INTRODUCTIONTO DISTRIBUTED
SYSTEMS

References

* Distributed OS by Pradeep Sinha (PHI)
* Distributed OS by Sunita Mahajan

Distributed Computing Systems

e A collection of independent computers that appears to its

users as a single coherent system.

Definition of Distributed System

® This definition has two aspects

® First one deals with Hardware: individual systems which are
autonomous and heterogeneous i.e., different CPU designs and

operating environment

® Second is the software : that make the users think that they are dealing

with a single and large powerful computing environment

® Both are essential, as well as crucial for the concept of modern day

distributed system

Component-1 Component-n '

What Is a Distributed System?

-| Component-1 Component-n ' |
| .
' - I

Component-1 Component-n |

Network OS Network OS
Hardware Hardware
........ Host-1 . _Host2 _

Network OS | | Network OS
Hardware | | Hardware
| A
________ Host-n . _ _Host3

-| Component-1 Component-n |

Centralised Systems:

® System shared by users all the time
® All resources accessible

® Software runs in a single process

® Single physical location

® Single point of control

° Single point of failure

Distributed System Characteristics

® Multiple autonomous components

* Components are not shared by all users

® Resources may not be accessible

* Software runs in concurrent processes on different processors
® Multiple points of control

® Multiple points of failure

Evolution of Distributed Systems

Early Computers were very bulky occupying large rooms, expensive

and with low processing power

Accessible only to few research centers and big industries
Most of the processing was done in batch mode

Initial inputs were using punched cards

Output through big line printers and plotters

Concept of networking was unknown

Data stored in magnetic tapes

None of them allowed multiple users to directly interact with a

computer system and share resources simultaneously

Evolution of Distributed Systems

® 1970s saw the concept of time-sharing systems also known as main
frames
® Several dumb terminals connected to the main computer system
® Multiple users could log into the system and share resources
® The concept of time sharing gave the impression that he or she has his or
her own computer
® The computer switches rapidly from one user job to next user’s job,

executing only a small portion of each job at a time

Revolution

® Revolution from a machine that executed 1 instruction per sec costing
several crores of rupees to systems that process few millions of instructions

and cost only few lakhs of rupees

® 1980 saw two major changes:

® Development of fast microprocessors
8 bit 2 16 bit = 32 bit = 64 bit became common
Each had more computing power than the earlier mainframes
® Development of Local area Networks or LANs
100s of machines in a building got interconnected
Allowing large amount data to be shared between system in a small interval of time

Wide Area Networks connecting millions of systems interconnected all over the world

Evolution of DCS

e Batch Processing System

® Batching together jobs with similar needs

® Automatic sequencing of jobs with control cards

® Off-line processing (By using buffering, spooling)

® User does not directly interact with the computer system.
* Disadvantage

® Less user interaction

® No sharing of resources

® Job set up time still significant for new batch of jobs

® CPU remain idle during transition.

® Speed mismatch (CPU & 170 dev)
o Time—Sharing Systems
® Several dumb terminals are attached to main computer

° Multiple user could now simultaneously execute interactive jobs and share the
resources

Evolution of DCS (Cont’d)

Time-Sharing Systems

® The CPU is multiplexed among several jobs that are kept in memory
Advantages

® Reduces CPU idle time.

e Avoid duplication of software

Disadvantages

e Increased overhead. (Time to swap page in and out)

® Terminals could not be placed far from main computer

Due to advancement in networking technologies LLAN and WAN came

into existence — lead to evolution of Distributed Computing.

Taxonomy of Parallel Processor
Architectures (Flynn’s Classification)

Processor Organizations

Single Instruction, Single Instruction, Multiple Instruction, Multiple Instruction,
Single Data Stream Multiple Data Stream Single Data Stream Multiple Data Stream
(SISD) (SINMD) (MISD) (MIMD)
Uniprocessor
Vector Array Shared Memory Disiributed Memory
Processor Processor (tightly coupled) (loosely coupled)
Clusters
Symmetric Nonumiform
Multiprocessor Memory
(SMP) Access

INUMA)

Hardware Considerations

® Architecture of interconnected multiple processors are of two
types:
* Tightly Coupled System
* Single system wide primary memory
e Communication takes place through shared memory
e Systems are limited by bandwidth of share memory

® [tis also known as Parallel Processing Systems

® Loosely Coupled System
® Each processor has its own local memory
® It can have unlimited number of processors
® Communication is done by passing message across the network

® [t is known as Distributed Computing System

Parallel vs. Distributed Architecture

» Multiprocessors
— Tightly coupled.

