Data Structures

Introduction of Data structures:

Data Structure is a way of collecting and organizing data in such a way that we can
perform operations on these data in an effective way. Data Structures is about
rendering data elements in terms of some relationship, for better organization and
storage. For example, we have data player's name "Virat" and age 26. Here "Virat" is
of String data type and 26 is of integer data type.

We can organize this data as a record like Player record. Now we can collect and store
player's records in a file or database as a data structure. For example: "Dhoni" 30,
"Gambhir® 31, "Sehwag" 33

In simple language, Data Structures are structures programmed to store ordered data,
so that various operations can be performed on it easily.

Basic types of Data Structures

As we discussed above, anything that can store data can be called as a data strucure,
hence Integer, Float, Boolean, Char etc, all are data structures. They are known
as Primitive Data Structures.

Then we also have some complex Data Structures, which are used to store large and
connected data. Some example of Abstract Data Structure are :

« Linked List

« Tree

« Graph

« Stack, Queue etc.

All these data structures allow us to perform different operations on data. We select
these data structures based on which type of operation is required. We will look into
these data structures in more details in our later lessons.

Data: Structures

Bult-in Cata Umer DeTined
Structures Data Structures
! 1

integer Float Character Pointar Arraye Lists | Files

Linear List= Mon-Linear Lizstz

I Stacks | Cusuas Trees |Grnuh5 |

INTRODUCTION TO DATA STRUCTURES

What is Algorithm ?

An algorithm is a finite set of instructions or logic, written in order, to accomplish a
certain predefined task. Algorithm is not the complete code or program, it is just the core
logic (solution) of a problem, which can be expressed either as an informal high level
description as pseudo code or using a flowchart.

An algorithm is said to be efficient and fast, if it takes less time to execute and

consumes less memory space. The performance of an algorithm is measured on the
basis of following properties:

1. Time Complexity
2. Space Complexity

Space Complexity

Space Complexity
When we design an algorithm to solve a problem, it needs some mmputer memory to complete its
execution. For any algorithm, memory is required for the following purposes...

e L Bt ST ———

ii.: Mamm;rmqmred 10 staore program instructions
_ ﬁ&&mmy_r required !d store constant ?alﬂas '

e ————— -

Total amount of computer memory required by an algorithm to complete its execution is called as
| space -::ramplexrt} r of that algunthm

are as fﬂllcrws LA |
1. Instruction Space: It is the amount of memory used to store mmpﬂed version nf instructions.

‘2. Environmental Stack: It is the amount of memaory used to store information of partially
- exceuted functions at the time of functioneall.
9. Data Space: It is the amount of memory used to Maﬁwﬁmhlﬁ and constants.
When we want to perform analysis of an algorithm based on its Space ﬂﬁmplamt}r, we consider only
Data Space and ignore Instruction Space as weil as Environmental Stack.
That means we ealenlate only the memory required to store Variables, m:mtan‘ts, Strﬂﬂﬂrﬁts ete.,
To caleulate the space complexity, we must know the memory required fo store different data type
values (according to the campier} For exﬁmp!e the; C ngr,mnmmg Language compiler reguires the
following...
1. 2 bytes to store Integer value,
3, 4 bytes to store Floating Point valne,
3. 1byte to store Character value, |
4. 6 (OR) 8 bytes to store double value
Txample 1
Consider the following piece of code...

int square(int a)

1

return a*a;
S
s

Tn above piece of code, it requires 2 bytes of memory to store variable ‘&’ and another 2 bytes of
memory is nsed for Teturn vahie.

That means, totally 11: requires 4 bytes of memory to complete its execution. And this 4 bytes of
Memory 15 fixed for any mput value of 'a". This space mmp]emtj; is said to be Constant Space
Complex |

e e et e s s i m e

If any algorithm reguires a fixed amount of space for all input values then that space complexity is
said to be Constant Epace. Complexity

i e LTl

T T R T e e s e ey e
R ppram it e ey orar T e mrwam ey ey e s vt = P P Ty LT i e -

Exnmpﬁ.. -
'Consider the following pleee ofcode.: =~

int sum{int A[], int n)
{ n b
int sum = 0, i;
for(1=0;1< n; i++)
sum = sum + Alil;
return sum;

} |
In above piece of code it requives

2 b},?l;&wf memory to store array variable all
2 h}Fl'EE of memory for integer parameter 'n
4 bytes of memory for local integer variables 'sum’ and 'i' (2 bytes each)
2 hytes of MemoTy for Teturn vatue.

‘Thad: meansltﬂtaﬂyi'treq)mes 'an+8' bytes of memory to complete its execution. Here, the amount of
mmm?depemi&nn ﬂminpn‘wﬂne of 'n’. This space eompleaﬂtjus said to be Linear Space

If the amount of space required by an algorithm is inereased with the increase of input value, then

that space complexity is said to be Linear Space Complexity

Time Complexity

Time Complexity is a way to represent the amount of time needed by the program to run
to completion.

Time complexity of an algorithm signifies the total time required by the program to run to
completion. The time complexity of algorithms is most commonly expressed using

the big O notation.

Time Complexity is most commonly estimated by counting the number of elementary
functions performed by the algorithm. And since the algorithm's performance may vary
with different types of input data, hence for an algorithm we usually use the worst-case

Time complexity of an algorithm because that is the maximum time taken for any input
size.

Calculating Time Complexity

Now lets tap onto the next big topic related to Time complexity, which is How to
Calculate Time Complexity. It becomes very confusing some times, but we will try to
explain it in the simplest way.

