
Message Passing

INTER – PROCESS

COMMUNICATION

Inter Process Communication
 Inter process Communication is the heart of any distributed system

 IPC means two processes running on two different computers are in

communication with each other

 Hence IPC requires information sharing among two or more processes

 The two basic methods of sharing are

 Original sharing, or shared data approach

 In this approach, the information to be shared is placed in a common

memory area that is accessible to all the processes involved in IPC. This

is depicted pictorially in the next slide

 Copy sharing, or message passing approach

 In this approach, the information to be shared is physically copied from

sender process’s address space to the address spaces of all the receiver

processes and this is done by transmitting the data to be copied in the

form of messages (message is a block of information). The picture shows

the message passing paradigm. That is the communicating processes

interact directly with each other

Inter Process Communication(Cont’d)

 Original sharing (shared-data approach)

Shared

memory

P1 P2

P1 P2

 Copy sharing (message passing approach)

 Basic IPC mechanism in distributed systems

 It enables by using simple communication primitives like send

and receive for the programs to exchange messages

Desirable Features

Of A

Good Message Passing

System

Desirable Features of a Good MPS
 Simplicity

• It should be simple and easy to use

• It should be straightforward to construct new applications and
communicate with existing ones by using primitives provided by the
MPS

 Uniform Semantics

• In a distributed system, a MPS may be used for the following two
types of IPC

• Local communication, in which communicating processes are on
the same node

Desirable Features of a Good MPS (Cont’d)
• Remote communication, in which communicating processes are

on different nodes

• One important issue in the design of MPS is that the semantics for
local and remote communication should be as close to each other as
possible

• This make the system easy and seamless to implement

 Efficiency

• MPS can be made efficient by reducing the no. of message exchanges

• Some of the optimization techniques used are:

• Avoid the costs of establishing and terminating connections
between the same pair of processes

• Minimize the cost of maintaining the connections

• Piggybacking of acknowledgement of previous message with the
next message

Desirable Features of a Good MPS (Cont’d)

 Reliability

• DCS are prone to catastrophic events like node crashes and
communication link failure resulting in loss of messages

• A reliable IPC will Cope with failure problems & guarantee
delivery of messages

• This is normally done by acknowledgements and retransmissions
on the basis of timeouts

• Another issue is duplicate messages because of failures and
timeouts

• A good IPC is capable of detecting & handling of duplicate
messages by using sequence numbers to messages

Desirable Features of a Good MPS (Cont’d)

• Correctness

• A good IPC has protocols to handle group communications that allow
a sender to send messages to a group receivers and a receiver to
receive messages from several senders. Issues related to correctness
are as follows

• Atomicity: ensures that group message is delivered to all of them or
none of them

• Ordered Delivery: ensures that the messages arrive at all receivers
in the order acceptable to the application

• Survivability: guarantees the delivery of the messages even with
partial failure of processes, systems or communication links. This is
more difficult to achieve

Desirable Features of a Good MPS (Cont’d)

 Flexibility

• Not all users require the same level of reliability and correctness of
IPC

• Many application do not require atomicity or ordered delivery of
messages

• Hence the IPC should have flexibility to choose & specify type &
level of reliability & correctness requirement

• It should be flexible enough to permit any kind of control flow
between the cooperating processes, including synchronous and
asynchronous send/receive

 Security

• A good MPS must also be capable of providing a secure end to end

communication

Desirable Features of a Good MPS (Cont’d)

• i.e. message in transit on the network should not be accessible to

any user other than those to whom it is addressed and the sender

• Steps necessary for secure communication include:

• Authentication of the receiver(s) of a message by the sender

• Authentication of the sender of the message by receiver(s)

• Encryption of a message before sending it over the network

 Portability

• Message passing system & applications using it should be portable

• There are two different aspects of portability in MPS

Desirable Features of a Good MPS (Cont’d)

 The message passing system should itself be portable

 i.e., it should be possible to easily construct a new IPC facility on

another system by reusing the basic design of the existing MPS

 The Applications written by using the primitives of the IPC protocols of an

MPS should be portable

 This requires the hardware/software heterogeneity to be addressed

while designing MPS

Issues in IPC

By

Message Passing

What is a Message?
 A message is a block of information formatted by a sending process in

such a manner that it is meaningful to the receiving process

 It consists of fixed size header and variable size collection of data objects

 As shown in the next fig. the header consists of following elements

 Address: It contains characters that uniquely identify the sending and

receiving processes in the network. It has two parts, the sender address

and receiver address

 Sequence number: The message identifier, which is very useful in

identifying lost or duplicate messages in case of system failures

 Structural Information:This has two parts;

 The type part specifies whether the data is embodied in the message

or it contains only a pointer to the data, which is stored somewhere

outside the contiguous portion of the message.