— Shared memory.

« Multicomputers.

— Loosely coupled.

— Private memory.
— Autonomous.

Parallel architecture

CPL
Cache

CPL
Cache

M ermory

Distributed architecture

I ermory

CHPL

I emory

[emory

CPL

CPLU

Multiprocessors (1)

CPU

Cache

CPU

Cache

CPU

Cache

| Memory

Bus

Multiprocessors (2)

Memories
‘ M ‘ M ‘ M ‘ M CPUs Memories
P M
P 5 - —
P M
P oy o —
CPUs P M
P { I { 7 } { 5 v -
- . / v
P -—-\-\ -—:r -“\-\ _ _
B ¥
Crosspoint switch 2x2 switch

(@) (b)

a) A crossbar switch

b) An omega switching network

Homogeneous Multicomputer

Systems

L H T

(a)

2)
b)

Grid
Hypercube

Parallel vs. Distributed Systems

Parallel Systems Distributed Systems
Memory Tightly coupled shared | Distributed memory
memory Message passing, RPC,
and/or use of distributed
shared memory
Control Global clock control No global clock control.
Synchronization algorithms
needed
Processor Bus, mesh, tree, mesh of | Ethernet(bus), token ring
Interconnect | tree, and hypercube | and SCI (ring)
lon network
Main focus Performance - Scientific | Performance - cost and
computing scalability, Reliability,
Information/resource
sharing

Distributed Computing Systems

e A collection of mostly heterogeneous nodes connected by one or more
interconnection networks which provides access to system—wide shared

resources and services.

® Jt is basically a collection of interconnected processors covering wide
geographical area in which each processor has its own local memory and

other peripherals.

® The communication between any two processor takes place by message

passing over communication network.

Characteristics of a DS

® Another important aspect of Distributed computing is its

characteristics

® The differences between the various computers hardware and software
® Way these systems communicate with each other

® The entire architecture of a DS is hidden from the user

® Users and applications can interact with a DS in a consistent and

uniform way, irrespective of where and when the interaction takes place

Distributed Application Examples

Automated banking systems

Tracking roaming cellular phones

Global positioning systems

Passenger reservation system: railways and airlines
Retail point-of-sale terminals in large malls
Air-traffic control

Avionics (fly-by-wire)

Research Institutions

The World Wide Web

Motivation for Distributed Systems

Share resources

Personalise environments
Transparency

Location independence

People & information are distributed
Performance & cost

Modularity & expandability
Availability & reliability

Disadvantages of Distributed Systems

e Software: difficult to develop software for distributed systems
® Network: saturation, lossy transmissions

® Security: easy access also applies to secret data

Distributed Computing System
Models

Minicomputer Model

| m:

e Extension of Centralized Time sharing system

® User must log on to his home minicomputer.
® Thereafter, he can log on to a remote machine by telnet.
® Does not reflect uniprocessor image.

* Used basically for Resource sharing (Database, High-performance
devices)

Minicomputer Model (Cont’d)

A DCS based on minicomputer may be a collection of large no. of

minicomputers interconnected by fast communication network

Each mini-computer may have multiple users logged on to it through

interactive terminals

The network allows the user to access remote resources on machines

other than the one to which he is logged in

The minicomputer model may be wused when resource sharing
(information databases of different types, with each type of database

located on different machine) with remote users is desired

Most of early research institutes computer network is based on
minicomputer models e.g. ARPAnet(Advanced Research Project Agency
Network).

Workstation Model

—

* A powertul, single-user computer, like a personal computer, but has a

Workstation

more powerful microprocessor. Each has its own local disk and a local
file system — diskfull workstation.