Now the most common metric for calculating time complexity is Big O notation. This
removes all constant factors so that the running time can be estimated in relation to N,
as N approaches infinity. In general you can think of it like this :

statement:

Above we have a single statement. Its Time Complexity will be Constant. The running
time of the statement will not change in relation to N.

for(i=0; i < N; i++)

{
statement;
1

J
The time complexity for the above algorithm will be Linear. The running time of the loop
Is directly proportional to N. When N doubles, so does the running time.

for(i=0; i < N; i++)

{tt}r{j=ﬂ;] <N;j++)
; statement;

1}

J

This time, the time complexity for the above code will be Quadratic. The running time of
the two loops is proportional to the square of N. When N doubles, the running time
increases by N * N.

while(low <= high)
{

mid = (low + high) / 2;

If (target < list[mid])
high = mid - 1;

else if (target = list[mid])
low = mid + 1;

}

This is an algorithm to break a set of numbers into halves, to search a particular field(we
will study this in detail later). Now, this algorithm will have a Logarithmic Time
Complexity. The running time of the algorithm is proportional to the number of times N
can be divided by 2(N is high-low here). This is because the algorithm divides the
working area in half with each iteration.

void quicksort(int list[], int left, int right)
{

Int pivot = partition(list, left, right);

quicksort(list, left, pivot - 1);

quicksort(list, pivot + 1, right);
1
J
Taking the previous algorithm forward, above we have a small logic of Quick Sort(we
will study this in detail later). Now in Quick Sort, we divide the list into halves every time,
but we repeat the iteration N times(where N is the size of list). Hence time complexity
will be N*log(N). The running time consists of N loops (iterative or recursive) that are
logarithmic, thus the algorithm is a combination of linear and logarithmic.

NOTE : In general, doing something with every item in one dimension is linear, doing
something with every item in two dimensions is quadratic, and dividing the working area
in half is logarnthmic.

Asym ptotic Notation:

Wheneve rw:! wanttu perﬂnrm analysis of an algorithm, we need to caleulate the i

1€ _ erfe wialysis of a hm, we] the complexity of that
algorithm, But when we caleulate complexity of an algorithm it does not provide exact amount of
resoures required. Ep’nf_lﬂtﬂﬂ‘dnf tﬂ]dhg-e::aﬂt amount of respurce we represent that ecomplexity in a
g.;m:mt:;ﬂngn (Notation) which produces the basic nature of that algorithm. We use that general form

1S PIOCess,

Asymptotic notation of an algorithm is a mathematical representation of its complexity

*#: In asymptotic notation, when we want to represent the complexi algori > only

ASYIRLOT L Nen : : . iy of an algorithm, we use the
maost significant terms in the complexity of that algorithm and ignore least significant terms in the
complexity of I.hal;_a]gu rithm (Here eomplexity may be Space Complexity or Time Complexity).
For example, consider the following time complexities of two algorithms. . : ol

* Algorihtmi:sns+2n+1 | :
i .@Gﬁﬂiﬁn!:"‘”“’ +8n+g A
Generally, we analyze an algorithm, we consider the Hime ﬂnmylmtrfnﬂa:rge v values of input
;1- hiﬂi 1:;;?' m 2 ti_i' = Eﬂﬁlﬂa complexi E_‘Eﬂi'_;i.qt larger vale - of 'lfl'ﬂ“’!-‘['ﬂl'n:l in :Eligﬂri‘th_m 1 me +
has sigmificance than the term 'sn*’, and the term in. i "#n + g' hag ignific

than the term "10n*", _ A il

Here for larger value of 'n' the value of most significant terms (50 and 1002) i l TRe -
value ofleast lgaificant torms (2n 1.and Sn 5). So or Taker ali OF ' e ot tae lonst
significant torms to represent overall time required by an algorithm. In asymptotic notation, we use

only the most significant terms to represent the time complexity of an algorithm_.

i

S
4T o Tl i f;
&

e o
= o e 1
y - ol -" J '.\.
STE - SR e SR e i

define the upper bound of an algorithm in teems of Time Complexty.

cates the nuaximum time required by an algorithm for all input values. That means Big - Oh notation
deseribes the wotst case of an algorithm time complexity. b |

Consider function f(n) the time complexity of an aigﬂﬁthm and g(n) is the most significant term.
H f(n) <= C g(n) for all n >= ng, C > 0 and ny >= 1. Then we can represent f{n) as O(g(n)).

Consider the foflowing graph dravwn for fhe values of f(un) and C gn) for inpat (n) value on X-Axis and
time required is on Y-Axis ' L o s O e | '

C gln)

fin)

Input - M

o .

In above graph after a particular input value ne, always C g{n) is greater than f{n) which indicates the
algorithm's upper bound.

Example

Consider the following f{n) and g{nl...

Hn)=3n+2

gm)=n

I we want to represent i{n] as ﬂ{g{n]} thEI! it must satisfy fin) <= C x g(n} for all values of C >

O and np>= 1

f(n) <= Cgla)

57313 +82=Cn

Above m;nﬂzﬁmﬁ always TRUE for all vaiuré.s of E =~ gandn>=2,

By using Big - Oh uﬂt&nﬂn we ﬂan represﬁniﬂ;& time complexity as follows...

sr+2=0@m) - .

