps.
 - CDMA based IS-95B.
 - Circuit switching and packet switching over a common CDMA radio channel.

3G cellular networks

- Began in late 1990s.
- Purpose- to deliver high rate voice and data service.
- IP-based data.
- Voice and multimedia services with integration to internet.
- Improved interoperability to handle mobility across different radio technologies among different networks.
- IMT 2000-by ITU- to implement a global frequency in the range of 2000 MHz to support single ubiquitous wireless communication all over the world.
- ITU-IMT-2000 Standards:
 - UMTS Group Universal Mobile Telecommunications System (3GPP- Third generation partnership project)
 - CDMA2000 group (3GPP2)

4G cellular networks

- Began in late 1990s.
- High speed data access and multimedia services.
- Integration of voice, video and data services.
- Use of IP.
- Traditional functionality of MSC is replaced by all-IP switching network.
- Wireless IP with self provisioning of different multimedia services like video, audio and games.
- Goal- single worldwide cellular network standard based on IPv6.
- Key technology- OFDM.
- Key features- mobile multimedia, anytime anywhere access, global mobility support, integrated wireless solution and customized personal service.

Reference books

[1] Wireless Communications & Networks, Second Edition, William Stallings, Pearson Education

[2] Wireless Communications and Networks, 3G and Beyond, Second Edition, ITI SahaMisra, McGraw Hill Education

Reference books (Topic-wise)

Sr. No	Topic	Ref. book	Chapter No.
1	Principles of cellular network	Wireless Communications & Networks, Second Edition, William Stallings, Pearson Education	5
2	Cellular network organization	Wireless Communications & Networks, Second Edition, William Stallings, Pearson Education	5
3	Operation of cellular systems	Wireless Communications & Networks, Second Edition, William Stallings, Pearson Education	5
4	Handoff	Wireless Communications and Networks, 3G and Beyond, Second Edition, ITI SahaMisra, McGraw Hill Education	3
5	Generation of cellular networks- 1G, 2G, 2.5G, 3G, 4G.	Wireless Communications and Networks, 3G and Beyond, Second Edition, ITI SahaMisra, McGraw Hill Education	2

University Questions

1. Explain the generations of cellular networks- 8M-May 2016.