
Web Server controls

Label
Textbox

Checkbox
Button

Multiview
FileUpload

An ASP.NET Web Form can contain any or all of the following
types of server controls:

• HTML server controls Programmable HTML controls. HTML server controls expose
an object model that maps very closely to the HTML elements that they render.

• Web server controls Programmable controls with more built-in features than HTML
server controls. Web server controls include not only controls for user input, but
also special-purpose controls such as a calendar, menus, and a tree view control.
Web server controls expose an object model specifically intended for programming
Web pages.

• Validation controls Controls that incorporate logic to allow validation of user input.
Validation controls enable checking for a required field, and testing against a
specific value or pattern of characters, between ranges, and so on. For more
information about validation controls, see Web Forms Validation.

• User Controls User-defined controls that are mainly used for embedding in other
ASP.NET Web pages. User controls provide an easy way to create reusable page
elements, such as a search box with built-in user-defined search logic.

http://authors.aspalliance.com/aspxtreme/abkd/refs/html.aspx
http://authors.aspalliance.com/aspxtreme/webforms/validation/webformsvalidation.aspx

<asp:label> Control

Displays static text on the Web Forms page and allows you to manipulate it programmatically.

• The Label control is typically used when text in the page needs to change at run time, such
as in response to a button click.

• A Label control is better for simply displaying text than a TextBox control (or another
control) because the resulting text is static on the page; users cannot edit it.

• The Text property of a Label control can be set statically at design time or dynamically at
run time.

• The Text property can also be bound to a data source to display database information on a
page.

<asp:label id="Message1" runat="server">Hello </asp:label>

id attribute

• The id attribute is used to uniquely identify the <asp:label> control so you can refer to it in
your ASP.NET code.

runat="server" attribute

• The runat="server" attribute tells the server to process the control and generate HTML
code to be sent to the client.

http://authors.aspalliance.com/aspxtreme/sys/web/ui/webcontrols/LabelClassText.aspx

forecolor
Let's look at another example. If you want to set the color of a text message

to red, you could set it like this:

<asp:label id="Message1" forecolor="red" runat="server">Hello</asp:label>

Text attribute

• Alternatively, you can use the. This way, everything can be contained
within the opening tag, in which case you need to close the tag in the
following way:

<asp:label id="Message1" forecolor="red" text="Hello" runat="server" />

<script language="C#" runat="server">
void Page_Load()
{

Message1.Text = "APARNA";
Message2.Text = "MCA";

}
</script>
<html >
<head>

<title>Untitled Page</title>
</head>
<body>
<form id="form1" runat="server">
<asp:label id="Message1" forecolor="red"

runat="server" />
you have stood first in
<asp:label id="Message2"

forecolor="green" runat="server" />
</form>
</body>
</html>

Button Web Server Controls

• Buttons in a Web Forms page allow the user to send a
command. They submit the form to the server and
cause it to be processed along with any pending
events.

• Web server controls include three types of buttons:
– a standard command button (<asp:Button> control),

– a hyperlink-style button (<asp:LinkButton> control), and

– a graphical button (<asp:ImageButton> control) .

• All three provide similar features, but each offers a
different look.

Types of Buttons

• You can create these types of Web server
control buttons:

1. command Button Presents a standard command
button, rendered as an HTML submit button.

<asp:button text="Click Me" onClick="doSomething"
runat="server" />

LinkButton
• Renders as a hyperlink in the page. However, it contains client-side script

that causes the form to be posted back to the server. (You can create a
true hyperlink using the HyperLink Control .)

• The LinkButton control requires some client-side script support in order to
function.

• The LinkButton control has the same appearance as a HyperLink control,
but has the same functionality as a Button control. Use the HyperLink
control if you want to link to another Web page when the control is
clicked.

• Creates a hyperlink-style button on the Web Forms page.

•

<asp:LinkButton id="LinkButton1" Text = "Click Me"

onClick = "LinkButtonClickHandler" runat="server" />

http://authors.aspalliance.com/aspxtreme/webforms/controls/hyperlink.aspx

<html>
<body>
<script language="C#" runat="server">

void LinkButtonClickHandler (Object
sender, EventArgs e) {

msgLabel.Text = "This text displays when
the linkbutton is clicked ...";

}
</script>
</body>
<head>
<form runat=server>

<asp:LinkButton id="LinkButton1" Text
= "Click Me"
onClick = "LinkButtonClickHandler"
runat="server" />

<p><asp:Label id="msgLabel"
runat=server />

</form>
</head>
</html>

ImageButton

– Allows you to specify a graphic as a button.

– This is useful for presenting a rich button appearance.
ImageButton controls also pinpoint where in the
graphic a user has clicked, which allows you to use
the button as an image map.