 The second part specifies the length of the variable size message data

Sending

process

address

Receiving

process

address

Type(Actual

data or

pointer to

data)

Number of

bytes

/elements

AddressesSequence

number or

message

ID

Structural informationActual data

or pointer

to the data

Variable

size data
Fixed length header

Message Structure
 In a message oriented IPC protocol, the sending processes determines

contents of a message and the receiving process is aware of how to

interpret the contents

 Special primitives are explicitly used for sending and receiving the

messages

 Hence the users are fully aware of the message formats used in the

communication process and the mechanisms used to send and receive

messages

Issues in IPC by Message Passing
 In the design of an IPC protocol for an MPS, the following important

issues need to be addressed

 Who is the sender/receiver?

 Is there one receiver or many receivers?

 Is the message guaranteed to be accepted by its receiver(s)?

 Does the sender need to wait for a reply?

 What should be done if a catastrophic event such as a node crash or a

communication link failure occurs during the course of communication?

 What should be done if the receiver is not ready to accept the message:

will the message be discarded or stored in a buffer? If so what should be

done if the buffer is full

 If there are several outstanding messages for a receiver, can it choose the

order in which to service the outstanding messages?

 These issues are addressed by the semantics of the set of communication

primitives provided by the IPC protocol

Synchronization

Synchronization
 A central issue in the communication structure is the synchronization

imposed on the communicating processes by the communication

primitives

 Synchronization imposed on the communicating processes basically

depends on two types of semantics used by the send and receive primitives

 Nonblocking: If its invocation does not block the execution of its

invoker (the control almost immediately returns to the invoker)

 Blocking: Else it is called blocking type

 The two types of semantics that are used on both send & receive primitives

 In case of blocking send primitive, after execution of the send statement,

the sending process is blocked until it receives an acknowledgement

from the receiver

Synchronization
 In case of nonblocking send primitive, after the execution of the send

statement, the sending process is allowed to proceed with the

execution, as soon as the message is copied to a buffer

 In case of blocking receive primitive, after execution of the receive

statement the receiving process is blocked until it receives a message

 In case of nonblocking receive primitive, the receiving process proceeds

with its execution after execution of the receive statement

 Complexities in synchronization

 An important issue in a nonblocking receive primitive, is how the

receiving process knows when message has arrived in message buffer in

non blocking receive? One of the following method is commonly used

 Polling: In this method a test primitive is provided to allow the

receiver to check the buffer status. The receiver uses this primitive to

periodically poll the kernel to check status of the message buffer

Synchronization

 Interrupt: When the buffer is filled with a message and ready for use

by the receiver, a software interrupt is used to notify the receiving

process

 This avoids frequent polling with test primitive

 A variant of nonblocking receive primitive is the conditional receive

primitive, which also returns the control to the receiving process

immediately, either with a message or with an indicator that no

message is available

 In a Blocking send/receive, sender/receiver could get

blocked forever if receiver/sender crashes or message is lost.

Synchronous vs. Asynchronous

Communication

 Timeout: To avoid this send primitive commonly uses a time out value

that specifies a time interval after which the send operation is

terminated with an error status

 A timeout value may also be associated with a blocking receive

primitive to prevent the receiving process from getting blocked

indefinitely because of sending process has crashed or communication

failure

 When both send and receive primitives of a communication between two

processes use blocking semantics, the communication is said to be

Synchronous Communication else it is asynchronous

 For a synchronous communication, the sender and receiver must be

synchronized to exchange a message.

Synchronous Communication

Advantages

 Simple & easy to implement

Reliable

Disadvantages

 Limits concurrency

Can lead to communication deadlock

 Less flexible as compared to asynchronous

Hardware is more expensive

Synchronous Communication

 When both send and receive primitives use blocking semantics

Execution

resumed

Send(ack)Execution

resumed

Send(msg);

Execution

suspended

Receive(msg);

Execution

supended

Receiver’s

execution

Sender’s

execution

Msg

Ack

Blocked state

Execution state

Asynchronous Communication
 Advantages

 Doesn't require synchronization of both communication sides

 Cheap, timing is not as critical as for synchronous transmission,
therefore hardware can be made cheaper

 Set-up is very fast, well suited for applications where messages are
generated at irregular intervals

 Allows more parallelism

 Disadvantages

 Large relative overhead, a high proportion of the transmitted bits are
specially for control purposes and thus carry no useful information

 Not very reliable

 A flexible message passing system usually provides both blocking and
unblocking primitives for send and receive, so that users can choose the
most suitable one to match the specific needs of their applications

Buffering

 Message transmission from one process to another by copying the body of

the message from the address space of sending process to the address space

of the receiving process

 This may use address spaces of the kernel of the sending and receiving

computers

 In case the receiving process is not ready to receive the message, but

would like the OS to save the message for later reception

 OS utilizes the message buffer space for this purpose for interim storage of

the messages until the receiving process executes the specific code to

receive the message

 In IPC, the message buffering strategy is strongly related to

synchronization strategy

Buffering (Cont’d)

 Synchronous and asynchronous modes of communication correspond

respectively to the two extremes of buffering: namely a null buffer or no

buffer and a buffer with unbound capacity

 Other two commonly used buffering strategies are single message and

finite bound or multiple message buffers

 Each of them have their own advantages and disadvantages

 The selection of the buffering mode is driven by the application

requirements

Null Buffer (No Buffering)