Big - Omege ﬁﬁtatiéﬂ oy

Big - ﬂmﬂﬁ ﬂﬂtﬂhﬂn E‘ﬂseti tndeﬁnﬂ the lmﬁr huunﬂ ﬂf an ai;gnrrthm in terms of Time Enmﬁlamty
’Phat“[n?{mﬁ Big - Omega notation al f_:" IyS mﬂmﬁb&s thﬁnﬂnmmm time required by an algorithm for all
input values. ';[ﬂna‘l;meaﬂ& B;g* Emega:mﬂtatﬂm describes the best case of an aiganﬂim time
complexity, .

i ey ey TR L ey e S by e T g e R e e i i e = = S = S oy

Consider function f{n) the ime complexity of an algorithm and g(n) is the most significant term. 3
Iff(n) >= Cxgn) foralln >=n, C>o0and np >= 1. Thenwe can Iepre&Ent f(n} as ﬂ[g[n)}

f(ﬂ} ﬂfg‘iﬂ]]

ST L i Lt S P TY e

Consider the ﬁnﬁamnggmph drawn fﬂrﬁm uahxfs crf ﬁn} and ﬂgfﬂ}fﬁf mpﬁt {n) ?a}na mﬂuﬁm and
ttme required is on¥-Axis

=l n S

Time)

< gin}

Input - M

In above graph after a particular input value n,, always Cx g(n) is less than f{m) which indicates the
algorithim’s lower bound.

Example

Consider the fﬁlluwmg, fin) and g(n)...

fln)=an+2 <o

gml=n

If we ;mnt to represent f{n) as O(g(n)) then it must satisfy f(n) >= € g(n) for all values of C >
Oand flg==1

f{n) >= C g(n}

=3n+2<=Cn

Above condition is always TR{IE forali valupesof C=1andn>=1.

By using Big - Omega notation we can represent the time complexity as follows...

3n+2=0Qn)

Big - Theta Notation {8)

Big - Theta notation i is nsed to define the average bound of an algerithm in terms of Time Eﬂmplexlt}

That means Big - Theta notation always indicates the average iime required by an algm:rthm for all

input lwaiues That means Big - Theta notation deseribes the average case of an algorithm time
complexity.

: ~Thﬁmﬂﬂfaummnba &Eﬁnedasfﬂﬂmﬁ Sl

Consider function f{n} the time complexity of an algorithm and g(n) is the most significant term.
If C, g(n) <=f{n) >= C, g(n) for all n >=n,, C;, G > 0 and n, >= 1. Then we can

: reyresent f(n) as B{g(n}} _

CGIJEIE]&E the following graph drawn for the values of f{(n) and C g{n} for input {n} value on X-Axis and
mﬂﬁmqmreﬂlsnn‘f- Ry), 8

T irre

R L LT T A R LT e

L L]

Irapeast — P

hlahmfe graph after a particular input value ny, always G, n}mlﬁssthanﬂfn and C, g(n) is greate
i}:}mnf{rll} Wim::hmﬂmatesthe algmﬁhmsavﬂagehﬂ?ﬂd. i } ol s
Xample LA I St

P

f(n) = 311 2
#n)=n

I we want to represent f{n) as ﬁ{gf.ﬂ}} then it must saﬂaﬁ,. TJ,: g{n}{ - f{n) >= Ezgfn} forall values
of G, G > oand ne>=1

Cigln) <=f(n) >==C. g(ﬁ}'
C:h==snfos=f.n

Above condition is always TRUFE for all values nf& =1, Ca=gandny=1.
By using Big - Theta notation we can represent the time ﬂﬁmpﬂﬂ[}f as fﬁﬂﬂW&u
an + 2= () :

Abstract Data Types:

Abstract Data Type Generally speaking, programmers’ capabilities are determined by
the tools in their tool kits. These tools are acquired by education and experience. A
knowledge of data structures is one of those tools. When we first started programming,
there were no abstract data types. |f we wanted to read a file, we wrote the code to read
the physical file device. It did not take long to realize that we were writing the same
code over and over again. So we created what is known today as an abstract data type
(ADT). We wrote the code to read a file and placed it in a library for all programmers to
use. This concept is found in modern languages today. The code to read the keyboard
Is an ADT. It has a data structure, a character, and a set of operations that can be used
to read that data structure. Using the ADT we can not only read characters but we can
also convert them into different data structures such as integers and strings. With an
ADT users are not concerned with how the task is done but rather with what it can do. In
other words, the ADT consists of a set of definitions that allow programmers to use the
functions while hiding the implementation. This generalization of operations with
unspecified implementations is known as abstraction. We abstract the essence of the
process and leave the implementation details hidden. Consider the concept of a list. At
least four data structures can support a list. We can use a matrix, a linear list, a tree, or
a graph. If we place our list in an ADT, users should not be aware of the structure we
use. As long as they can insert and retrieve data, it should make no difference how we
store the data. Figure, shows four logical structures that might be used to hold a list.

o000
(b) Linear list
(a) Matrix
b4
(c) Tree (d) Graph

Model for an Abstract Data Type:

The ADT model is shown in below Figure. The colored area with an irregular outline
represents the ADT. Inside the ADT are two different aspects of the model: data
structures and functions (public and private). Both are entirely contained in the model
and are not within the application program scope. However, the data structures are
available to all of the ADT's functions as needed, and a function may call on other

functions to accomplish its task. In other words, the data structures and the functions
are within scope of each other.

Public
functions

Private
functions

Application

program

Abstract Data Type Model

ADT Operations:

Data are entered, accessed, modified, and deleted through the external interface drawn
as a passageway partially in and partially out of the ADT. Only the public functions are
accessible through this interface. For each ADT operation there is an algorithm that
performs its specific task. Only the operation name and its parameters are available to
the application, and they provide the only interface to the ADT.

ADT Data Structure:

When a list is controlled entirely by the program, it is often implemented using simple
structures similar to those used in your programming class. Because the abstract data
type must hide the implementation from the user, however, all data about the structure
must be maintained inside the ADT. Just encapsulating the structure in an ADT is not
sufficient. It is also necessary for multiple versions of the structure to be able to coexist.
Consequently, we must hide the implementation from the user while being able to store
different data.

