
Remote Procedure Call

The Programming Model

Remote Subroutine

……………………

bar = foo(a,b);

…………………

int foo(int x, int y)

{

if (x>100)

return(y-2);

else if (x>10)

return(y-x);

else

return(x+y);

}

Client
Server

RPC
 Remote Procedure Call (RPC) is a powerful, robust, efficient, and secure inter

process communication technique for creating distributed client/ server
programs

 It makes client/server interaction easier and safer by handling common tasks,
such as security, synchronization, data flow etc.

 It enables data exchange and invocation of functionality residing in a different
process. That different process can be on the same machine, on the local area
network, or across the Internet

 Though RPC is not a universal answer for all types of distributed applications, it

does provide a valuable communication mechanism that is suitable for building a

fairly large number of distributed applications

 RPC(Remote Procedure Call) is a way to

 Hide communication details behind a procedural call so user does not have to

understand the underlying network technologies

 Bridge heterogeneous environments

RPC (Cont’d)

 RPC has become a widely accepted IPC mechanism in DCS

 Its popularity is mainly because of the following features:

1. Simple call syntax

2. Familiar semantics (similar to local procedure calls)

3. Its specifications of a well defined interface. It is used to support

compile time checking and automated interface generation

4. Its ease of use: clean and simple semantics of a procedure call makes

it simpler to build distributed applications right

5. Its generality between single machine and multi machine applications

6. Its efficiency. Procedure calls are simple enough for communication

to be rapid

7. It can be used as an IPC mechanism to communicate between

processes on different machines as well as between processes on the

same machine

Issues Handled by RPC

 How to invoke service in a more or less transparent manner

 How to exchange data between machines that might use different

representations for different data types.

 data type formats (e.g., byte orders in different architectures)

 data structures (need to be flattened and reconstructed)

 How to find the service, one actually wants, among a potentially large

collection of services and servers

 Client should not know where the server resides or even which server

provides the service

 How to deal with errors in the service invocation:

 Server is down, communication link broken, server busy, duplicated

requests etc

RPC Model

Receive request and start

procedure execution

Procedure executes

Caller (client) Callee (server)

Request message

Includes RP parameters

Send reply and wait for

next request

Reply messageResume

execution

Call procedure

and wait for reply

RPC Model (Cont’d)

 The caller normally known as client process sends a call request message

to callee (called server process) and waits (blocks) for a reply message

 The request message contains the remote procedures parameters among

other things

 The server process executes the procedures and then returns the result of

the procedure execution in a reply message to the client process

 Once the reply message is received, the result of the execution is

extracted and the caller’s execution is resumed

 The server process is normally dormant, awaiting the arrival of a request

message

RPC Model (Cont’d)
 When one arrives, , it extracts procedure’s parameters, computes the

result, sends reply message and then awaits the next message

 Sometimes, RPC implementation may be asynchronous so that caller can

do some useful work while waiting for the reply

 Another possibility is to have the server create a thread to process the

incoming request, so that server can be free to process other requests

Transparency of RPC

 A major issue in the design of RPC is its transparency property

 Local procedures & remote procedures are indistinguishable to

programmers.This requires:

 SyntacticTransparency: RPC should have same syntax as local PC

 SemanticTransparency: Semantics of RPC is identical to those of LPC

 SyntacticTransparency is very easy to achieve

 SemanticTransparency almost impossible to achieve because:

 Address space of calling process & called process is disjoint

 The remote (called) procedure can not have access to any variables or

data values in the calling program’s environment

Transparency of RPC (Cont’d)

 Hence in the absence of shared memory, it is meaningless to pass addresses in

the arguments, pointers to the structure

 Hence parameter passing (pointer and structures) is going to be different

 Remote procedure calls need the ability to take care of possible

processor crashes & communication problems of network and

hence vulnerable to failure

 Remote procedure calls take more time due to involvement of

communication network (network congestion)

 Because of these difficulties in achieving normal call semantics for remote

procedures, many feel that RPC should be nontransparent

 Hence in most environments, total semantic transparency is impossible,

enough can be done to ensure the programmers are comfortable

Implementing RPC Mechanism

 RPC implementation is based on the concept of stubs, which provide a
perfectly normal LPC abstraction by concealing from the programs the
interface to RPC system

 To conceal the interface of the RPC system from both the client and server
processes, a separate stub procedure is associated with both processes

 To hide intricacies and function details of underlying network, an RPC
communication package (known as RPC Runtime) is used on both client and
server side

 Hence implementation of RPC involves following five elements

 The client

 The client stub

 The RPC Runtime

 The server stub

 The server

Elements of RPC (Cont’d)

 Client

 A process, such as a program or task, that requests a service provided by

another program

 The client process uses the requested service without having to deal with

many working details about the other program or the service

 Client Stub

 Module within a client application containing all of the functions necessary for

the client to make remote procedure calls and performs following functions :–

 On a request from client, packs a specification of target procedure &

arguments into a message & asks local RPC Runtime to send it to server

stub

 On receipt of procedure execution, it unpacks result & passes it to client

Elements of RPC (Cont’d)

 RPC Runtime

 Handles transmission across the network between client and server machine.

 It is responsible for retransmissions, acknowledgment, packet routing and
encryption.

 Server Stub

 Module within a server application or service that contains all of the
functions necessary for the server to handle remote requests using local
procedure calls.

 On receipt of call request, it unpacks it and makes a normal call to invoke
the procedure in the server.

 On receipt of the result of procedure execution, it packs the result into a
message and ask the RPC Runtime to send it to the client stub.

 Server

 A process, such as a program or task, that responds to requests from a client.

How RPC Works

 Interaction between them is shown below

RPC Procedure

1. Client makes a procedure call

2. Client stub retrieves the required parameters from the client address space

3. Translates the parameters as needed into a standard format (NDR Network

Data Representation) for transmission over the network

4. Calls functions in the RPC client run-time library to send the request and

its parameters to the server

5. The server RPC run-time library functions accept the request and call the

server stub procedure

6. The server stub retrieves the parameters from the network buffer and

converts them from the network transmission format to the format the

server needs

7. The server stub calls the actual procedure on the server

RPC Procedure
8. The remote procedure then runs, possibly generating output parameters and a

return value. When the remote procedure is complete, a similar sequence of

steps returns the data to the client

9. The remote procedure returns its data to the server stub

10. The server stub converts output parameters to the format required for

transmission over the network and returns them to the RPC run-time library

functions

11. The server RPC run-time library functions transmit the data on the network to

the client computer

12. The client RPC run-time library receives the remote-procedure return values

and returns them to the client stub

13. The client stub converts the data from standard format to the format used by

the client computer. The stub writes data into the client memory and returns

the result to the calling program on the client

14. The calling procedure continues as if the procedure had been called on the

same computer

Stub Generation

 Manually

 A set of translation functions are provided from which user can construct

his own stub. The method is simple and handle very complex parameter

types

 Automatically

 It uses Interface Definition Language (IDL) to define interface between

client & server

 This is more commonly used method for stub generation

 A set of procedure names supported by the interface, with the types of

their arguments and results are devised.