 In case of no buffering, there is no place to temporarily store the message

 Therefore one of the two following implementation strategies are used

 The message remains in the sender process address space, and send is

delayed until the receiver executes a corresponding receive code

 To do this the sender process is blocked up and suspended in such a way

that when it is unblocked, it starts by re-executing the send statement

 When the receiver executes receive, an acknowledgement is sent to the

sender’s kernel saying that the sender can now send the message

Message
Sending

process Message

Receiving

process

Null Buffer (Cont’d)

 In other method the timeout mechanism is used to resend the message

after a time out period

 i.e. after executing the send the sender waits for an ACK from the

receiver process

 As shown in the figure the message transfer is directly from the

sender’s address space to the receiver’s address space

 The send gives up after pre-decided number of tries

 The null strategy is generally not suitable for synchronous

communication between two processes in DCS because if the receiver

is not ready, the message is resent several times

 The receiver has to wait for entire time taken to transfer the message

across the network which may be significant

Single Message Buffer
 Hence the synchronous communication mechanisms in network /

distributed systems use a single message buffer strategy

 The idea behind the single buffer strategy is to keep the message ready for

use at the location of the receiver

 This is because in systems based on synchronous communication, an

application module may have at most one message pending at a time

 The buffer may be in the receiver kernel or process address space

 The fig shows the two stage message passing process

MessageSending

process

Receiving

process

Single msg buffer

Node
boundary

Unbounded Capacity Buffer

 In the asynchronous mode of communication, since the sender

does not wait for the receiver to be ready, there may be several

pending messages that have not yet been accepted by receiver

 Hence an unbounded capacity of message buffer that can store

all not received messages is needed to support asynchronous

communication with the assurance that all the message sent to

receiver will be delivered

 Unbounded capacity of a buffer is practically impossible as the

memory available is finite

Finite Bound (Multiple Message) Buffer
 In practice asynchronous communication use finite bound buffers also

known as multiple message buffers

 Hence a strategy has to be in place to address buffer overflow

 Unsuccessful Communication: In this method, message transfers simply

fail when buffer is full

 The send normally sends an error message back to the sender as

buffer is full which makes message passing less reliable

 Flow controlled communication: the second method is to use flow

control which means that the sender is blocked until the receiver

accepts some messages, thus clearing buffer space

Finite Bound Buffer (Cont’d)

 This method is used in asynchronous communication.

Msg 1

Msg 2

Msg 3

Msg n

Multiple-message Buffer/ mailbox / port

Message

Sending

process

Receiving

process

Multidatagram Messages

 All Networks have an upper bound on the size of the data that
can be transmitted across a network

 This size is known as Maximum transfer unit (MTU) of a
network

 A message whose size is larger than MTU has to be fragmented
into multiples of MTU and then each fragment has to be sent
separately

 Each Packet consisting of Message data + control information is
called a datagram

 Messages with smaller size are sent as single packet and known
as single-datagram messages

Multidatagram Messages (Cont’d)

 Messages with multiple fragments are known as multidatagram

messages

 Different packages of a multidatagram message bear a sequential

relationship to one another

 Disassembling on the sender side and reassembling in sequence,

of packets of multidatagram messages, on the receiver side is

usually the responsibility of the message passing system

 This is major responsibility as the messages may not be received

in the order it is sent and re-sequencing of messages identifying

if any in between message is missing etc., is an important

function

 How this is handled depends on MPS implementation

 Due to the problems discussed below in transferring program

objects in their original form, they are converted to a stream

form that is suitable for transmission and placed into a message

buffer

 Different program objects occupy varying amount of

address space.

 An absolute pointer value loses its meaning when

transmitted from one process address space to another

 This conversion of the data takes place on the sender and is

known as encoding of a message data

Encoding and Decoding of message data

Encoding and Decoding of message data

(Cont’d)

 The encoded message when received by the receiver, it must be

converted from the stream form back to the program object before it

can be used

 This process of reconstruction of the program objects from the message

data is known as decoding of message data

 One of the following two representations may be used for the encoding

and decoding of message data

 In tagged representation, the type of each program object along with its

value is encoded in the message

 In this method, it is simple matter to the receiving process to check the

type of each program object in the message because of the self-

describing nature of the coded data format

Encoding and Decoding of message data

(Cont’d)
 Quantity of data transferred is more. Time taken to encode/ decode

data is more

 In untagged representation, the message data only contains the program

objects

 No information is included in the message data to specify the type of

each program object

 In this method, the receiving process should have a prior knowledge of

how to decode the received data because the code data is not self

describing

 The untagged representation is used in SUN XDR (eXternal Data

Representaion) and Courier

 Where as tagged representation is used in the ASN and Mach

distributed operating system

Encoding and Decoding of message data

(Cont’d)

 In general tagged representation is more expensive than untagged

representation both in terms of amount of data transferred as well as

processing time required for encoding and decoding of message data

 No matter what method is used, the sender as well as the receiver should

be fully aware of the format of data coded in the message

 The sender process uses an encoding routine to convert data into coded

form and the receiver uses a decoding routine to generate the original data

from the received data

Encoding and Decoding of message data

(Cont’d)