ADT Implementations:

There are two basic structures we can use to implement an ADT list: arrays and linked
lists. Array Implementations In an array, the sequentiality of a list is maintained by the
order structure of elements in the array (indexes). Although searching an array for an
individual element can be very efficient, addition and deletion of elements are complex
and inefficient processes. For this reason arrays are seldom used, especially when the
list changes frequently. In addition, array implementations of nonlinear lists can become
excessively large, especially when there are several successors for each element.
Appendix F provides array implementations for two ADTs.

Linked List Implementations:

A linked list is an ordered collection of data in which each element contains the location
of the next element or elements. In a linked list, each element contains two parts: data
and one or more links. The data part holds the application data—the data to be

processed. Links are used to chain the data together. They contain pointers that identify
the next element or elements in the list. We can use a linked list to create linear and
non-linear structures. In linear linked lists, each element has only zero or one
successor. In non-linear linked lists, each element can have zero, one, or more
successors. The major advantage of the linked list over the array is that data are easily
iInserted and deleted. It is not necessary to shift elements of a linked list to make room
for a new element or to delete an element. On the other hand, because the elements
are no longer physically sequenced, we are limited to sequential searches:1 we cannot
use a binary search.2

As below fig. shows a linked list implementation of a linear list. The link in each element,
except the last, points to its unigue successor; the link in the last element contains a null
pointer, indicating the end of the list. As in below Figure part (b) shows a linked list
implementation of a non-linear list. An element in a non-linear list can have two or more
links. Here each element contains two links, each to one successor. As in below Figure
part (c) contains an example of an empty list, linear or non-linear. We define an empty
list as a null list pointer.

Iisll data link data link data link data lnk
(a) Linear list

B a2

list link data &in
e N
link data link link data link

(b) Non-linear list

i

list

(c) Empty list

Divide and conquer approach:

The divide-and-conquer approach Many useful algorithms are recursive in structure: to
solve a given problem, they call themselves recursively one or more times to deal with
closely related sub problems. These algorithms typically follow a divide-and-conquer
approach: they break the problem into several sub problems that are similar to the
original problem but smaller in size, solve the sub problems recursively, and then
combine these solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recursion:

Divide the problem into a number of sub problems that are smaller instances of the
same problem.

Conquer the sub problems by solving them recursively. If the sub problem sizes are
small enough, however, just solve the sub problems in a straightforward manner.

Combine the solutions to the sub problems into the solution for the original problem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. Intuitively, it
operates as follows.

Divide: Divide the n-element sequence to be sorted into two subsequences of n=2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in sorted
order. The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE.A; p; q; r/, where A is an array and p, g, and r are indices into the array such
that p<=q<r.

The procedure assumes that the subarrays A[p....q] and A[g+1...r] are in sorted order. It
merges them to form a single sorted subarray that replaces the current subarray

Alp...r].

Our MERGE procedure takes time &(n), where n = r — p + 1 is the toual
number of elements being merged, and it works as follows, Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish 1o merge the two piles into a single
sorted output pile. which 1s to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles. removing it
from i1fs pile (which exposes a new top card), and placing this card face down onto

the output pile. We repeat this step until one input pile is empty, at which timme
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps. merging takes &(n)
[ime.

The following pseudocode implements the above 1dea. but with an additional
rwist that avoids having o check whether either pile i=s empity in each basic step.
We place on the bottom of each pile a senrinel card, which contains a special value
that we use o0 simplify our code. Here, we use o< as the senmtinel value. so that
whenever a card with oo 1S exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the omput pile. Since we know in advance that
exactly r — p 4+ 1 cards will be placed onuo the output pile, we can Stop once we
have performed that many basic steps.

MERGE(A. p.g.r)
Hp=g—p+1
Na =Fr—g
let L[1..n; + 1] and R[1..n2 + 1] be new arrays
fori =1 ton,

Lli] = A[p+i—-1]
for j = 1tons

R[j] = Alg + j}
Llny + 1]
Rln, + 1]
e
j=1
fork = ptor
13 if L[i] < R|J]
14 Alk] = L[i]
15 I =1i+1
16 else Ak] = R|[/]
17 j=j+1

Ol A B L) =

oo

Sh=g=

In detail, the MERGE procedure works as follows. Line 1 computes the length iy
of the subarray A[p..g]. and line 2 computes the length na of the subarray
Alg -+ 1..r]. We create arrays L and R (“left” and “right™), of lengths n; 4+ 1
and nz + 1. respectively, in line 3: the extra position in each array will hold the
sentinel. The for loop of lines 4—5 copies the subarray A[p..g] into L[1._#m,],
and the for loop of lines 6—7 copies the subarmray Alg + 1..r] into R[1 .. ns].
Lines 8—9 put the senfinels at the ends of the arrays [and R. Lines 10-17, illus-

B o 11 12 lJ L4 1% 16 1T &% 1D o1 12 lJ 14 1% 16 1T
2 s 1 a |l 515 11212l A Bl B 1121316
== o
1 3 4 4 3 | % 3 g = 1 5 4 4 3% | :3 3 d B
LEIdSTm_I .E|1|15:| LEIdETm_I R._Ellﬁu:l
i J i !
(@) ()
g 9© I[D 11 2 13 14 1% 1& 17 g ° D 11 2 13 L4 1% 1& 17
k k
1 2 3 d 8 1 2 3 4 3 WEEE 1 2 3 & 3
L._ctﬁTw_I R._Ellﬁn:l L._ctj'fw_l R-Jﬁn:l
[_|I' [j

() (d)

Analyzing divide-and-conquer algorithms:

When an algorithm contains a recursive call to itself, we can often describe its running
time by a recurrence equation or recurrence, which describes the overall running time
on a problem of size n in terms of the running time on smaller inputs. We can then use

mathematical tools to solve the recurrence and provide bounds on the performance of
the algorithm.

sorted sequence

1 P 2 3 4 5 & 7
/ Met e \

2 -4 5 7 1 2 3 L
/ Merge \ / e g \
. 3 4 T 1 3 Z [+
met g& /::er e ﬁ‘l&l'g;\ / nerge
s 2 4 7 1 3 2 ;

initial sequemsce

Figure 2.4 The operation of merge sort of the array A = (5.2.4. 7. 1.3, 2, 6}. The leagths of the
somed sequences being merged increase as the algorithm progresses from boliom 10 1op.