A DCS based on workstations with a communication network is shown
above.

The concept is very useful in an office of university where there are many
workstations which are idling most of the time

To utilize these idle system came the Workstation model

Workstation Model (cont’d)

® Process migration
® Users first log on to his/her personal workstation.

 If there are idle remote workstations, one or more processes are

migrated to one of them.
® Result of execution migrated back to user’s workstation
* [ssues to be resolved: (will be covered later in detail)
® How to find an idle workstation
® How to migrate a job

e What if a local user logs on to the machine executing process of another
machine — run two processes simultaneously, kill remote process,

migrate process back to its home workstation ?

* Examples —TIFR, Sprite System, Xerox PARC

Workstation-Server Model

| voreomon | ’

Workstation-Server Model (Cont’d)

Client workstations
° Largely Diskless

® The file systems used by these systems must be implemented on disktul
workstation or minicomputer equipped with a disk for file storage

® | ocal disk of diskful workstation used for storage of temporary files etc.
Server minicomputers

® Each minicomputer is dedicated to one or more different types of
services, for managing & providing access to shared resources.

® Multiple servers used for a service for better scalability and higher

reliability.

User logs on to his machine. Normal computation activities carried at
home workstation but file services are provided by special servers.

No process migration involved. Request Response Protocol implemented

Workstation-Server Model (Cont’d)

® Advantages
® Cheaper — few minicomputers vs. large no. of diskfull workstations
® Backup and hardware maintenance easier
® Flexibility to access files from any file server
® No process migration
® Guaranteed response time
¢ Client-Server model of communication
* Disadvantage

® Does not exploit idle workstations

® Most Widely used model for building distributed systems
* Example: TELCO Design Dept, ADA & ADE

Processor-Pool Model

Terminals

100Gbps
LAN

Pool of processors

® Processors (microcomputers and minicomputers) are pooled together to
be shared by the users as needed.

e Each processor has its own memory to load and run a system program or
an application program of the DCS.

Processor-Pool Model (Cont’d)

Clients:

® They log in one of terminals (diskless workstations or graphic

terminals)
e All services are dispatched to servers.
Servers:

® Necessary number of processors are allocated to each user from the

pool by run server
No concept of home machine. User logs on to system as whole.
Better utilization of processing power
Greater ﬂexibility — processors can act as extra servers

Unsuitable for high performance interactive application as

communication is slow between processor & terminal - less interactivity

Example — Amoeba, Cambridge Distributed System

Hybrid Model

The Workstation-Server model is the most Widely used model for

building distributed computing systems

® Because large no of users at any given time are performing simple tasks like editing files or

performing some database query

Where users require heavy computational facility, Processor-Pool model

is more advantageous

Hence the Hybrid model, that combines advantage of both the

workstation — server and Processor - pool model

Based on workstation — server model with additional pool of processors

for high computational jobs
The processor in the pool can perform large computations
WS-server model can perform user interactive jobs.

Hybrid model is more expensive to implement

Features of Distributed Computing Systems

[N

From the discussion of the models for DCS, it is clear that DCS are much

more complex and difficult to build than traditional centralized systems

The system software of a DCS should also be capable of handling
communication and security issues, which are very simple in centralized

systems
Dependence on communication network is very high

Widely distributed resource sharing brings its own set of constraints and

privacy 1ssues
Still DCS is becoming popular Why?
Inherently Distributed Applications

= Several applications are distributive by nature and hence require a

DCS

Features of Distributed Computing Systems

= For example Nationwide Employee Data base, maintained at each

branch oftice (Aadhar)

*= Hence DCS provides the necessary features for collecting,

preprocessing and accessing data from different distributed systems

2. Information Sharing among Distributed Users

= Need for efficient person to person communication, sharing of

information over great distances

= Information generated by one user can easily be shared across the

system irrespective of the geographic distances

= Such environment is also referred to as computer—supported CO-

operative Working

Features of Distributed Computing Systems

3. Resource Sharing

* In addition to data sharing DCS also supports extensive resource
sharing as software libraries, databases as well as hardware devices
printers, hard disk, plotters and other very exclusive peripherals in an

effective manner

4. Better Price Performance Ratio

= As the resources are very effectively and efficiently used and shared, it

automatically reduces the cost of ownership of the entire network

= By effective sharing of computing power and other resources, it

provides a better price to performance ratio

5. Shorter Response time and Higher Throughput

= Because of the multiplicity of the processors, it will have on the whole

better performance than a single processor centralized systems

Features of Distributed Computing Systems

6.