 The encoding and decoding processes are symmetrical operations in

nature because decoder reproduces the exact data that was encoded

allowing for the differences in the data representation in the two

systems (Heterogeneous nature of the systems)

 In case receiver receives badly encoded data, it sends an error back

saying the encoding not intelligible forcing the sender to regenerate the

encoded data and resend it to the receiver

 Hence encoding and decoding of data form an important part of

Message Passing System in a Distributed System

Process Addressing

 Another important issue in message based communication is addressing

(naming) of the parties involved in an interaction

 To whom does the sender would like to send a message and from whom

the receiver wish to accept a message

 The MPS usually supports two types of process addressing

 Explicit addressing: The process with which communication is desired

is explicitly named as a parameter in the communication primitive

used

 Send (process_id , msg): send a message to a process identified by

process_id

 Receive (process_id , msg): receive a message from a process

identified by process_id

Methods for Process Addressing

 Implicit addressing: The process willing to communicate does not

explicitly name a process for communication

 Send_any (service_id , msg): The sender names a service instead of

a process. This type of addressing is used in a client-server

communication when the client is not concerned with which

particular server out of a set of servers providing the particular

service responds. This type of addressing is called functional

addressing as the address used in the primitive identifies a service

rather than a process

 Receive_any (process_id , msg): the receiver is willing to accept a

message from any sender. It returns process id of the process from

which the message was received. This is again useful in client server

communications, when the server is meant to service requests of all

clients that are authorized to use its service

Methods for Process Addressing (Cont’d)

 Let us now consider the commonly used methods for process addressing

 A simple method to identify a process is a combination of machine_id and

local_id such as machine_id@local_id

 The local_id part is a process identifier or a port identifier of a receiving

process, some thing else that uniquely identify a process on a machine

 A process willing to communicate with another machine sends the message

in the form machine_id@local_id,

 The machine_id identifies the receiving machine

 Local_id is then used by the kernel of the receiving machine to forward

the message to the right process for which it is intended

 Local_id need to be unique to the receiving machine only and can be

generated without consulting other machine

 However, one of the drawback of this method is that it does not allow

process migration, i.e., from one machine to another

Methods for Process Addressing

 This can be overcome by using machine_id, local_id, and machine_id

 The first field identifies the node on which the process is created

 The second is the local identifier generated by the node on which the

process is created

 The third field identifies the last known location (node) of the process

 During the life time of process the first two fields do not change, the last one

may change.This method is known as link-based process addressing

 When the process migrate, a link information (machine_id of the new node) is

left on the previous node and on the new node

 A mapping table is maintained by the kernel of the new node for all processes

created on another node but running on this node currently

Location Transparent Process Addressing

 Current location of receiving process is sent to sender, which it caches for

future use

 Drawbacks

 Overhead of locating process large if process migrated many times

 Not possible to locate process if intermediate node in the process migration

chain is down

 Both above methods are location non-transparent as one need to specify the

machine identifier

 As transparency is one of the main goals of DCS, a location-transparent process

addressing mechanism is desirable

 A simple method is to ensure that every process has system wide unique

identifier.

Location Transparent Process Addressing

 Two-level naming scheme

 Each process has a high level machine independent name and low level

machine dependent name

 Name server is used to maintain a mapping table that maps high level

names of processes to low level names, and address of the name server is

well known across the network

 A process that wants to send a message, it uses high level name of the

receiving process in the communication primitive.

 Kernel of sending machine obtains low level name of receiving process

from name server and also caches it for future use

Location Transparent Process Addressing

 The kernel then sends the message using low level name of the

receiving process

 The name server approach allows a process to be migrated from one

node to another without the need to change the code in the program

of any process that wants to communicate with it

 When process migrates only low level name changes and the change is

incorporated in name server’s mapping table

 This method also suffers from problem of poor reliability and

scalability

 One way to overcome this is to maintain replicas of name server to

make it scalable and reliable

 However it leads to extra overhead of ensuring that the replicas are

always consistent

Failure Handling

 While DCS provides for parallelism, it is always prone to partial failures like
node crash or a communication failure leading to following problems

1. Loss of request msg: This may be due to failure of communication link or
receiver node down

Lost

Sender Receiver

Send request

Failure Handling (Cont’d)

2. Loss of response msg: Due to failure of the communication link or the sender

machine down when the reply reaches it

Send request

Lost

Sender Receiver

Response message

Request message

Successful request execution

Send response

Failure Handling (Cont’d)

3. Unsuccessful execution of the request: Happens when the receiver crashes

while processing the request

Send request

Sender

Request message

Receiver

Unsuccessful request

execution

crash

Restarted

Four message reliable IPC protocol
 To cope with this problem, a reliable IPC protocol of a MPS is designed based

on the idea of internal retransmission of messages after the timeouts and the

return of the ACK to the sender machine kernel by the receiving machine

kernel

 Kernel of the sending machine is responsible for retransmitting the message

after waiting for the timeout period if no ACK is received from the receiving

machine

 The sending machine, frees the sending process, only when the ACK is received

 The Timeout period is slightly more than round trip time for the message plus

the avg. time required for executing the request

 Based on this idea, a four message reliable IPC protocol for client-server

communication between two processes as shown

Four message reliable IPC protocol

Acknowledgment

Reply

Request

Acknowledgment

client server

Blocked state
Execution state

1. the client send a request message to the server

2. When the request message is received by the server’s machine, the kernel sends

an ACK to the sender machine. If the ACK is not received within time out, it

resends the message

3. When the server finishes processing the client’s request, it returns a reply

message (containing the result of processing) to the client

4. When the reply message is received client machine sends an ACK

Three message reliable IPC protocol

 In a client-server communication, the result of the processed request is a sufficient ACK.