A recurrence for the running time of a divide-and-conquer algorithm falls out
from the three steps of the basic paradigm. As before, we let T(m) be the running
time on a problem of size n. If the problem size 15 small enough, say n = ¢
for some constant ¢. the straightforward solution takes constant tume, which we
write as ©{1). Suppose that our division of the problem yields a subproblems,
cach of which is 1/b the size of the original. (For meree sort, both a and b are 2,
but we shall see many divide-and-conquer algorithms in which @ = b.) It takes
time T(n/b) to solve one subproblem of size n /b, and so it takes time a T (n/h)
to solve a of them. If we take (m) time to divide the problem into subproblems
and C(n) iime to combine the solutions to the subproblems into the solution to the
original problem, we get the recurrence

A1) ifn <c,

T(n) =
’ aT{n/b) + Din) + Cin) otherwise .

Dynamic Programming:

Dynamic programming, like the divide-and-conquer method, solves problems by
combining the solutions to sub problems. (*Programming” in this context refers to a
tabular method, not to writing computer code.) As we saw in Chapters 2 and 4, divide-
and-conquer algorithms partition the problem into disjoint sub problems, solve the sub
problems recursively, and then combine their solutions to solve the original problem. In
contrast, dynamic programming applies when the sub problems overlap—that is, when
sub problems share subsubproblems. In this context, a divide-and-conquer algorithm
does more work than necessary, repeatedly solving the common subsubproblems. A
dynamic-programming algorithm solves each subsubproblem just once and then saves
its answer in a table, thereby avoiding the work of recomputing the answer every time it
solves each subsubproblem.

We typically apply dynamic programming to optimization problems. Such problems can
have many possible solutions. Each solution has a value, and we wish to find a solution
with the optimal (minimum or maximum) value. We call such a solution an optimal
solution to the problem, as opposed to the optimal solution, since there may be several
solutions that achieve the optimal value.

When developing a dynamic-programming algorithm, we follow a sequence of four
steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.

Steps 1-3 form the basis of a dynamic-programming solution to a problem. If we need
only the value of an optimal solution, and not the solution itself, then we can omit step 4.
When we do perform step 4, we sometimes maintain additional information during step
3 so that we can easily construct an optimal solution.

Unit 2:
Sorting:

Sorting is nothing but storage of data in sorted order, it can be in ascending or
descending order. The term Sorting comes into picture with the term Searching. There
are so many things in our real life that we need to search, like a particular record in
database, roll numbers in merit list, a particular telephone number, any particular page
in a book etc.

Sorting arranges data in a sequence which makes searching easier. Every record
which is going to be sorted will contain one key. Based on the key the record will be
sorted. For example, suppose we have a record of students, every such record will have
the following data:

« Roll No.
« Name
« Age

« Class

Here Student roll no. can be taken as key for sorting the records in ascending or
descending order. Now suppose we have to search a Student with roll no. 15, we don't
need to search the complete record we will simply search between the Students with roll
no. 10 to 20.

Sorting Efficiency

There are many techniques for sorting. Implementation of particular sorting technique
depends upon situation. Sorting techniques mainly depends on two parameters. First
parameter is the execution time of program, which means time taken for execution of
program. Second is the space, which means space taken by the program.

Types of Sorting Techniques

There are many types of Sorting techniques, differentiated by their efficiency and space
requirements. Following are some sorting techniques which we will be covering in next
sections.

1. Bubble Sort
2. Insertion Sort
3. Selection Sort

4. Quick Sort
5. Merge Sort
6. Heap Sort

Bubble Sorting

Bubble Sort is an algorithm which is used to sort N elements that are given in a
memory for eg: an Array with N number of elements. Bubble Sort compares all the
element one by one and sort them based on their values.

It is called Bubble sort, because with each iteration the smaller element in the list
bubbles up towards the first place, just like a water bubble rises up to the water surface.
Sorting takes place by stepping through all the data items one-by-one in pairs and
comparing adjacent data items and swapping each pair that is out of order.

9 1 b 2 4 3
- Here we can see the Array
1 Do B 2 4 23 after the first iteration.
!) - E—iI P Similarly, after other
1 5 7 4 g 9 consecutive iterations, this
— array will get sorted.
1 F 4 A 3 ab

Sorting using Bubble Sort Algorithm

Let's consider an array with values {5, 1,6, 2.4, 3

int a[6]=1{5, 1, 6, 2, 4, 3};

inti, |, temp;

for(i=0; i<6; i++)

{
for(j=0; j<6-i-1; j++)
;

"if(ali] > alj+1])
r

ILtemp = aj];
afl=afj+1];
afj+1] = temp;

}

1
]
[inow you can print the sorted array after this
Above Is the algorithm, to sort an array using Bubble Sort. Although the above logic will
sort and unsorted array, still the above algorithm isn't efficient and can be enhanced
further. Because as per the above logic, the for loop will keep going for six iterations
even if the array gets sorted after the second iteration.