Interface Definition Language

 IDLs describe an interface in a language-neutral way, enabling communication

between software components that do not share a language

 For example, between components written in C++ and components written in

Java

 An interface compiler is then used to generate the stubs for clients and servers

(appropriate marshalling/ unmarshalling operations & header file that supports

data type in interface definition)

 IDL has header file which is included in both client and server programs and

client stub procedures are compiled and linked with client programs, while

server stub procedures are compiled and linked with server programs

Where Stubs Come From

RPC Messages

 Any RPC involves a client process and a server process that are located on

different machines

 This requires some messages to be exchanged between them

 There are two types of messages

 Call Messages that are sent from the client to the server for requesting

execution of a particular remote procedure

 Reply messages that are sent by server to the client for returning the result of the

remote procedure execution

 The protocol of the RPC system defines the format of these two types of

messages, and they are independent of the transport protocols

 i.e., RPC does not care how the messages are passed between two systems

Call Messages

 This makes the messages to be simple and easy to handle

 The call message must have basic components which are necessary

 Identification information of the Remote procedure to be executed

 Arguments necessary for the execution of the procedure

 In addition normally it contains the following fields

 Message identification field that contain a sequence number

 It is needed for identifying lost or duplicate messages in case of system
failure and for properly matching reply messages with outstanding call
messages, especially when several outstanding call messages arrive out
of order

 Message type field that specify whether it is a call or reply message

Call Messages (Cont’d)

 A Client identification field: used for identifying the client to whom reply

message has to be sent as well as for checking the authenticity of the client

process for executing a particular procedure

 Hence a typical call message format may be as given below

Arguments

Remote procedure identifier

Program

number

Version

number

Procedure

number

Client

identifier

Message

type

Message

identifier

Reply Messages

 When a server receives a call message from a client, it will be faced with one of

following conditions

 Call message is not intelligible or it violates RPC protocol. The Server rejects

such calls

 Client is not authorized. Server returns unsuccessful reply.

 Remote program, version or procedure no. specified is not available with

server. Unsuccessful reply

 If this stage is reached, an attempt will be made by the server to execute the

remote procedure specified in the call message. If it is unable to decode

supplied arguments. This may be due to incompatible RPC interface used by

client and server

 An Exception (such as division by zero) occurs while executing.

 Procedure is executed successfully & reply sent back

Reply Messages (Cont’d)

 Obviously in the first five cases, an unsuccessful reply has to be sent with the
reason for failure in processing the request

 Successful reply has to be sent in the last case with the result of the procedure
execution

 A typical RPC reply messages are shown above

Message

identifier
Message

type

Reply status

(successful) Result

Message

identifier

Message

type

Reply status

(unsuccessful)
Reason

for failure

Successful

Reply

Unsuccessful

Reply

Reply Messages (Cont’d)

 Message identifier is same as in the call message so that the client can properly

match them

 Type field is set to reply message

 A successful reply, has status field as zero followed by the result of the procedure

execution

 A non-zero status field indicates unsuccessful and its value specifies type of error.

In any case a short message is placed in the last field

Marshaling Arguments and Results

 Implementation of RPC involves transfer of arguments from client to server

and transfer results from server to client

 These are basically language level data structures (program objects)

 These are transferred in the form of message data between the two

computers involved in the call

 In IPC we have seen encoding/decoding of data for transfer of message data

between two computers

 In RPC this operation is called as Marshalling

 It is the packing of procedure parameters into a message packet(Encoding/

Decoding). It involves:

 Taking arguments of a client process or result of server process that will

form the message data to be sent to the remote process

Marshaling Arguments and Results (Cont’d)

 Conversion of language level data structures and program objects into

stream form that is suitable for transmission and placing them into a

message buffer

 Decoding of the message data on the receiver computer and

reconstruction of program objects from message data stream

 In order that marshaling can be performed successfully, the order and

the representation method (tagged or untagged) used to marshal

arguments and results must be known to both the client and server or

the RPC

Marshaling Arguments and Results (Cont’d)

 Marshaling procedures are of two types

 Those provided as a part of RPC software

 Used for scalar & compound data types built from the scalar ones

 Defined by users of RPC system

 Used for user-defined data types & pointer data types

A good RPC system should always generate in line marshaling

code for every remote call, so that the users are relieved of

the burden of writing their own marshaling procedures

Server Management

 In RPC based applications, two important issues to be considered for server

management are server implementation and server creation

 Based on the style of implementation used, servers may be of two types: stateful

or stateless

 Stateful Server

 Maintains client’s state information from one Remote Procedure Call to the

next

 Client’s state information is subsequently used at time of execution of second

call

 Server gives the client a connection identifier unique to the client

 Identifier is used for subsequent accesses until the session ends

Stateful Server

 Server reclaims main-memory space used by clients that are no longer active

Open (filename ,mode):This operation is used to open a file identified by filename in

the specified mode. When the server executes this operations, it creates an entry

for this file in the open file state information table, resets read and write pointers

to zero and returns file identifier fid to client, which is used by the client for

subsequent access to the file

Read(fid, n , buffer): Reads n bytes of the file fid into buffer named buffer starting from

the current pointer (maintained by the server). When the server executes this

operation, it returns to the client n bytes of the file data starting from the byte

currently addressed by the read-write pointer and then increments the read-write

pointer by n

Stateful server (Cont’d)

Write (fid, n ,buffer): On execution of this operation, the server takes n bytes of data

from specified buffer, writes it into the file identified by fid at the byte position

currently addressed by the read-write pointer and then increments read-write pointer

by n

Seek (fid , position): This operation causes the server change the value of the read-write

pointer of the file identified by fid to a new value specified by the position

Close (fid): Causes the server to delete from its file-table the file state information of

file identified by fid

 The server discussed above is stateful server as it maintains the current state

information for a file that has been opened for use by a client

Example of Stateful File Server

fid mode R/W pointer

Server processClient process

Open(filename,mode)

Return (fid)

Read (fid, 100, buf)

Return (bytes 0 - 99)

Read (fid, 100, buf)

Return(bytes 100-199)

Stateless Server

 A stateless server does not maintain any client information

 Every request from a client must be accompanied with all necessary parameters

to successfully carry out the desired operation, i.e. every request is self-

contained

 No need to establish and terminate a connection by open and close operations

Read (filename, position, n, buffer): On execution of this operation, the server

returns to the client n bytes of data from the file with name filename, from

position specified

 The returned data is written into the buffer named buffer

 The actual no. of bytes read is also returned to client which will be equal to

or less than n (i.e. when encountering end of file)