 Based on this 3-message reliable IPC protocol is as shown above

 The Server can send separate acknowledgement if processing of request is taking more

time than timeout value.

Acknowledgment

Reply

Request

client server

Blocked state
Execution state

Two message reliable IPC protocol

 To address long time needed for processing, and unnecessary low value of time out

resulting in retransmission of the message and unnecessary network traffic the above two

message protocol may be used

1. Client sends a request message to the server

2. Server starts a timer and if the processing is complete within time out the reply of the

processing acts also as ACK, else server sends a ACK to the client

Reply

Request

client server

Blocked state
Execution state

Fault Tolerant Communication
3. ACK from the client is not necessary as if reply not received as the

client can repeat the request if the reply not received within time out

 Based on the two message protocol, an example of failure handling

during communication between two processes is shown in the next

slide

 The two message protocol is said to obey at-least-once semantics, which

ensures that at least one execution of the receiver’s operations has been

performed(or perhaps more)

 It is more appropriate to call it as last-one semantics because the results

of the last execution of the request are used by the sender

Fault Tolerant Communication

At – least-once semantics/ Last one semantics

Send request

Lost

Client Server

Response msg

Request message

Successful request

execution

Lost

Response Msg

Send request

Retransmit Request Msg

Retransmit Request Msg

Retransmit Request Msg

Send request

Send request

Crash

Unsuccessful request

execution

Successful request

execution

Timeout

Timeout

Timeout
These two successful

executions may

produce different

result

Idempotency

 Idempotency here basically means “Repeatability”

 An idempotent operation produces the same result without any side effect no
matter how many times it is performed with the same arguments

 For example square root of a number Getsqrt(64) always return 8

 Operations that do not necessarily produce the same results when executed
repeatedly are said to be nonidempotent

 For example consider the following routine that debits a certain amount
from a bank account and returns the balance amount

debit(amount)

if (balance ≥ amount)

{ balance = balance-amount;

return (“Success”, balance);}

else return (“Failure, balance);

end;

 The fig in the slide shows the sequence of operations for debit(100)

request

Debit(100)
Process debit routine

balance =1000-100=900

(success , 900)

response

lost

Return (success , 900)

Send

request

Time
out

Retransmit request

Response

(success , 800)

Process debit routine

balance=900-100=800

Send

request

Server (balance = 1000)Client

Idempotency

Handling Duplicate Request

 Using the timeout-based retransmission of request , the server may

execute the same request message more than once

 If the execution is non-idempotent, its repeated execution will destroy

the consistency of information

 Hence such “orphan” execution must be avoided

 This has lead to the exactly–once semantics, when used, it ensures that

only one execution of server’s operation is performed

 Use a unique identifier for every request that the client makes and to set

up a reply cache in the kernel’s address space on the server machine to

cache replies

Handling Duplicate Request

 Then before forwarding request to the server for processing, the kernel

of the processing machine checks to see if a reply already exists in the

reply cache for the request

 If yes, it is duplicate request and hence, the previously computed result

is extracted from the reply cache and a new response message is sent to

the client

 Else the request is new one and sent to the server for processing

Req -1

Req-id Reply

Reply cache

No Match found , so process request-1

Receive

balance

=900

Send

request-1

Time
out

Client Server (balance=1000)

Check reply cache for request - 1

Match found

Extract reply

Return (success , 900)
(Success,900)

response

Debit (100)

Retransmit request -1

Lost

Debit (100)

Request-1

Check reply cache for request - 1

Save reply

Return (success,900)

Send

request-1

(success,900)

Handling Duplicate Request

 Ques. Which of the following operations are idempotent?

1. Read_next_record(filename)

2. Read_record(filename, record_no)

3. Append_record(filename, record)

4. Write_record(filename, after_record_n,record)

5. Seek(filename, position)

6. Add(integer1,integer2)

7. Increment(variable_name)

 Ques. Which of the following operations are idempotent?