Hence we can insert a flag and can keep checking whether swapping of elements is
taking place or not. If no swapping is taking place that means the array is sorted and
wew can jump out of the for loop.

int a[6] ={5, 1, 6, 2, 4, 3};

inti, |, temp;

for(i=0; i<6; i++)

{

II"'It = D. dn ' g Iiaqg variapie
for(j=0; j<6-i-1; |++)
{

if(afj] = a[j+1])

ltemp = a[j];
afj] = afj+1];

alj+1] = temp;

=1,
)
1
.I ;
If(Iflag)
I
L

break:

1
J

1
J
In the above code, if in a complete single cycle of iteration(inner for loop), no swapping

takes place, and flag remains 0, then we will break out of the for loops, because the
array has already been sorted.

Insertion Sorting

It is a simple Sorting algorithm which sorts the array by shifting elements one by one.

Following are some of the important characteristics of Insertion Sort.

1. It has one of the simplest implementation

2. ltis efficient for smaller data sets, but very inefficient for larger lists.

3. Insertion Sort is adaptive, that means it reduces its total number of steps if given a
partially sorted list, hence it increases its efficiency.

4. Itis better than Selection Sort and Bubble Sort algorithms.

0. Its space complexity is less, like Bubble Sorting, inerstion sort also requires a single
additional memory space.

6. Itis Stable, as it does not change the relative order of elements with equal keys

.-:.l. E

position pasition
A R B o)
Stable Sort, because the order of UnStable Sort, because the order
equal elements is maintained in of equal elements is not
sorted list. maintained in the sorted list.

How Insertion Sorting Works

As we can see here,_ in
insertion sort, we pick up a

key, and compares it with
% 6 a4 elemnts ahead of it, and
1 & @ - - puts the key in the right
place
1. 506 4 3

5 has nothing before it

B 2as b 3
1is compared to 5 and is

4 2 4 5 B inserted before 5.
6 is greater than 5 and 1.
2 is smaller than & and 5,
[Always we start with the second but greater than 1, so its is

element as key.) inserted after 1.

And this goes on__

Sorting using Insertion Sort Algorithm
int a[6]={5, 1, 6, 2, 4, 3};

inti,], key;

for(i=1; i<6; i++)

{

key = a[i];

] =I1;

while(j>=0 && key < a[j])
:

1

Now lets, understand the above simple insertion sort algorithm. We took an array with 6
integers. We took a variable key, in which we put each element of the array, in each

pass, starting from the second element, that is a[1].

Then using the while loop, we iterate, until j becomes equal to zero or we find an
element which is greater than key, and then we insert the key at that position.

In the above array, first we pick 1 as key, we compare it with 5(element before 1), 1 is
smaller than 5, we shift 1 before 5. Then we pick 6, and compare it with 5 and 1, no
shifting this time. Then 2 becomes the key and is compared with, 6 and 5, and then 2is
placed after 1. And this goes on, until complete array gets sorted.

Insertion Sorting in C++
#include <stdlib.h=
#include <iostream.h>

using namespace std;

void
void

int

(int arrf], int length);
(int array[],int size);

() {
int array[5]={5,4,3,2,1};
return O;

(int arrf], int length) {
inti, j tmp;
for (i=1;1<length; i++) {
=1
while (j > 0 && arr[j- 1] > arrj]) {
tmp = arrfj];
arrfj] = anfj - 1]
arrfj - 1] = tmp;
=
)
printArray(arr,5);
]

(int array[], int size){

cout<<"Sorting tha array using Insertion sort... ";
int j;
for (j=0;] < size;j++)

for (j=0; | < size;j++)

mn

cout <<" "<< array[j]

cout << endl:

Radix Sort:

QuickSort, MergeSort, HeapSort are comparison based sorting algorithms.

CountSort is not comparison based algorithm. It has the complexity of O(n+k)O(n+k),
where kk is the maximum element of the input array.

S0, ifk is O(n) ,CountSort becomes linear sorting, which is better than comparison
based sorting algorithms that have O(nlogn) time complexity. The idea is to extend the
CountSort algorithm to get a better time complexity when k goes O(n?). Here comes the
idea of Radix Sort.

Algorithm:
For each digit it where ii varies from the least significant digit to the most significant digit
of a number

Sort input array using countsort algorithm according to ith digit.

\We used count sort because it is a stable sort.

Example: Assume the input array is:

10,21,17,34,44 11,654,123

Based on the algorithm, we will sort the input array according to the one's digit (least
significant digit).

0:10

1: 21 11

: 123
: 34 44 654

L T

S0, the array becomes 10,21,11,123,24 44 654,17
Now, we'll sort according to the ten's digit:

0:

| i 0 L R

221123

3. 34

Now, the array becomes : 10,11,17,21,123,34,44 654

Finally , we sort according to the hundred’s digit (most significant digit):
0:010011 017 021 034 044

3123

: 654

© o Neen B o

The array becomes : 10,11,17,21,34,44, 123,654 which is sorted. This is how our
algorithm works.

implementation:

void countsort(int arr{],int n,int place)
{
int i.freqlrange]={0}; [lrange for integers is 10 as digits range from 0-9
int output[n];
for(i=0;i<n;i++)
freq[(arr(i}/place)%range]++;
for(i=1i<range;i++)
freq[il+=freq[i-1];
for(i=n-1;1>=0;i—)
{
output[freq[(arr(i}/place)%range}-1]=arrli];
freq[(arr[i}/place)%range]-;

for(i=0;i<n;1++)
arr{i]=output|i];

}
void radixsort(ll arr[],int n,int maxx) /fmaxx is the maximum element in the array
{
int mul=1;
while(maxx)
{
countsort(arr,n,mul);
mul*=10;
maxx/=10;
}
}

Complexity Analysis:

The complexity is O((n+b)=logb(maxx))O((n+b)+logh(maxx)) where bb is the base for
representing numbers and maxx is the maximum element of the input array. This is
clearly visible as we make (n+b)(n+b) iterations logb(maxx)logb(maxx) times (number of
digits in the maximum element) . If maxxsncmaxx=nc,then the complexity can be written
as O(n=logb(n))O(n=logbh(n)).