It is possible to design multithreaded application, so that a single
application can run on multiple CPUs at the same time to give better
throughput

The performance of the DCS is normally only restricted by the

communication network on which it is designed

Higher Reliability

Reliability refers to degree of tolerance against errors and
component failures in a system

The multiplicity of storage devices and processors supports multiple
copies of critical information within the network and execution of
important computations redundantly to protect them against
catastrophic failures

Another aspect of higher reliability is high availability of resources
However one should remember that reliability comes at the cost of

performance

Features of Distributed Computing Systems

7.

8.

Extensibility and Incremental Growth

The DCS is very easily capable of incremental growth. i.e.,

gradually increase power and functionality of a DCS

Additional CPUs, peripherals can easily be integrated to address

future demands

Better Flexibility

Different types of computers can be integrated to address different
computational needs. For example, Systems for data storage have
completely different specifications when compared to a

computationally intensive system

As the DCS is based on hybrid model, the different data processing
requirements can be very effectively addressed in a cost effective

manner

Complexities

® More Software Components

® The more software components that comprise a system, greater is the

chance of errors occurring

L Security

° Providing casy distributed access increases the risk of a security breach

occurring
® Networking
® The underlying network can saturate or cause other problems.
* Complexity

° Complete information about system environment never available

Network Operating System

General structure of a network operating system

Machine A Machine B Machine C
Distributed applications
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

1 1 1

Network

Positioning Middleware

General structure of a distributed system as middleware

Machine A Machine B Machine C
Distributed applications
_________ | - - o o U YR o — oms omw omn e ems emm amm o
Middleware services
Network OS Network OS Network OS
services services services
Kernel Kernel Kernel

Network

NOS vs DOS

® Three most commonly used features to ditterentiate
NOS and DOS are System Image, autonomy, and fault

tolerance capability

° System Image

In case of NOS, the users are aware of the fact that multiple

computers are in use connected by high speed network

DOS on the other hand hides the existence of multiple computers

and provides a single system image to its users
In NOS user need to know location of a resource to use it

IN DOS user uses same set of system calls to access the local as well

as remote resources

Hence key differentiator is the transparency

NOS vs DOS (Cont’d)

° Autonomy

NOS is built on a set of existing centralized OS and handles the interfacing and
coordination of remote operations and communication between the operating

system

In NOS each computer has its own unique operating system and the only
coordination is for the communication between two processes on different

systems

Each computer functions independently and take independent decisions about
the creation and termination of their own processes and management of local

resources

DOS on the other hand, have a single system wide operating system and each
computer of the DCS runs a part of this global operating system

DOS tightly interweaves all the computers of a DCS so that they work in close
cooperation with each other for efficient and effective utilization of the various

resources of the system

Hence autonomy is higher in NOS than in DOS

NOS vs DOS (Cont’d)

e Fault tolerance Capability
NOS provides very little or no fault tolerance capability

DOS ensures that users are unaffected by the failure of a machine

in a DCS

Hence DOS offers high level of fault tolerance when compared to
NOS

® Hence a DCS that uses NOS is normally referred to as
Network System, while one that used DOS is normally
referred to as True Distributed System or just Distributed
System

Comparison of Different OS

Criteria Network | Distributed | Multiprocessor
0S 0S time-sharing 0S
Projects a virtual uniprocessor image | No Yes Yes
Runs same operating system ' No Yes Yes
' Copies of operating system N N 1
 Access to files Sharing | Messages in Sharing
memory
Network protocols required Yes Yes No
Single run queue NO No Yes
| Well-defined file sharing Usually no | Yes Yes
Coupling of Hardware & Software ~ LHLS ~ LHTS THTS

ISSUES IN DESIGNING
A
DISTRIBUTED OPERATING
SYSTEM

Transparency

® An important goal of a DCS is to hide the fact that its
processes and resources are distributed across multiple

computers

® A Distributed System is able to present itself to users and
applications as if it were only a single computer system.