1. Read_next_record(filename)

2. Read_record(filename, record_no)

3. Append_record(filename, record)

4. Write_record(filename, after_record_n,record)

5. Seek(filename, position)

6. Add(integer1,integer2)

7. Increment(variable_name)

Handling lost and out-of-sequence packets in
multidatagram messages

 In case of multidatagram messages, the logical transfer of a message consists

of physical transfer of several packets

 Hence for completion of message transmission all the packets have to be

received in the right order

 Hence reliable delivery of every packet is important

 Simplest way is to have ACK for each packet separately, which is called as

Stop-and-wait protocol

 This leads to excessive Communication Overhead

 To improve communication performance, a better approach is to have one

ACK for all packets of multidatagram message (Blast protocol)

Handling lost and out-of-sequence packets in
multidatagram messages

 Blast protocol: A node crash or communication failure can lead to

 One or more lost Packets in communication

 Packets are received out of sequence

 An efficient mechanism to cope with these problems is to use bitmap to

identify the packets of message

 Header has two extra fields- total no. of packets in the multidatagram message and

position of this packet in complete message. e.g., (5, 00001, data) for 1st packet, (5,

00010, data) for 2nd and so on

 First field helps the receiver to set aside sufficient buffer space

 So even if out of sequence, data can be stored in buffer at the right position

Handling lost and out-of-sequence
packets in multidatagram messages

 If at the time out all packets are not received, a bit map of unreceived

packets is sent to sender. Using this information

 Sender can do Selective resending of not received packets

 If receiver sends (5,01001), sender sends back 1st & 4th packets

again

Sender of a multigram

Message (5 packets)
Receiver of multigram

Message
Send Request

Message

5,00001

First of 5 packets

5,00010

Second of 5

packets

5,00100

Third of 5 packets

5,01000

Fourth of 5 packets

Lost

Lost
5,10000

Fifth of 5 packets

5,01001

Missing packet information

5,01000

Fourth of 5 packets

Create a buffer for 5

packets
1

2

3

4

5

Packets of

response

Message

Resend

missing

Message

Group Communication

 The most common message based interaction is one-to-one

communication also known as point-to-point or unicast communication

 Single process sends a message to a single receiver process

 However a good DCS often require group communication facility

which are of three types

 One to many

 Many to one

 Many to many

 Each of these have their own issues let us consider them

One to Many

 Multiple receivers for message sent by a single sender

 It is known as Multicast Communication

 A special case of multicast is Broadcast Communication where the message is

sent to all the processors in the network

 Multicast/broadcast communication is very useful and has several practical

applications

 To locate a processor providing particular class of service, one might broadcast

across the network

Group Management
 In case of one to many communication, receiver processes form a group

 These group are of two types open and closed

 Open Group

 Any process can send message to a group as a whole. e.g., Group of replicated

servers

 Outsider can send a message to all group members announcing its joining.

 Closed Group

 Only members of a group can send message to the group. e.g. Collection of

processors, Parallel processing a single application

 Closed group also have to be open with respect to joining

 Whether to use an open group or closed group is application dependent

Group Management

 A good MPS should support both types of groups

 It should also provide flexibility to create and delete groups dynamically and

allow a process to join and leave a group at any time

 Hence the MPS should have mechanism to manage the groups and their

membership information

 A simple mechanism is Centralized group server process

 All requests to create, delete a group, add or remove membership of a group

are sent to this process

 Hence maintenance of up to date group information is simple and straight

forward

 Centralized group server maintains a list of process identifiers of all processes

for each group

Group Management

 It suffers from poor reliability & scalability, which is a common problem

of any centralized service

 To some extent the problem can be solved by replicating the group

server. This leads to the problem of data consistency

 Two-level naming scheme is normally used for group addressing

 High level group name

 ASCII string name independent of location of processes in group

 Used by user applications

 Low level group name

 Depends to a large extent on underlying hardware (can be also a

multicast address)

GROUP ADDRESSING

Group Addressing

 Multicast address / Broadcast address: a special network address to which

multiple machines can listen

 Networks that do not have multicast facility may have broadcasting facility.

 A packet sent to a broadcast address is delivered to all the machines in the

network

 Hence the broadcast address can also be used as a low level name for a

group

 For group addressing multicasting is more efficient than broadcasting.

 If a network does not support either multicast or broadcast addressing then

 One to one communication (Unicast) to implement group communication

 Low level name :- List of machine identifiers of all machines belonging

to group

 Packets sent = no. of machines in group Expensive

Unbuffered Multicast/ Buffered Multicast

 Multicast is asynchronous communication

 Sending process can’t wait for the readiness of all receivers

 Sending process not aware of all receivers belonging to the group

 How a receiver treats a message depends upon whether the multicasting

mechanism is buffered or unbuffered

 For an unbuffered multicast, if the receiving process is not in a ready state to

receive the message, it is lost

 In case of buffered multicast it is buffered for the receiving process and hence

will receive eventually

 Send to all semantics

 Message sent to each process of multicast group and the message is buffered

until it is accepted by all the process

Unbuffered Multicast/ Buffered Multicast

 Bulletin Board semantics

 Message addressed to channel instead of being sent to every individual

process of the multicast group

 From a logical point of view the channel acts like bulletin board

 Receiving process copies message from channel instead of removing it

 Bulletin semantics is more flexible than send-to-all semantics

 The relevance of a particular message to a particular receiver depends

on its state i.e. If process is in idle state

 Messages not accepted within a certain time after transmission may no

longer be useful; their value may depend on the state of the sender

 For example in a multicast message for idle server of particular function,

only the idle machines make a receive request and others may be busy

with other processing

Flexible Reliability in Multicast

 Different applications require different levels of reliability

 Hence multicast primitives normally provide flexibility for user definable

reliability. e.g., Sender of a multicast message can specify no. of receivers from

whom reply is expected

 0-reliable: No response expected from any of the receivers

 1-reliable: sender expects response from any of the receivers

 m out of n reliable: m out of n receivers responses are expected

 All reliable: Sender expects response from every one of the receivers

 Atomic Multicast

 All - or - nothing property; i.e., when a message is sent to a group by atomic

multicast, it is either received by all the processes that are members of the

group or not received by any one

Atomic Multicast
 Atomic multicast is not always necessary. for example 0-, 1- and m out of n

reliability, atomic multicast is not required.