Stateless Server (Cont’d)

Write (filename, position, n, buffer): When server executes this operation, it

takes n bytes of data from specified buffer and writes it into the file

identified by filename starting at position from and returns actual no of

bytes written

 As shown in the figure this file server does not keep track of any

information resulting from previous operation

 The figure in the next slide shows two read operations

 Notice that in this case it is the client which maintains file state

information

Stateless File Server

fid mode

R/W

pointer

Server processClient process

Read (filename, 0,100,buf)

Return (0 to 99 bytes)

Read (filename,100,100, buf)

Return (100 to 199 bytes)

File state information

Stateful vs Stateless Server
 Stateful Server

 Provides easier program paradigm

 Relieves client from keeping track of state information

 Fewer disk accesses

 If a file is opened for sequential access, can read ahead the next blocks

 In general stateful servers are more efficient

 Then why stateless server ??

 Stateful Server

 If server crashes, client can get inconsistent results

 If client crashes, its information held by server may no longer be valid.

 Stateless Server

 Better equipped to handle failure: Client only has to retry a request until

the server responds and hence crash recovery is very easy

 Both Stateless as well stateful have advantages

 Selection of the right model depends purely on the application

Server Creation Semantics (Cont’d)

 Based on time duration for which RPC servers survive, RPC servers

can be classified as

 Instance-per-call servers

 Instance-per-transaction / session servers

 Persistent servers

Instance-per-call servers

 This category of servers exist only for duration of single call

 They are created by RPC Runtime on the server machine only when a call

message arrives.

 The server process is deleted after the call execution

 Server is exclusively used by a single client

 Disadvantages

 They are stateless. Thus intercall state information has to be maintained by

either client process or the supporting OS and passed for each call and

hence expensive

 This also leads to loss of data abstraction

 Overhead in server creation / deletion if same type of service invoked

several times successively

 Not attractive to RPC and hence not commonly used

Instance-per-Session Servers

 Servers of this category exist for the entire session for which a client and a

server interact

 Hence the server can maintain intercall state information

 Overhead of server creation / deletion for a client – server session

involving a large number of calls is minimized

 In this method, normally there are server managers for each type of service

and are registered with the binding agent(binding a client and a server for a

type of service, this will be discussed later)

 The client specifies the type of service required to binding agent, which

returns address of appropriate server manager to the client

 Client contacts the concerned server manager, which spawns a new server

and passes back the address to the client

Instance-per-Session Servers (Cont’d)

 The client now directly interacts with the server for the entire session

 This server is exclusively used by the client for which it is created and is

destroyed when the client informs the server manager of the corresponding

type that it no longer needs that server

 Server is exclusively used by a single client and hence has to only maintain a

single set of state information

Persistent Server

 Persistent server generally remain in existence indefinitely

 Server of earlier two types address only single client, while this can be shared by

many clients

 Created and installed before the clients that use them

 Each server registers its service with the binding agent

 When client contacts binding agent for a particular type of service, it returns

address of appropriate server to the client

 Binding agent selects a server of that type either arbitrarily or based on some

built in policy (like minimum no of clients currently bound to it) and returns

address of the selected server to the client

 The client then directly interacts with the server

Persistent Server (Cont’d)

 Note that a persistent server may be simultaneously bound to several clients

 Server interleaves requests from a number of clients, so has to concurrently

manage several sets of state information

 If a persistent server is shared by multiple clients, the remote procedure that

it offers must be designed so that interleaved or concurrent requests from

different clients do not interfere with each other

 Persistent servers may be used for improving the overall performance and

reliability of the system

 For this several persistent servers that provide the same type of service may

be installed on different machines, to provide either load balancing or some

measure of resilience to failure

Parameter-Passing Semantics

 The choice of parameter–passing is crucial to the design of an RPC mechanism.

The two choices are call-by-value and call-by-reference

 Call-by-value

 All parameters are copied into a message that is transmitted from the client to

the server through the intervening network

 This can easily handle integers, counters, small arrays, etc. without any

problem

 Passing larger data types like multidimensional arrays, trees, etc, can consume

much time for transmission of data that may not be fully used

 Hence not suitable for passing parameters involving voluminous data

Parameter-Passing Semantics(cont’d)

 Call by reference

 Most RPC mechanisms use the call-by-value semantics for passing because

the client and the server exist in different address spaces, even different type

of machines

 Hence, passing pointers or passing parameters by reference is meaningless

 Few RPC mechanisms allow passing of parameters by reference in this case

the pointer

 These are usually closed systems, where a single address space is shared by

all processes in the system

 For example distributed systems having distributed shared memory

mechanisms can allow passing of parameters by reference

Parameter-Passing Semantics(cont’d)

 In object based system that uses the RPC mechanism for object invocation,

the call-by-reference is known as Call-by-object-reference

 In an object-based system, the value of the variable is a reference to an

object, so it is this reference(the object name) that is passed in an

invocation

 The designers have observed that the use of object-reference mechanism in

distributed systems present a potentially serious performance problem

because on a remote invocation access by the remote operation to an

argument is likely to cause an additional remote invocation

Parameter-Passing Semantics(cont’d)

 Therefore to avoid many remote references, a parameter passing mode called

Call-by-move

 In call-by-move, a parameter is passed by reference, as in the call-by-object-

reference, but at the time of the call, the parameter object is moved to the

destination node (site of callee)

 Following the call, the argument object is either returned to the caller’s node

or remain at the callee node depending on the state of the argument (these

two nodes are called as call-by-visit and call-by-reference respectively)

 Of course the use of call-by-move mode for parameter passing requires that

underlying system supports mobile objects that can be moved from one node

to another

Call semantics

 In RPC, the caller and the callee processes are possibly located on different

nodes

 Hence either one of them might fail independently and later restarted

 Or a failure of communication links between the caller and the callee is also

possible

 Hence RPC functioning may be disrupted due to one of the following

reasons

 The call Message gets lost

 The response message gets lost

 The caller node crashes and is restarted

 The callee node crashes and is restarted

Call semantics (Cont’d)

 The call semantics of an RPC system determines how often the remote
procedure may be executed in case of failure and under fault conditions

 Possibly or May-Be call Semantics

 Weakest semantics – no fault tolerance measures

 Not really appropriate to RPC

 In order to prevent the caller from waiting indefinitely for a response
from the callee, a time out mechanism is used

 Caller waits for predetermined timeout period & then continues with its
execution

 The semantics does not guarantee anything about the receipt of the
message or the procedure execution by the callee