® The concept of transparency can be applied to several
aspects of a distributed system

® Access, Location, Migration, Relocation, Replication,

Concurrency, Failure and Persistence

Transparency in a Distributed System

e Access Transparency

e Hide differences how a resource(local or remote) is accessed. Use global
set of system calls & global resource naming facility (ex URL)

e Accessing methods for a local and a remote resource should be same
e |ocation Transparency
e Hide where a resource is located

e Name transparency: Name of resource should not reveal its physical
location.

e Resource names must be unique system wide, so that they can be moved
easily across systems

User Mobility: User should be able to freely log on to any machine in the
system and access a resource with same name

Transparency in a Distributed System

e Replication Transparency

Naming of replicas - map user supplied name of resource to appropriate replica
(additional copies) of files and other resources on different nodes of a DCS

Replication control - issues are how, where, and when

e Failure Transparency

Deals with masking the user from partial failures in the system such as,
communication link failure, a machine failure, or a storage device crash.

Partial failure transparency

Complete failure transparency

e Migration Transparency

Movement of object is handled automatically by system and following issues are
taken care of :

Transparency in a Distributed System

Migration decision made automatically by system

Name of resource remains same on migration from one node to

another

IPC ensures proper receipt of message by process, even if it further

migrates

® COHCUI’I’GI’ICY Transparency

e Hide that a resource may be shared by several competitive users. It is

achieved by
Event ordering property
Mutual exclusion property
No starvation property

No deadlock property

® Performance Transparency

® System is automatically reconfigured as per load varying in the

system .

o Scaling Transparency
® System can expand in scale without disrupting activities of users

® Open system architecture and scalable algorithms

Reliability

e |n general DCS is expected to be more reliable than a Centralized system
because of multiple instances of resources

® Their presence alone is not enough the DOS has to be designed to fully
utilize these resources effectively

e Faults
® A fault: a mechanical or algorithmic defect that may generate an error
e A fault:in a system causes system failure

® The system failure: are of two types

Fail stop : system stops functioning after changing its state in which its failure can be
detected

Byzantine failure : System continues to function but produces wrong results
Undetected software bugs often cause byzantine failure of a system and

More difficult to detect and deal with than fail stop failure

" The DOS must be designed properly to avoid faults, tolerate faults, and
to detect and recover from faults

Reliability (Cont’d)

e Fault Avoidance

® Occurrence of faults is minimized by utilizing reliable components in
the design of the system

® Conservative design practices increases the system reliability

® Though DOS has no control over the hardware utilized, it can
thoroughly test the systems for better reliability

e Fault tolerance

® The ability of the system: to continue functioning in the event of partial
system failure, may be with degraded performance, e.g, a memory card
failure

° Redundancy techniques

Avoid single point failure by replicating critical hardware and software

cornponents

For example RAID

Reliability (Cont’d)

Hence larger the replication higher is the reliability
Increases the system overhead and cost of ownership
® Distributed control
Avoiding single point of failure by distributed control mechanism
For example a highly available Distributed File System should have
multiple file servers.
® Fault detection and recovery

® Atomic transaction: A collection of operations which can not be
separated. i.e., either all or none of the actions are effective

This enables crash recovery much easier and
Maintains data integrity

Provides the facility for roll back of transactions

Reliability (Cont’d)
e State full & Stateless servers

The client server model is frequently used in DCS to service user

requests
Two service paradigms namely stateful or stateless

They are distinguished by whether or not the history of the serviced
requests between a client and a server affects the execution of the next

request

The stateful approach does depend on the history of the serviced

requests while stateless servers does not depend on it

Stateless service paradigm makes crash recovery simple as no client

state information is maintained by the server

The stateful service require complex crash recovery process as both

client as well as the server detect crashes efficiently and reliably

'Acknowledgements & timeout based retransmissions of
messages

Failure of communication link or a node can result in loss of

messages

Hence a reliable interprocess communication mechanism need to

be implemented

Receiver must send ACK for a message, if not received within fixed

time limit, assume loss of message and retransmit

A problem associated with this method is duplicate messages and
the receiver should have a mechanism to detect and handle them

(auto generation of sequence nos.)