 A simple way to implement atomic multicast is to multicast a message and

asking for an ACK from each one of the group members

 After the timeout it retransmits to all those from whom no ACK

 The process repeated until all the ACKs are received

 Required for all - reliable semantics

 Involves repeated retransmissions by sender

 What if sender/ receiver crashes or goes down?

 Include message identifier & field to indicate atomic multicast

 Receiver also performs atomic multicast of message

 Very expensive

Group Communication Primitives

 Send(): unicast

 send_group(): multicast

 Simplifies design & implementation of group communication

 Indicates whether to use name server or group server

 Can include extra parameter to specify degree of reliability (no of users

from which reply is expected) or atomicity.

Many to one Communication

 Multiple senders – one receiver

 Selective receiver

 Accepts from unique sender

 Non selective receiver

 Accepts from any sender from a specified group

 E.g., producer-consumer process

Many-to-many Communication

 In this scheme, multiple senders send messages to multiple receivers

 One-to-many and many-to-one is implicit in this scheme

 Hence their issues are similar as described earlier

 One of the important aspect is Ordered message delivery

 All messages are delivered to all receivers in an order acceptable to the

application

 Requires message sequencing

 Out of order delivery is hardware dependent and depends on whether the

network is a LAN orWAN

 Hence ordered message delivery require special mechanisms

S1 R1 R2 S2

m1

m2

m2

Timem1

No ordering constraint for message delivery

Many-to-many Communication

Absolute Ordering

 Messages delivered to all receivers in the exact order in which they were sent

 Global timestamps are used as message identifiers and embedded in the
message

 Kernel of each receiver saves all incoming messages meant for it in a separate
queue

 Sliding window mechanism is used to deliver the message from the queue to
receiver

 Fixed time intervals are selected for the window size and message falling with
in the window are delivered to the receiver

 Absolute ordering semantics

require globally synchronized

clocks, which is not easy to

implement

S1 R1 R2 S2

m1

m2

m2

Time
m1

t2

t1 < t2

t1

Consistent Ordering

 In most cases absolute ordering is not necessary

 It is enough to ensure all the receivers, receive the messages in the same order

 All messages are delivered to all receiver process in the same order, which may

not the order in which messages were sent

 This is called consistent ordering and many systems support this

 One way of implementing consistent ordering semantics is to make the many to

many scheme to appear as a combination of many-to one and one to many

schemes. i.e., the kernel of the sending machines send messages to a single

receiver (known as sequencer) that assigns a sequence no. to each message and

then multicasts it. The kernel of the receiving machines store these messages in a

separate queue and deliver the messages in the sequence no. ordering, if needed

it will wait.

Consistent Ordering

 However this method is prone to single point failure and not reliable

 There is another stable system called ABCAST protocol where the sequence no.

is assigned by distributed agreement among the group members

S1 R1 R2 S2

m1

m2

m2
Time

m1

t2

t1 < t2

t1

Consistent Ordering

 Distributed algorithm (ABCAST)

 Sender assigns temporary sequence no. larger than previous all nos., & sends

to group.

 Each member returns a proposed sequence no. to the sender. A member (i)

calculates its proposed sequence number by max(Fmax, Pmax) + 1 + i/N

 When sender receives the proposed sequence nos. from all the members.

 It selects largest sequence no. & sends to all members in a commit message.

This chosen sequence no. is guaranteed to be unique

 On receiving the commit message, each member attaches the final sequence

number to the message

 Committed messages are delivered to application programs in order of their

final sequence nos.

Causal Ordering

 For some application even weaker semantics than consistent is acceptable

 Two message sending events casually related (any possibility of second

message influenced by first one) then messages delivered in order to all

receivers.

 The basic idea is that when it matters, messages are always delivered in

the proper order, when it does not matter, delivery can be arbitrary

 Given the figure below Sender S1sends a message m1 to receivers R1, R2

and R3 and sender S2 sends message m2 to receivers R2 and R3

Causal Ordering (Cont’d)

 On receiving m1, R1inspects and creates a new message m3 and sends it to

R2 and R3

 Note that event m3 causally related the event of sending m1

 Hence the two messages m1 and m3 should be received by R2 and R3 in

that order

 Since m2 is not related to m1 or m3 it can be delivered at any time to R2

and R3

Time

R1 R2 R3 S2

m1
m2

m2

m1

S1

m1

m3

m3

Causal Ordering (in ISIS)
 CBCAST algorithm

 Consider a system with 4 processes A, B, C, & D

 Status of their vector at any instant of time is as shown in the figure

 This means that Until now, A has sent 3 messages, B2, C5 and D1

 Now A sends a new message and vector attached to it is (4, 2, 5, 1)

 On arrival at a receiver, two conditions are tested let S be the vector of sender

and R is the vector of receiver

S[i] = R[i] + 1 and S[j] <= R[j] for all j <> i and i is the sequence

no of sender

 Hence in above example message will be delivered to B, C will be delayed as

A[i]=C[i] + 1 does not hold and for D, A[3] <= D[3] does not hold

 First condition ensures that receiver has not missed any message from the

sender.