 This semantics is adequate in a LAN with high probability of successful
transmission of messages or where response message is not important

Call semantics (Cont’d)

 Last-One call Semantics

 This semantics is similar to one discussed in Failure handling class

 Client retransmits requests repeatedly based on timeouts until a response

is received by it

 Calling of the Remote Procedure by the client, the execution of the

procedure by the server, return of the result of the procedure to the

client will eventually be repeated until the result is received by the client

 Hence, result of last executed call is used by the caller

 Very easily achievable in two node situation

 Difficult to achieve when nested RPCs that involve more than 2

processors involved

Call semantics (Cont’d)

 e.g., Suppose process P1 of node N1 calls procedure F1 on node N2, which

in turn calls procedure F2 on node N3

 While F2 is being run on N3, let us say N1 crashes

 Node N1 is then restarted with all its processes, and P1 call to F1 will be

repeated. This will invoke second F2 on N3. N3 is completely unaware of

N1 crash

 N3 will return the value of two F2 executions may be out of sequence and

hence violating last-one semantics

 Hence, Orphan calls (whose parent (caller) has expired due to node crash)

causes problem

 The orphan calls must be terminated before restarting the crashed

processes

Call semantics (Cont’d)

 This is done either by waiting for them to complete or by tracking them

down and killing them (“orphan extermination”)

 It will require manual intervention or special routines in the RPC systems

 Hence other weaker semantics have been proposed for RPC

 Last-of-Many call Semantics

 Similar to the last-one Semantics except that orphan calls are neglected

 A simple way to do this is to use call identifiers to uniquely identify each

call

 When a call is repeated, it is assigned a new call identifier

Call semantics (Cont’d)

 Each response message has the corresponding call identifier associated with it

 Caller accepts a response only if its call identifier matches with identifier of

most recently repeated call

 Otherwise it ignores the response message

 At-least-once call Semantics

 This is still weaker than last-of-many call semantics

 It just guarantees that the call is executed one or more times, but does not

specify which results are returned to the caller

 It can be implemented simply by using timeout–based retransmissions without

caring for the orphan calls

Call semantics (Cont’d)

 That is for nested calls , if there are any orphan calls, it takes the result

of the first response message, ignoring the others

 It does not bother about if the accepted response is from an orphan or

not

 Exactly Once call Semantic

 It is the strongest and the most desirable call semantics

 It eliminates the possibility of a procedure being executed more than once

no matter how many times a call is retransmitted

 None of the earlier semantics can guarantee this

 The main disadvantages of these earlier semantics is that, they force the

application programmer to design idempotent interfaces that guarantee

that if a procedure is executed more than once with the same parameters,

the same results and no side effects will be produced

Req -1

Req-id Reply

Reply cache

No Match found , so process request-1

Receive

balance

=900

Send

request-1

Time
out

Client Server (balance=1000)

Check reply cache for request - 1

Match found

Extract reply

Return (success , 900)
(Success,900)

response

Debit (100)

Retransmit request -1

Lost

Debit (100)

Request-1

Check reply cache for request - 1

Save reply

Return (success,900)

Send

request-1

(success,900)

Exactly Once call Semantics (Cont’d)

 Ques. Which operations are idempotent? If not give semantics to make

them idempotent.

1. Read_record (filename, rec_no)

2. Append_record (filename, record)

3. A=sqrt(625)

4. Mpy (integer1, integer2)

5. Increment (integer)

6. Increment (var)

7. Seek (filename, position)

8. Read_next_record (filename)

9. Write_record (filename)

10. Add (sum, 30)

11. T= time(x)

 Append_record (filename, record)
- N= GetLastRecordNo (Filename)
- WriteRecordN (Filename, Record, N)

 Increment (var)
- Var = initial_value
- Increment (var)

 Read_next_record (filename)
- Read_record (filename, rec_no)

 Write_record (filename)
- Write_record (filename,after_record, record)

 Add (sum, 30)
- sum = initial_value
- Add (sum, 30)

 T= time(x)
- T = time (Of_particular_event)

Communication protocols for RPC

 Different systems, developed on the basis of RPC, have different IPC

requirements

 Based on the needs of different systems, several communication protocols

have been proposed for use with RPCs. A Brief description of these are given

below

 The Request Protocol

 This is also known as R(request) protocol. It is used by RPCs in which the

called procedure have nothing to return as the result of procedure

execution and the client requires no confirmation that the procedure has

been executed

 No acknowledgement/ reply required

 Client is not blocked on sending request as no need to wait for reply

message

Server

First RPC

Client

Procedure

execution

Procedure

execution

Request message

Request message

Next RPC

Request (R) Protocol

 The Request Protocol

Request/Reply (RR) Protocol

 It is also known as RR protocol

 Used for simple RPC’s

 A Simple RPC is one in which all arguments & results fit in a single packet

buffer and duration of a call and the interval between calls are short (less

than the time required to transmit the packet from the client to server)

 Based on the idea of Implicit acknowledgement (servers reply is taken as the

acknowledgement of the client’s previous request message)

 A subsequent call packet from the client is regarded as an acknowledgement

of the servers reply message of the previous call made by the client

First RPC

Next RPC

Client Server

Procedure

execution

Procedure

execution

Request message

Request message

Reply Message

Serve as ack for reply of previous

RPC

Serve as ack for req msg

Serve as ack for req msg

Request/Reply (RR) Protocol (Cont’d)

Request/Reply/Acknowledge - Reply (RRA)

Protocol

 This protocol is also known as RRA protocol

 Difficult to maintain reply cache if the server has large number of multiple

clients, to implement exactly once call semantics using RR protocol, requires

large amount of storage space on the server

 It is much simpler with RRA protocol. Server deletes reply of a request from

reply cache once it gets the acknowledgement

 Involves the transmission of 3 messages per call: two from client to server and

one from server to client

 There is possibility that acknowledgement is lost hence RRA protocol

implementation requires that All three messages have same unique message

identifier

First RPC

Client Server

Procedure

execution

Procedure

execution

Request message

Request message

Next RPC

Reply Message

Reply ack msg

Reply ack msg

Reply Message

Request/Reply/Acknowledge - Reply

(RRA) Protocol

Complicated RPC

 The following two types of RPCs are known as complicated RPCs

 RPCs involving long-duration calls or large gaps between calls

 RPCs involving arguments/results that are too long to fit in a single-datagram

packet

 Different protocols are used for handling these two types of complicated RPCs

 RPCs involving long-duration calls or large gaps between calls may use one of

the following methods

 Periodic probing of server by the client

 The client sends periodic probe packet to the server, which the server is

expected to acknowledge helps in detecting server failure or

communication link failure

Complicated RPC (Cont’d)