Advantages :

1. Fast when the keys are short i.e. when the range of the array elements Is less.
2. Used in suffix array construction algorithms like Manber's algorithm and DC3
algorithm.

Disadvantages:

1. Since Radix Sort depends on digits or letters, Radix Sort is much less flexible than
other sorts. Hence, for every different type of data it needs to be rewritten.

2. The constant for Radix sort is greater compared to other sorting algorithms.

3. It takes more space compared to Quicksort which is in place sorting.

The Radix Sort algorithm is an important sorting algorithm that is integral to suffix -array
construction algorithms. It is also useful on parallel machines.

Quick Sort:

Quick Sort, as the name suggests, sorts any list very quickly. Quick sort is not stable
search, but it is very fast and requires very less additional space. It is based on the rule

of Divide and Conquer (also called partition-exchange sort). This algorithm divides the
list into three main parts:

1. Elements less than the Pivot element

2. Pivot element

3. Elements greater than the pivot element

In the list of elements, mentioned in below example, we have taken 25 as pivot. So after
the first pass, the list will be changed like this.

6817 14 25 63 37 52

Hence after the first pass, pivot will be set at its position, with all the elements smaller to
it on its left and all the elements larger than it on the right. Now 6 8 17 14 and 63 37

52 are considered as two separate lists, and same logic is applied on them, and we
keep doing this until the complete list is sorted.

How Quick Sorting Works

25 ¥, 37 63 14 17 a b
_ i J
pivot B Wl o here also we will keep

on traversing the list
from back,
if a[j]=pivat & a[j|!=pivat

traversing the list,
if a[i]<prot & a[i]l=pivot

if both sides we find the element
not satisfying their respective
conditions, we swap them. And
keep repeating this

DIVIDE AND CONQUER - QUICK SORT

Sorting using Quick Sort Algorithm
[* a[] is the array, p is starting index, that is O,

and ris the last index of array. */

void (int af], intp, intr)
{
if(p <r)
t
Int q;
g = partition(a, p, r);
quicksort(a, p, q);
quicksort(a, g+1, r);
1
}

int (int af], int p, intr)
{
int i, j, pivot, temp;
pivet = a[p];
| =p;
| =T,
while(1)
{
while(a[i] < pivot && ali] != pivot)
j++:
while(a[j] = pivot && a[j] = pivot)

temp = ali];
afi] = a[j].
afj] = temp;
}

else

{

return j;

« Space required by quick sort is very less, only O(n log n) additional space is
required.

« Quick sort is not a stable sorting technique, so it might change the occurrence of two
similar elements in the list while sorting.

Merge Sort:

Merge Sort follows the rule of Divide and Conquer. But it doesn't divides the list into
two halves. In merge sort the unsorted list is divided into N sublists, each having one
element, because a list of one element is considered sorted. Then, it repeatedly merge
these sublists, to produce new sorted sublists, and at lasts one sorted list is produced.

Merge Sort is quite fast, and has a time complexity of O(n log n). It is also a stable sor,
which means the "equal” elements are ordered in the same order in the sorted list.

How Merge Sort Works

Sorted sequence

1 p 2 3 4 - 6 b
merge
e 2 merge
1 [
merge merge merge Merge

ma

intial sequense

Like we can see in the above example, merge sort first breaks the unsorted list into
sorted sublists, and then keep merging these sublists, to finlly get the complete sorted

list.

Sorting using Merge Sort Algorithm

[* a[]is the array, p is starting index, that is 0,
and ris the last index of array. */

Lets take a[5] = {32, 45, 67, 2, 7} as the array to be sorted.

void (int a[], int p, intr)
t
Int qg;
if(p <r)
{
q = floor((p+r) / 2);
mergesort(a, p, q);
mergesort(a, q+1, r);
merge(a, p, q, r);
1
h

void (intaf], intp, intq,intr)
{
int b[5]; //same size of a[]
inti,], k;
k=0;
| =p;
] =q+1;
while(i<=q &&] <=r)
{
if(afi] < a[])
{

b[k++] = a[i++]; /l same as b[k]=a[i]; k++; i++;
1
else
{
blk++] = a[j++];
1
h

while(i <= q)
{

b[k++] = afi++];
h

while(j <=r)
{

b[k++] = a[j++];
1

for(i=r;i>=p;i-)
{
ali] = b[--kK]; I/ copying back the sorted list to a[]

}

O(n log n)
O(n log n)
O(n log n)

« Time complexity of Merge Sortis O(n Log n) in all 3 cases (worst, average and best)

as merge sort always divides the array in two halves and take linear time to merge
two halves.

« |t requires equal amount of additional space as the unsorted list. Hence its not at all
recommended for searching large unsorted lists.

« |tisthe best Sorting technique for sorting Linked Lists.

Heap Sort:

Heap Sort is one of the best sorting methods being in-place and with no quadratic
worst-case scenarios. Heap sort algorithm iIs divided into two basic parts :

« Creating a Heap of the unsorted list.

« Then a sorted array is created by repeatedly removing the largest/smallest element

from the heap, and inserting it into the array. The heap is reconstructed after each
removal.

What is a Heap?

Heap is a special tree-based data structure that satisfies the following special heap
properties:

1. Shape Property: Heap data structure is always a Complete Binary Tree, which
means all levels of the tree are fully filled.

Complete Binary Tree

In-Camplete Binary Tree

2. Heap Property: All nodes are either [greater than or equal to] or [less than or equal
to] each of its children. If the parent nodes are greater than their children, heap is
called a Max-Heap, and if the parent nodes are smalled than their child nodes, heap

is called Min-Heap.