Flexibility

® Flexibility is an important issue in the design of open
distributed system they should be flexible for the following
reasons
® Ease of modification
To address design bug discovered later
Changed system environment
New user requirements
Incorporation of changes with minimum interruption to the users
® Ease of enhancement or upgradation

Addition of new functionalities to make a DCS more powerful and
easy to use

® An important design factor is the kernel model. This part of the OS
operates in a separate address space and can not be accessed by the user
processes

Flexibility (cont’d)

° Choosing appropriate kernel: two commonly used models

® Monolithic kernel : Kernel where the entire operating system is
working in the kernel space. The function include process management,
memory management, device management, file management, name

management, inter process communication etc

Many operating systems based on UNIX uses monolithic structure

® Micro kernel : Kernel is reduced to contain minimal facilities
necessary
Only services provided by the kernel is IPC, low level device

management and minimum level of process management and some

memory management

Flexibility (cont’d)

® Other system services such as file management, name
management, additional process and memory management
and most of system call handling are implemented in user

space in form of server processes.

® Compared to monolithic, microkernel model has several

advantages
Easy reconfiguration of the operating system.
Highly modular in nature and easily modifiable.
Easy to design, implement and modify

It also provides ﬂexibility to user for impiementing his own services.

Monolithic kernel vs. Micro kernel

Monolithic Kernel Microkernel
based Operating System based Operating System
Application System Call
'_/-"

Application
IPC

Hardware M e

® Addition of new services does not require rebooting of kernel

as in the case of monolithic kernel
o Penalty for all these advantages is the performance

® As each service is an independent process with its own
address space, need to have special message based IPC

between processes while performing a job

o Still microkernel is the preferred model.

Performance
® Performance should be as good as centralized system.

® Various performance metrics:
® response time
® throughput
® system utilization

® network capacity utilization

® Design 1ssues to 1ncrease performance
® Batch if possible:

transfer data across the network in large chunks is more efficient,
piggybacking of acknowledgements with the next message etc.
® Cache whenever possible:

at the clients’ sites, improves performance as it provides data
immediately where it is needed

It also reduces contention on centralized resources

Performance (Cont’'d)

® Minimize copying of data:
Data copying overhead
moving data in and out buftfers
Involves multiple CPU operations and hence a substantial overhead
® Minimize network traffic = (Internode communication
overhead)
Migrating processes closer to resources required
Clustering of processes that communicate heavily onto single system
Unnecessary collection of Global information as routine procedure
® Fine grain parallelism (involve large no. of small
computations but more interaction)

Multiprocessing and multi threading

® vs. coarse grained parallelism (involve large computations)

Scalability

° Capability of a system to adapt to increased service load

® [t is inevitable that DCS will grow with time to address increased work load or new

apphcatlons or organlzatlonal changes 1n a company

® Hence a good DCS should be able to handle growth of nodes, users and applications
® Avoid centralized entities: like central file server, single database for
entire system makes the system non-scalable

Failure of the centralized entity often brings the entire system down
Performance of centralized entity becomes bottleneck of
performance
Increases network overhead in a wide area network
Replication of resources and distributed control algorithms are
frequently used to overcome centralized entities

In fact for better scalability, as far as practicable, a functionally
symmetric configuration should be used where all the nodes have

nearly equal role to play in the operation of the system

Scalability (Cont’d)

® Avoid centralized algorithms

Operates by collecting information from all nodes, processing this
information on a single node and then distribute the results to other

nodes.