 The message identifier of the original request message is included in each

probe packet sever can notify the client if it has not received the original

request message as a reply to the probe packet

 On receipt of such notification, client can resend the original request

 Periodic generation of an acknowledgment by the server is done if duration of call

is long

 If the server is not able to generate the next packet significantly sooner than the

expected transmission interval, it spontaneously generates an ACK and sends it

to the client

 If the reply or ACK is not received within timeout, the system crash or

communication failure is assumed by the client and the concerned user is

informed of the exception condition

Complicated RPC (Cont’d)

 RPCs Involving Long Messages

 In some RPCs arguments or results are too large to fit into a single datagram

packet

 For example File read / write operation, involves transfer of large chunk of

data

 A simple way is to use Several physical RPC’s for one logical RPC

 This solution is inefficient due to the fixed amount of overhead involved with

each RPC irrespective of the amount of data sent

 Another method of handling complicated RPCs is to use multidatagram

messages in which a long argument / result is fragmented and transmitted in

multiple packets

Client-Server Binding

 It is necessity of a client (actually client stub) to know the location of the

server before RPC can take place between them

 The process by which a client (importer) becomes associated with a server

(exporter) so that calls can take place is known as binding

 From the point of view of the application, the model of binding is that servers

“export” operations to register their willingness to provide service and clients’

“import” operations, asking the RPC Runtime system to locate the server and

establish any state that may be needed at each end

 This is a two way process as willingness of both server and the client is

necessary to establish the binding

Client-Server Binding (Cont’d)

 The client-server binding requires proper handling of several issues :

 How does client specify server to which it wants to bound with?

 How does the binding process locate specified server?

 When is it proper to bind client with server?

 Is it possible for a client to change the binding during execution?

 Can client be simultaneously bound with multiple servers that provide same

service?

 Sever Naming

 The client specifies the server with which it wants to communicate.

 For RPC, it has been proposed to use the interface names for this purpose

Sever Naming

 An interface name has two parts: type and an instance (optional)

 Type specifies the interface itself and instance specifies a server providing the

services within that interface

 e.g. interface of type file_server, may have several instances of servers providing file

service

 Interface name is unique identifier of server

Server Locating

 RPC package only dictates means by which an importer uses the interface name

to locate an exporter

 The interface name of a server is a unique identifier

 How to locate specified server? Two commonly used methods:

 Broadcasting –

 A message to locate the desired server is broadcasted to all the nodes from

the client node

 Nodes in which desired server is located return a response message

 Since there can be more than one server, client will receive multiple replies

 Normally the first response is given to the clients process and others are

discarded

 The method is easy and simple to implement

 Suitable for small networks; expensive for large networks

Binding agent

 Binding agent

 Binding agent is a Name server which is used to bind a client to a server
by providing the client with location information of the desired server

 Binding agent maintains a binding table, which is a mapping of interface
name and its locations

 All servers register themselves with the binding agent as a part of their
initialization process

 To register with binding agent, a server gives the binder its identification
information and handle used to locate it

 Binding agent’s location is known to all nodes. It is usually a fixed
address or message is broadcasted to all to locate binding agent when a
node is booted

Binding agent (Cont’d)

 In either case, when binding agent is relocated, a message is sent to all
nodes informing the new location of the binding agent

Binding agent

Server processClient process

(4) Call server

(2) Lookup server

location

(3) Server

location

(1) Register/

Deregister

Binding agent (Cont’d)

 Binding agent interface has three primitives: (a) register & (b) de-register is used

by a server to register or deregister itself with the binding agent, and (c)

lookup for client to locate a server

 It has several advantages & disadvantages

 It can support multiple servers with the same interface name, so that any

of the available server may be used to service a client and hence a degree

of fault tolerance

 Better load balancing with multiple servers providing the same service

 Give list of users permitted to use a particular server, in which case

binding agent may refuse to bind certain clients to certain servers

 Can handle large networks

 Need to be robust against failures and not a Performance bottleneck

 How to maintain consistency in replicating binding agents is a question

Binding Time

 When to bind client with server? A client may be bound at compile time, Link

time or at call time

 CompileTime

 Client and server modules are programmed as if they were expected to be

linked together. e.g., Server’s network address can be compiled into the client

code and then found by looking up the server’s name in a file i.e. specify

server name in program itself

 Inflexible – server moves, server is replicated, server program versions

change then recompile client programs

 High overhead but fast, useful in an application whose configuration is

expected to remain static for long time

Binding Time (Cont’d)

 LinkTime

 A server process exports its service by registering itself with the binding

agent as part of its initialization process

 A client makes an import request to Binding Agent before making a call

 The Binding Agent binds Client and Server by returning server’s handle to

the client

 The servers handle is cached by the client, to avoid contacting the binding

agent for subsequent calls for the same server

 Advantageous for those situations in which a client calls a server several

times once it is bound to it

Binding Time (Cont’d)

 CallTime

 A client is bound to a server , when it calls the server for the first time

during its execution

 A commonly used approach for binding at call time is the indirect call

method

 Indirect call method is shown in the next slide

 The basic advantage of this method is that client need to go to the binding

agent only once

 Then onward, it can use handle to call target server directly

Binding by Indirect Call

1. Client process passes server’s interface name & arguments to binding agent

2. Binding agent sends an RPC call message to server including client’s parameters

3. Server returns result to binding agent

4. Binding agent returns result to client with server’s handle

5. Client calls server directly subsequently.

Binding agent

Server processClient process

5

1

4 3

2

Binding Time (Cont’d)

 Changing Bindings

 Can binding change during execution?

 The client or server of a connection may like to change the binding at some

instance of time due to some change in the system state

 Binding is altered by concerned server, it ensures that any state data held by

server is no longer needed or can be duplicated in the replacement server. Ex.

State of open files transferred from old to new file server

 Multiple Simultaneous Binding

 Can client bind with multiple servers that provide same service?

 Client can be bound simultaneously to all or multiple servers of the same type.

Ex. Client updates file replicated at many nodes at the same time

 Client uses multicast communication

Exception Handling
 We have seen that, when a remote procedure can not be executed successfully

the server reports an error in the reply message

 An RPC also fails when the server can not be contacted

 Hence RPC should have an effective exception handling mechanism for

reporting such failures to clients

 One approach is to define an exception condition for each possible error type

and have corresponding exception raised when an error of that type occurs

 On occurrence of exception, exception handling procedure is called &

executed automatically in client’s environment

 This approach can be used with those programming languages that support

exception handling constructs

 If the languages do not support, then RPC system generally use the methods

provided by conventional operating system

Security

 Some of the RPC implementation include facilities for client and server
authentication as well as for providing encryption-based security for calls

 For example the callers are given a guarantee of the identity of callee and vice
versa

 For providing end to end encryption of calls, the federal data encryption
standard (DES) is used

 Encryption though very useful and powerful tool, it is very expensive both for
processor as well as for communication, overhead are concerned

 Hence while designing an application user should consider the following
security issues related with the communication messages

 Is the authentication of the server by the client required?