Gy (& @D (&)

(115)

Min-Heap

In min-heap, first element is
the emallest. S0 when we want
to sorta list in ascending
arder, we create a Min-heap
from that list, and picks the
first element as it is the
smallest, then we repeat the
process with remaining
elements.

Max-Heap

in max-heap, the first
element is the largest, hence
it is used when we need to
sort a list in descending
order.

How Heap Sort Works

Initially on receiving an unsorted list, the first step in heap sort is to create a Heap data
structure (Max-Heap or Min-Heap). Once heap is built, the first element of the Heap is
either largest or smallest (depending upon Max-Heap or Min-Heap), so we put the first
element of the heap in our array. Then we again make heap using the remaining

elements, to again pick the first element of the heap and put it into the array. We keep
on doing the same repeatedly untill we have the complete sorted list in our array.

In the below algorithm, initially heapsort() function is called, which calls buildheap() to
build heap, which inturn uses satisfyheap() to build the heap.

Sort Algorithm
[* Below program is written in C++ language */

void heapsort(int[], int);
void buildheap(int [], int);
void satisfyheap(int [], int, int);

void main()
{
int a[10], i, size;
cout << "Enter size of list"; //lessthan 10, because max size of array is 10
cin >=> size;
cout << "Enter" << size << "elements";
for(i=0; 1 < size; i++)
{
cin >> a[i];
1
heapsori(a, size),
getch();
}

void (int a[], int length)
{
buildheap(a, length);
Int heapsize, I, temp;
heapsize = length - 1;
for(i=heapsize; i >=0; i—)
{
temp = a[0];
a[0] = a[heapsize];
alheapsize] = temp;
heapsize--;
satisfyheap(a, 0, heapsize);
1
for(i=0; i < length; i++)
{
cout << "\t" << a[i];
1
h

void (int a[], int length)
{

int i, heapsize;

heapsize = length - 1;

for(i=(length/2); 1 == 0; i--)

{

satisfyheap(a, i, heapsize);

1

}

void (int af], int 1, int heapsize)
{
int |, r, largest, temp;
= 2%;
r=2"+1;
If(l <= heapsize && a[l] = a[i])
{
largest = I;
h
else
{
largest =i,
h
If(r <= heapsize &4& a[r] = a[largest])
{
largest =r;
1
If(largest 1=1)
{
temp = ali];
a[i] = a[largest];
a[largest] = temp;
satisfyheap(a, largest, heapsize);

« Heap sortis not a Stable sort, and requires a constant space for sorting a list.
« Heap Sortis very fast and is widely used for sorting.

Selection Sorting:

Selection sorting is conceptually the most simplest sorting algorithm. This algorithm first
finds the smallest element in the array and exchanges it with the element in the first
position, then find the second smallest element and exchange it with the element in the
second position, and continues in this way until the entire array is sorted.

How Selection Sorting Works

Criginal After 1st After 2nd After 3rd After 4th After 5th
Array pass pass pass pass pass
3 1 1 1 1 1

In the first pass, the smallest element found is 1, so it is placed at the first position, then
leaving first element, smallest element is searched from the rest of the elements, 3 is
the smallest, so it is then placed at the second position. Then we |leave 1 nad 3, from
the rest of the elements, we search for the smallest and put it at third position and keep
doing this, until array is sorted.

Sorting using Selection Sort Algorithm

void selectionSort(int a[], int size)

{
int i, j, min, temp;
for(i=0; i < size-1; i++)

I
L

min =i; /lsetting min as |
for(j=i+1; | < size; |++)

{

if(a[j] <a[min]) //if element at | is less than element at min position

{

min =j; [khen set min as |

)
}

temp = ali];
ali] = a[min];

a[min] = temp;
.

Shell Sort;
In this sorting, we compare elements that are distance apart rather than

adjacent.
We calculate "Gap” for each pass, and then select the elements towards

the right of gap.

How Shell Sort Works?

Let us consider the following example to have an idea of how shell sort works. We take
the same array we have used in our previous examples. For our example and ease of

understanding.

we take the interval of 4. Make a virtual sub-list of all values located at the interval of 4
positions. Here these values are {35, 14}, {33, 19}, {42, 27} and {10, 14}

|35||33 |4E||'Il‘.]-“14| 1E||2T”4ﬂ

|35| |14|

|33 19|

)]

|. 10 | | 44
We compare values in each sub-list and swap them (if necessary) in the original array.
After this step, the new array should look like this -

1410z {10 [[2 |44

Then, we take interval of 2 and this gap generates two sub-lists - {14, 27, 35, 42}, {19,
10, 33, 44}

(o[r] v[]]

(] (=] (=] [e]

1D\ 33\ 44‘

We compare and swap the values, if required, in the original array. After this step, the
array should look like this —

19‘

[1¢](se)[z][0 [0 [[[=]

i, LT

Finally, we sort the rest of the array using interval of value 1. Shell sort uses insertion
sort to sort the array.

Following is the step-by-step depiction —

| 14 19 o7 10 as 33 42 a4

| 14 19 27 10 35 33 42 44

14 19 27 10 35 33 42 a4 ||

14 19 27 10 35 33 42 3

14 19 10 27 as a3 || 42 || a4
| 14 10 19 27 35 || 33 || az || a4

10 14 19 27 as5 33 42 4t

|10 || 14 || 19 || 27 || a5 || 23 || a2 || 44 ||

10 14 19 27 33 S35 42 B

10 14 19 27 33 35 42 13

We see that it required only four swaps to sort the rest of the array.

Algorithm

Following is the algorithm for shell sort.

Step 1 — Initialize the value of h

Step 2 — Divide the list into smaller sub-list of equal interval h
Step 3 — Sort these sub-lists using insertion sort

Step 3 — Repeat until complete list is sorted