For example clock synchronization is some thing never

implemented on a DCS
® Perform most operations on client workstations

I possible an operation should be performed on the clients own

W /S rather than on a server machine

Server being shared by several clients, its cycles are more important

than the client system cycles
This principle enhances the scalability of the DCS

Caching is a frequently used technique to achieve this principle

Heterogeneity

® Caused by interconnected sets of dissimilar hardware or software systems

(Ex, different topologies, protocols, word lengths etc)

® Designing such DCS is far more difficult than designing homogeneous
DCS using systems based on same or closely related hardware and

software

® Incompatibilities can be of different types, word length, byte ordering,

communication protocols, topologies of networks, OS intricacies, etc.
® Data and instruction formats depend on each machine architecture
® One of the most common process is the use of intermediate standard

data format.

Security

In order to trust a DCS and rely on it, the various resources should be
protected against destruction, and unauthorized access

More difficult in a DCS when compared to a centralized system

Difficult due to lack of a single point of control & use of insecure networks
for data communication

In a DCS, an intruder with malicious intensions can hide identification

information leading to several Security concerns:

® [t should be possible for the sender of a message to know that the
message was received by the intended user

® The receiver of a message should be able to know that message was sent
by the genuine sender

® Messages are not stolen, plagiarized or changed by an intruder

° Cryptography is the only known practical method for dealing with these
security aspects of DCS

Emulation of Existing Operating Systems

® For commercial success, it is important that a newly designed

DCS be able to emulate existing popular operating systems such

as UNIX

e This is Very necessary to be able to run a vast amount existing

old software, with out rewriting them

® At the same time new applications can be developed taking full

advantage of the new DCS

® This will ensure that both software can run side by side, in a

seamless manner

Middleware

e Middleware is an additional layer of software that is used in
NOS to more or less hide the heterogeneity of the collection of
underlying plattorms but also to improve distribution

transparency
e [t offers a higher level of abstraction.

® [tis placed in the middle between applications & NOS.

Distributed System as Middleware

Machine A Machine B Machine C
Distributed applications
Middleware services
Netwo_rk OS Netwo_rk OS Netwo_rk OS
services services services
Kernel Kernel Kernel

Network

Distributed Computing Environment (DCE)

Distributed Computing Environment (DCE)

It is vender independent environment defined by the Open

Software Foundation (OSF), a consortium of computer
manufacturers including IBM, HP and DEC

It is neither an OS nor an application

Rather, it is an integrated set of services and tools that can be
installed as a coherent environment on top of existing OS

and serve as a platform for building and running distributed

application

DCE applications

DCE software

Operating system and networking

Distributed Computing Environment
(DCE)

® A primary goal of DCE is vendor independence

® It runs on many different kinds of computers, OS, and network

hardware manufactured by different vendors

® Some of the operating systems to which DCE can be easily
ported are OSF/1, AIX, ULTRIX, HP-UX, IRIX, SINIX,

SUNOS, SOLARIS, UNIX System V, VMS, Windows, etc.

® [t can also be used with any network hardware and transport

software including TCP/IP, X.25 and other similar products

® It hides differences between machines by automatically
performing data-type conversions, thus making heterogeneous

nature of system transparent to application programmers

How Was DCE Created
® OSF did not create DCE from scratch

e [t created DCE by taking advantage of the work already done at

universities and industries in the area of distributed computing

® OSFissued a Request for Technology (RET) asking for tools and

services needed to build a coherent DCE

® From this a group of experts selected those tools and services

which the committee believed provided the best solutions

® Based on this OSF further developed and wrote the code

almost in C to produce a single integrated package that was
available to the world as DCE

® Version 1.0 of DCE was released in 1992

DCE Components

® DCE is a blend of various technologies, nicely integrated by OSF

e FEach of these technologies forms a component of DCE

e Some of the main components are:

1.