 Second condition ensures that sender has not received any message that

receiver has not yet received.

CBCAST Protocol(Used in ISIS)

1523 1523 1522 1423

Vector of Process

A

Vector of

Process B
Vector of

Process C

Vector of

Process D

1 Msg524

Process A sends new

msg

Deliver
Delay
A[1]=C[1]+1
not satisfied

Delay
A[3]<=D[3]
not satisfied

S[i]=R[i]+1 and S[j]<=R[j] for all j<>i

Case Study (IPC in Mach)

 Mach is a distributed system capable of functioning on

heterogeneous systems.

 It incorporates multiprocessing support.

 System is highly flexible, i.e. able to run on systems with shared

memory or no shared memory and single processors or multiple

processors.

Port, socket and IP Address

 Think of your machine as an apartment building:

 A port is an apartment number.

 A socket is the door of an apartment.

 An IP address is the street address of the building.

Components of Mach IPC

 Two components of Mach IPC are ports and messages.

 Messages are sent to ports to initiate communication.

 Mach ensures security by assigning access rights to ports.

 A port is implemented as a protected and bounded queue.

 System calls that handles functionality of ports do the following:

 Allocates port for specified task and give all access rights to the

sender’s task.

 Deallocates a task’s access rights to a port.

 Get the current status of a task’s port.

 Creates a backup port.

Mach message format
 Message consists of fixed sized header and variable number of

objects.

 Header contains the destination port name, the name of reply

port to which return messages will be sent, length of message.

Destination port

Reply port

Size/operation

Data

Port rights

…

Message control

Memory cache object Memory cache object

Port

Message Queue Message Message

NetMsgServer

 NetMsgServer is used to:

 Send a message between computers.

 Provide location-transparent naming.

 Extending IPC across multiple systems.

 It provides network-wide naming services.

 NetMsgServers maintain a distributed databases of port

rights.

 Kernal uses NetMsgServer when passing messages:

 Kernal transfers message to local NetMsgServer.

 If service not available, message forwarded to other

NetMsgServer by local NetMsgServer.

API for Internet Protocol

 Socket Programming used to implement interfaces for client server

communication.

 Socket programming was first used by UNIX operating systems.

 Sockets provides end to end communication.

 Sockets are used in both UDP and TCP types of message passing.

 A message is transmitted from a socket in one process to socket in

another process.

 Process binds its socket to a local port and to one of the host

address.

 Same socket can be used to send and receive messages.

UDP Communication

 For UDP datagram communication, a process must first

create a socket and bind to the local port and to internet

address of the local host.

Socket

Client

Ports

Socket

Server

Ports

Message

Internet Address 192.160.32.11 Internet Address 192.160.32.12

Norms for Datagram Communication

 Receiving process should specify the array size in which to
receive the message.

 Sockets offer blocking receive and non-blocking send. Sometimes
non-blocking receive can also be implemented.

 Receive method can receive a message from any source, it
returns the internet address and the local port of sender allowing
it to check origin of message. Sometimes connection is fixed
also.

 Message communication should be reliable and valid. Error
detection and error correction is there. Out of sequence delivery
is taken care of.

TCP Datagram Communication

 TCP is connection oriented protocol.

 It ensures correct delivery of a long sequence of bytes as it

establishes a bidirectional communication channel before starting

message transfer.

 It maintains both the correctness and sequence of message delivery.

 It takes certain precautions while transferring data such as:

 Sequencing: It maintains sequence with the help of sequence number

embedded at the beginning of message.

 Flow Control: it follows segment acknowledgements. When a segment

is received , the sequence number is noted and receiver sends

acknowledgement periodically along with the window size. Window

size basically specifies the amount of data that can be sent before next

acknowledgement.

 Retransmission and buffering: Retransmission is done in case

receiver does not receive any packet and buffering is done to avoid

speed mismatch between sender and receiver.

 Some services that use TCP protocol are

 HTTP

 FTP

 Telnet

 SMTP

University Questions

 How many types of reliabilities are there in group communication?
Give two example of each.

 Multidatagram Messaging (short notes)

 How can you implement exactly once semantics.

 What are three different process address mechanisms. Give their
relative advantages & disadvantages

 What are blocking & non blocking types of IPC. Give their relative
advantages & disadvantages

 Write a short note on group communication in message passing

 What is ordered message delivery? Compare the various ordering
semantics for message passing. Explain how each of these semantics is
implemented?

 Give a mechanism for consistent ordering of messages in following

cases:-

 One-to-many communications

 Many-to-one communications

 Many-to-many communications