 Is the authentication of the client by the server required, when the result is
returned?

 Is it all right if the arguments and results of the RPC are accessible to users
other than the caller and callee?

Some Special Types of RPC

 Callback RPC

 In the usual RPC protocol, the caller and callee processes have a client-server

relationship

 The callback RPC on the other hand facilitates peer-to-peer paradigm among

the participating processes

 It allows a process to be both client as well as server

 It is very useful in certain class of distributed applications

 For example a remotely processed interactive application that need user input

from time to time for further processing, require this facility

 As shown in the slide further, client process makes RPC to the concerned

server process and during procedure execution for the client, the server

process makes a callback RPC to client process

Callback RPC

 The client takes appropriate action based on server request and reply to the

callback RPC to the server process

 On receipt of the reply the server resumes the execution

 Specifically to provide callback RPC facility, the following are necessary

 Providing the server with the clients handle

 Making the client process wait for the callback RPC

 Handling callback deadlocks

Callback RPC

Process callback request

and send reply
Reply (result of callback)

Client Server

Resume procedure execution

Procedure execution ends

Start procedure execution

Stop procedure execution

temporarily

Essentials of Callback RPC

• The server need to have the clients handle to call the client back

• The handle uniquely identifies the client process and provides enough

information to server for making the call to it

• The client process uses a transient program number for the callback service

and registers itself with Binding Agent, which is then sent as a part of RPC

request to the server

• To make a callback RPC, the server initiates a normal RPC request to the

client using the given program number

• Client may also send its handle to server such as port number.

Essentials of Callback RPC (Cont’d)

• Making the client process wait for the callback RPC

• The client process must be waiting for the callback so that it can

process the incoming RPC request from the server

• It should not be confused with reply to the RPC call made by the

client

• To wait for the callback, client process makes a call to svc-routine,

which waits for server request & then dispatches request to

appropriate procedure

P2 P3

P1

R21

R32

R13

Handling call back deadlocks

 A callback deadlock can occur due to the interdependencies of processes

 For example process P1 makes an RPC to P2 and waits for reply

 In the mean time P2 makes RPC to P3 and P3 makes a RPC call to P1

 But P1 can not process P3 request until its request to P2 is satisfied and P2 cannot

process P1 until its request to P3 is satisfied and P3 can not process P2 request

until its request P1 is satisfied

 The result is none of the Processes can have their request satisfied and hence will

wait indefinitely. In effect we have RPC callback deadlock

 There are various methods to address the deadlocks

Broadcast RPC

 RPC based IPC is normally one-to-one type involving a single client and a
single server process

 However a good DCS needs broadcast and multicast communication

 In broadcast RPC, a client’s request is broadcast on the network and is
processed by all the servers that have the concerned procedure for processing
that request

 The client waits for & receives many replies depending on degree of reliability
desired

 Client uses special broadcast primitive indicating that the message has to
be broadcasted

 Request is sent to binding agent, which forwards request to all servers
registered with it

Broadcast RPC (Cont’d)

 In this case only those services registered with the binding agent are
accessible via the broadcast RPC mechanism

 The second method is to declare broadcast ports

 A network port of each node is connected to a broadcast port

 Client of broadcast RPC first obtains a binding for a broadcast port &
then broadcasts RPC message by sending RPC message to this port

 The same procedure can be used for multicast RPC in which the RPC
message is sent only to subset of the available servers

Batch-Mode RPC

 Used to queue separate RPC requests in a transmission buffer on the client side

and then send them over the network in one batch to the server

 It reduces overhead of sending each RPC independently to server and

waiting for response for each request

 Applications requiring higher call rates(50 -100 remote calls per sec) may

not be feasible with most RPC implementation

 But become feasible with the use of batch-mode RPC

 Used when client has many RPC requests to send to a server & client does not

need any reply for a sequence of requests

 The request are queued on the client side and the entire queue of requests

flushed(sent to server) when :-

 A predetermined interval elapses

Batch-Mode RPC (Cont’d)

 A predetermined number of request have been queued

 Amount of batched data exceeds the buffer size

 A call is made to one of the server’s procedures for which a result is

expected

Lightweight RPC (LRPC)

 In MicroKernal, various components have to use some form of IPC to

communicate with each other, hence becomes less efficient when compared to

monolithic kernel

 But it is Simple & flexible

 In microkernel approach , the communication traffic in OS are of two types:

 Cross domain – communication between domains on the same machine

 Cross machine - communication between domains located on separate

machines.

 Lightweight RPC is designed and optimized for cross- domain communications

 Though normal RPC can be used for this purpose, it unnecessarily involves high

communication cost

Simple Control Transfer

 In cross domain communication small-simple parameters are involved, overhead

for the heavyweight communication machinery (message buffer, marshaling,

message transfer, access validation, scheduling, dispatch, etc) is still paid for, if

normal RPC is used

 Simple ControlTransfer:

 When ever possible LRPC uses control transfer mechanism that is simpler

than that used in conventional RPC systems

 LRPC uses a special threads scheduling mechanism called handsoff

scheduling for direct context switch from client thread to the server thread

of an LRPC

 In this mechanism, when a client calls a server procedure, it provides the

server with an argument stack and its own thread of execution

Simple Control Transfer (Cont’d)

 The call causes a trap to the kernel

 The kernel validates the caller, creates a call linkage and dispatches the clients

thread directly to the server domain, causing the server to start execution

immediately

 When the called procedure completes, control and results return through the

kernel back to the point of the client’s call

 In contrast, in conventional RPC implementation, context switching between

the client and server threads of an RPC is a slow process

Simple Data Transfer

 In RPC arguments and results need to be passed between the client and server

domains in the form of messages

 Traditional RPC requires data to be copied four times

Client stack RPC message kernel domain Server domain server

stack as shown in the figure in the next slide

 LRPC requires data to be copied only once:

 From client stub’s stack to shared Argument stack (pre-allocated shared

argument stack) which can be accessed by both client and the server

 The server procedure can access the data from the argument stack

 This provides a private channel between the client and server

 LRPC uses a simple model of control and data transfer, facilitating the

generation of highly optimized stubs

Client Stack

Message Buffer

First copy

Message Buffer

Server Stack
Message Buffer

Fourth copy

S
e

c
o

n
d

 C
o

p
y

T
h

ird
 C

o
p

y

Figure (a)

Client Stack Shared Argument Stack

Figure (b)

Simple Data Transfer (Cont’d)

Client Domain Server DomainGlobal shared Virtual Memory

Client Domain Server Domain

Kernel Domain

Single copy

Simple Stubs

 Every procedure has a call stub in the client’s domain and an entry stub in

server’s domain.