Threads Package: It provides a simple programming model for building

concurrent applications

® It includes operations to create and control multiple threads of
execution in a single process and to synchronize access to global data

within an application

RPC facility: It provides the programmer with number of powertul tools

necessary to build client-server applications

" In fact DCE-RPC facility is the basis for all communication in DCE as
the programming model underlying all of DCE is the client-server

model

DCE Components(cont’d)

" It is easy to use and is network and protocol independent, providing

secure communication between client and a server

3. Distributed Time Service: It closely synchronizes the clock of all the
computers in the system
® It also supports external time sources to synchronize the clocks of

the computers

4. Name Services: The name services of DCE include the Cell Directory

Services (CDS), The Global Directory Service (GDS) and the Global
Directory Agent (GDA)

" These services allow resources such as servers, files, devices and so

on, to be uniquely named and accessed in a location transparent

manner

5.

DCE Components(cont’d)

Security Service: It provides tools needed for authentication
and authorization to protect system resources against

illegitimate access

Distributed File Service (DFS): It provides a system wide file
system that has such characteristics as location transparency,

high performance, and high availability

All DCE services run in coordination with each other.

Client -Server Model

* Group of cooperating services called servers offers services

to the users called clients.

6 Request/Reply

e
(@
Ko
e
)
wn

194

1 G
R

eply | 4
Kernel Kernel 1

Data link

(oY)

Network <
1 Physical

= As shown above, request-response protocol is used.

" As only three layers are basically involved in any communication, less
functionalities are required.

" Data link and physical layer are involved in transferring packets between
the client and server.

" Request — Reply Protocol (Presentation Layer) defines set of requests and
replies to the corresponding requests.

" Other layers are not required.

Client - Server Implementation

All networks have maximum packet size.

Packet broken into smaller packets, if large.

Reliability of message passing is ensured by receiving
acknowledgements.

* Acknowledgement can be sent for all packets of a message.
® Or it could be sent just once with the last packet.

® This reduces network traffic.
Ditferent types of packets are: REQ, Reply, ACK, AYA, IAA

[evels in client-server architecture:
® User Interface Level
® Processing [evel

® Data Level

In a DS, all nodes can act as Server or Client.

Req.

\

Client Server

Reply

(a)
The client-server system uses

a Request-Reply protocol
with no acknowledgement.

Req.

o
———

Reply

Server

A

Client

Ack.

(c)

A reply is sent as acknowledgement,

so the number of packets is reduced.

Req.

-

Ack.
Client Server

eReply

Ack.

(b)
Each packet is acknowledged
separately,

Req.

Y

-
-

Ack.

AYA
Client [| Server
IAA

Reply

i

A

Ack.
(d)

The client checks if the server is
still alive and on the network.

Client - Server Addressing

e Address required for message communication.

® Three main addressing techniques are:

® Machine Addressing —
In this scheme, machine address is sent by client as part of message.

This method works well when only one process is running on server,

otherwise, process id also need to be included.

® Process Addressing —
Client sends message to process instead of machine.
A two-part name comprises of machine ID and process ID.
Process ID , if not unique, wont be transparent.
To implement transparency, unique addresses allocated with the help
of counters.

Message is usually broadcasted, machine identifies its process name

and receives message.

® Name Server Technique
® Uses name server, as, broadcasting is overhead.

® The process addressing techniques are as follows:
Name server address is hardwired into clients.

For communication, process name is sent to name server.

Name server replies with the address of machine where process is
located.

Client Server

1

94
_ Kernel
1: Request to client
2: Reply to server

(a) Machine addressing

Server

Client
3
O == "=
4
1 2
4 Kernel ™

1: Broadcast
3: Request

Ly

2: Give own location

4: Reply

(b) Process addressing

3

1

(%)

e e

Kernel

S 4 | 000 |

1: Lookup in name server 2: Reply from NS

3: Request

4: Reply

(c) Name server technique

University Questions from last 5 years
® Distributed System Models (Short Notes)

® Suppose a component of a distributed model suddenly crashes.
How will this inconvenience the users when one of the following

happens: -

® The system uses processor—pool model and crashed component is a

processor in the pool.
® In processor-pool model , a user terminal crashes.
o The system uses a workstation-server model and server crashes.

® In the workstation-server model , one of the client crashes.
* Distributed Operating System and Issues in designing a distributed
operating system.

e Short note on DCE.