 To reduce the cost of interlayer crossings, LRPC stubs blur the boundaries

between protocol layers

 On transferring control, kernel associates execution stacks with initial call frame

expected by called server’s procedure & directly invokes the corresponding entry

in server’s domain

 No intermediate message examination or dispatching is done and Server stub

starts executing procedure by directly branching to procedure’s first instruction

Optimizations

for

Better

Performance

Concurrent access to multiple servers

 The basic issue in the design of a distributed application is performance

 It is possible to improve performance further by considering other methods

 Let us consider some of other aspects of performance improvement

 Use of threads in implementation of a client process where each thread can

independently make remote procedure calls to different servers

Concurrent access to multiple servers

(Cont’d)

 Another approach is Early reply approach: As shown in the figure in the next

slide, in this method a Call split into two separate RPC calls, one passing the

parameter to the server & other requesting the result

 In reply to the first call, server returns a tag that is sent back with the second

call to match the call with the result

 The client decides the time delay between the two calls and carries out other

activities during this period

 But one problem with this method is, that the server has to hold the result of a

call until the client makes a request for it

 Hence, if the request for the result is delayed, it may cause congestion or

unnecessary overhead at the server

Early Reply Approach

Reply (result)

Request result (tag)

Return(result)

Store (result)

Execute procedure

Return (tag)

ServerClient

Call procedure (parameter)

Reply (tag)

Carry out other

activities

Concurrent access to multiple servers

(Cont’d)

 The third approach is known as call buffering approach using a call buffer server

 The client and server do not interact directly with each other but interact

indirectly through a buffer server

 To make RPC call, a client sends its call request to the call buffer server, where

the request parameters together with the name of the server and the client are

buffered

 The client can then perform other activities until it needs the result of the RPC

call, then it starts polling the call buffer server to see if the result of the call is

available, if so it recovers the result

 When the server is free, it periodically polls to server buffer to see if there are

any pending calls to it

 The figure in the next slide shows the sequence of events pictorially

Client Call Buffer Server Server

Call procedure

(parameters)

Reply tag

Check for result

(tag)

Reply not done

Check for result

(tag)

Reply (Result)

Check for waiting

request

Reply (no

request)

Check for waiting

request

Reply (tag

parmeters)

Reply (result)

Acknowledge

Polling for Result

Carry out other

activities

Polling for a

waiting request

Execute

procedure

Call Buffering approach for concurrent access to multiple servers

Serving Multiple Requests Simultaneously

 Another aspect of RPC we need to consider is the different types of delays in RPC

system

 Following types of delays are commonly encountered in RPC systems:

 Delay caused while a server waits for a resource that is temporarily unavailable

(e.g. shared file that is locked by some other process)

 The server calls a remote function that involves a considerable amount of

computation to complete or involves a considerable transmission delay

 For better performance, good RPC implementations must have mechanisms to

allow servers process other requests, while waiting for some operation to

complete

Reducing Per call Workload of Servers

 One of the approaches to achieve this is to use a Multiple threaded server with

dynamic threads creation facility

 Keep the client requests short, work per request low

 One way of achieving this improvement is to use stateless servers & let clients

keep track of progression of their requests sent to servers

 This is meaningful as client is incharge of the flow of information between the

client and server

Reply Caching of Idempotent Remote

Procedures

 We have already seen the use of Reply Cache for exactly-once semantics

 Reply cache can also be associated with idempotent remote procedures for

improving a server’s performance when it is heavily loaded

 When client requests to a server arrive at a rate faster than the server can process

the requests, a backlog develops and eventually client requests start timing out

and clients resend the requests, making the problem worst

 In such cases reply cache helps because the server has to process the request only

once

 If a server sends a request, it just sends the cached reply

Proper Selection of Timeout Values

 To deal with failures, timeout based retransmissions are necessary in

distributed applications

 Important issue how to select timeout value; short time out will cause

frequent unnecessary retransmissions and too large time out makes

unnecessary long waits

 It will depend on factors like server load, network routing, network

congestion

 Repeated retry transmission by the client make the problem worst

 One method to handle this situation is to use some sort of back-off strategy

of exponentially increasing/decreasing timeout values

Proper Design of RPC Protocol Specification

 For better performance, the protocol specification of an RPC system must be

designed so as to aim at minimizing amount of data to be sent and its frequency

 Using standard existing protocols may not be good option; e.g. IP suite (to which

TCP/IP and UDP/IP belong) have in total 13 fields of which only 3 are useful

for RPC (source, destination address and packet length)

 Hence for better performance RPC has to use specially designed protocols

 Of course, new protocol has to be designed from scratch, implemented, tested

and embedded into existing systems; i.e. good amount of overhead

Sun RPC

Introduction
 Sun RPC uses automatic stub generation and also provides flexibility to

write stubs manually.

 An application’s interface definitions written in an IDL called RPCL, an

extension of Sun XDR.

 RPCL uses the Rpcgen compiler, which generates the following:

 A header file containing definitions of common constants and types defined in

IDL. Also procedures for marshalling and unmarshalling are automatically

generated.

 An XDR filter file contains XDR marshalling and unmarshalling procedures.

 A client stub file containing one stub procedure for each procedure defined in

IDL.

 A server stub file contains

 the main routine(creates transport handles and registers the service),

 the dispatch routine(dispatch incoming remote procedure calls to remote procedures)

 and also a stub procedure for each procedure defined in Interface Definition file.

 RPC application is created using the files generated by the Rpcgen

compiler.

 The steps involved are:

 The application programmer manually writes the client program as

well as the server program.

 The client program file is compiled to get a client object file.

 The server program file is compiled to get a server object file.

 The client stub file and XDR filter are compiled to get a client stub

object file.

 The server stub file and XDR filter are compiled to get a server stub

object file.

 Client object file, client stub object file, and client stub RPC runtime

library are linked together to get a client executable file.

 Server object file, server stub object file, and server stub RPC runtime

library are linked together to get a server executable file.

 Marshalling procedures handles differences in data representation.

 RPC runtime library has procedures for marshalling integers of all

sizes, characters, strings, reals and enumerated types.

 Sun RPC supports ‘at-least-once’ semantics.

 Each node here uses local binding agent called portmapper.

 Portmapper maintains a database mapping of local services and

their port numbers.

 The server, on startup, registers its program number, version

number, and port number with the local portmapper.

 The server side error handling procedures sends reply to the client

indicating the detected error.

 The client side error handling provides flexibility to choose the

mechanism.

 Sun RPC supports access rights authentication and DES .

 Sun RPC also supports asynchronous, callback, broadcast and batch

mode RPC.

 Shortcomings of Sun RPC:

 No location transparency

 Transport dependency (mostly TCP and UDP)

 No support for network-binding services.

 At-least-once semantics may not be appropriate for some applications.

Remote Method Invocation (RMI)
 Using this concept, objects in different procedures can communicate

with each other

 Distributed object concepts

 Every object encapsulates data and methods.

 Any object invokes other objects by invoking its methods.

 In case of distributed objects, the server manages the objects and clients

invoke the methods.

 The RMI technique sends the request as a message to the server which

executes the method of the object and returns the result message to the

client.

Data

Method

Implementation

M1

M2

M3

M1

M2

M3

Remote

Interface

Remote Object

RMI Implementation
 Design Issues in RMI

 RMI Invocation Semantics

 Maybe Semantics

 At-least-once Semantics

 At-most-once Semantics

 Level of Transparency –This involves hiding the internal RMI

processes, such as marshalling, message passing, locating and

contacting the remote object for the client.

Fault-Tolerance Measures

Retransmit request

message

Duplicate filtering Re-execute

procedure of

retransmit reply

Invocation

Semantics

No Not Applicable Not Applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once

RMI Flow
 Client invokes method on the remote object, which is sent to the client

stub.

 Remote reference layer in RMI converts the method into a message and
sends it over TCP/IP network.

 RMI message is sent to the remote reference layer at the server.

 Now the server skeleton converts this message into a remote object and
RMI is invoked.

 Once the RMI is executed, the object results are transferred back
through the same path.

Client invokes

remote method

Stub

Remote reference

layer

Remote reference

layer

Skeleton

Remote object

TCP/IP

RMI Execution

 Communication Module – the client and the server processes form

part of communication module, which uses RR protocol.

 Remote reference module – it is responsible for translating between

local and remote object references and creating remote object

reference. It also does marshalling and unmarshalling.

 RMI Software – this layer consists of the following:

 Proxy – It makes RMI transparent to the client and forwards the

message to the remote object. It also marshals/unmarshals the result

and sends/receives messages from the client. There is exactly one proxy

for each remote reference.

 Dispatcher – this unit receives the request from the communication

module, selects the appropriate method in the skeleton and passes the

request message.

 Skeleton – It implements the method in the remote interface. It

unmarshals the arguments in the request message and invokes the

corresponding method in the remote object.

 Server and Client programs – the server program contains classes

for dispatcher , skeleton and the remote objects it supports. The

client program contains classes of processes for the entire remote

object, which it will invoke.

 The Binder – Let us take an example to explain the concept of

binders, an object A requests remote object reference for object B.

The binder is actually a service , which maintains a table of textual

names to the remote object-referenced. Systems use this service to

look up remote object references. Registry

Naming

Client
Locating Remote Objects

Types of Objects

 Objects are classified into two main classes based on when they are
bound and how long they exist.

 Based on the time of binding, objects are classified into :

 Runtime objects – object binding at runtime.

 Compile-time objects – object binding at compile time.

 Based on how long they exist, objects are classified into :

 Persistent objects – which exist even if server is not into existence.

 Transient objects – exist only for the time server is in existence.

 Bindings can be classified as implicit and explicit:
 Implicit Binding – the client is transparently bound to the object when

the reference is resolved to the actual object.

 Explicit Binding – the client first calls a specific function to bind the
object before the method invocation.

 Parameter passing can be call by value or call by reference.

Case Study on Java RMI
 Java hides the differences between local and remote method

invocation from the user.

 After marshalling the object, it is sent as a parameter to the RMI.

 Implementation of Java RMI:

 Reference to remote object consists of the network address and

endpoint of server.

 It also contains the local ID for the actual object in the server address

space.

 Each object in Java is an instance of a class, which contains the

implementation of one or more interfaces.

 A java remote object is built from two classes: (i) server class and

(ii) client class.

 Server Class : this class contains the implementation of server-side

code i.e., objects that run on the server. It consist of description of

the object state and implementation of methods which operate on the

state.

 Client Class : this class contains the implementation of client-side

code and proxy. It is generated from the object interface specification.

The proxy basically converts each method call into a message that is

sent to the server-side implementation of the remote object.

University Questions
 Short Notes on:-

 LightWeight RPC (5 marks and 10 marks)

 Marshalling

 In a fault tolerant communication between client-server, how will
you implement ‘exactly-once’ semantics in following cases:
 The client-server machines are reliable but the communication links

connecting them are unreliable.

 The client-server machines are unreliable but the communication
links connecting them are reliable.

 The client is unreliable but the server and the communication links
are reliable.

 The client and the communication links are reliable but the server is
unreliable.

 What is the difference between LPC and RPC? Explain RPC

model with the help of diagram.

 Why do most RPC systems support call-by-value semantics for

parameter transfer? Explain with example. How is call-by-value

implemented?

 Explain stateless and stateful server concepts. Explain advantages

of stateless server paradigm in crash recovery.

 What is stub? How are stubs generated? Explain how the use of

stubs help in making an RPC mechanism transparent?

 What is callback RPC facility? Give an example of an application

where this facility may be useful.

 How does a binding agent work in a client-server

communication?

 What is an orphan call? How are orphan calls implemented in

 Last-one-call semantics

 At-least once call semantics

 Last of many call semantics

 What is an idempotent operation? Give two examples.

 What are different server creation semantics involved in RPC?

 How does a Binding Agent work in Client-Server
Communication?

 Why do most RPC systems support call-by-value semantics for
parameter passing?

 What do you mean by client-server binding? What is the role of
binding agent in locating server.

 Explain client server binding with special focus on server
location, simultaneous bindings and exception handling for
RPCs.

Assignment 1 (Submission – 20/08/2018)

 What is an orphan call? How are orphan calls implemented in

 Last-one-call semantics

 At-least once call semantics

 Last of many call semantics

 Give a mechanism for consistent ordering of messages in following

cases:-

 One-to-many communications

 Many-to-one communications

 Many-to-many communications

 How many types of reliabilities are there in group

communication? Give two examples of each.

 Suppose a component of a distributed model suddenly crashes. How will
this inconvenience the users when one of the following happens:-

 The system uses processor-pool model and crashed component is a
processor in the pool.

 In processor-pool model , a user terminal crashes.

 The system uses a workstation-server model and server crashes.

 In the workstation-server model , one of the client crashes.

 In a fault tolerant communication between client-server, how will you
implement ‘exactly-once’ semantics in following cases:
 The client-server machines are reliable but the communication links

connecting them are unreliable.

 The client-server machines are unreliable but the communication links
connecting them are reliable.

 The client is unreliable but the server and the communication links are
reliable.

 The client and the communication links are reliable but the server is
unreliable.