• <asp:ImageButton runat="server"
ImageUrl="myPic.jpg" onClick="doSomething"
/>

TextBox Control

The TextBox control generates single-line and multiline text
boxes.

• The TextBox control is an input control that lets the user
enter text.

• By default, the TextMode property is set to SingleLine,
which creates a text box with only one line.

• You can also set the property to MultiLine or Password.
• MultiLine creates a text box with more than one line.
• Password creates a single-line text box that masks the

value entered by the user.
• The display width of the text box is determined by its

Columns property. If the text box is a multiline text box, the
display height is determined by the Rows property.

<html>
<head>

<script language="C#" runat="server">
void SubmitBtn_Click(Object Sender, EventArgs e) {

Label1.Text = Text1.Text;
}

</script>
</head>
<body>

<h3>TextBox Sample</h3>
<form runat="server">

<asp:TextBox id="Text1“ Width="200px" runat="server"/>
<asp:Button OnClick="SubmitBtn_Click" Text="Copy Text to Label"
Runat="server"/>
<p>

<asp:Label id="Label1" Text="Label1" runat="server"/>
</form>

</body>
</html>

Properties

1. TextMode Indicates whether the text box is in single-
line, multi-line, or password mode. Possible values are
Single, MultiLine, and Password.

2. MaxLength The maximum number of characters
allowed within text box. This property has no effect
unless the TextMode property is set to SingleLine or
Password.

3. Rows Number of rows within the text box. This
property has no effect unless the TextMode property
is set to MultiLine.

4. Text The text that the user has entered into the box.

Program

• Creates a check box control that allows the
user to switch between a true or false state.

</head>

<body>
<h3>CheckBox Example</h3>
<form runat=server>

<asp:CheckBox id=Check1 Text="CheckBox 1"
runat="server" />

<asp:button text="Submit" OnClick="SubmitBtn_Click"

runat=server/>
<p>

<asp:Label id=Label1 Font-Names="arial" font-
size="10pt" runat="server"/>

</form>
</body>
</html>

<html>

<head>

<script language="C#" runat="server">

void SubmitBtn_Click(Object Sender, EventArgs e) {

if (Check1.Checked == true) {

Label1.Text = "Check1 is checked!";

}

else {

Label1.Text = "Check1 is not checked!";

}

}

</script>

The <asp:dropdownlist> Control

• The <asp:dropdownlist> control is one of the
best controls for demonstrating the usefulness
of having a form control processed on the
server side.

<asp:dropdownlist id="list1" runat="server">

<asp:listitem>Male</asp:listitem >

<asp:listitem >Female</asp:listitem >

</asp:dropdownlist >

<html>

<head>

<title>Drop Down List Example</title>

</head>

<body>

<asp:label id="Message" runat="server"/>

<form runat="server">

Which city do you wish to look at hotels for?

<asp:dropdownlist id="list1" runat="server">

<asp:listitem>Mount abu</asp:listitem>

<asp:listitem>Matheran</asp:listitem>

<asp:listitem>Ooty</asp:listitem>

</asp:dropdownlist>

<input type="Submit“> </form> </body></html>

<script runat="server"
language="C#">

void Page_Load()

{

if (Page.IsPostBack) {
Message.Text = "You have
selected " +
list1.SelectedItem.Text;

}

}

</script>

<html>

<head>

<title>Drop Down List Example</title>

</head>

<body>

<asp:label id="Message" runat="server"/>

<form runat="server">

Which city do you wish to look at hotels
for?

<asp:listbox id="list1" runat="server"
selectionmode="multiple">

<asp:listitem>Madrid</asp:listitem>

<asp:listitem>Oslo</asp:listitem>

<asp:listitem>Lisbon</asp:listitem>

</asp:listbox>

<input type="Submit“> </form> </body>

</html>

<script runat="server" language="C#">

void Page_Load()

{

string msg = "You have selected:
";

if (list1.Items[0].Selected) {

msg = msg + list1.Items[0].Text + "
";

}

if (list1.Items[1].Selected) {

msg = msg + list1.Items[1].Text + "
";

}

if (list1.Items[2].Selected) {

msg = msg + list1.Items[2].Text + "
";

}

Message.Text = msg;

}

</script>

<html >

<head id="Head1" runat="server">

<title>Untitled Page</title>

</head>

<body>

<form id="form1" runat="server">

<div>

<h3>

MultiView with 3 Views

</h3>

<asp:DropDownList ID="DropDownList1" runat="server" AutoPostBack="True"
OnSelectedIndexChanged=“IndexChanged">

<asp:ListItem Value="0">View 1</asp:ListItem>

<asp:ListItem Value="1">View 2</asp:ListItem>

<asp:ListItem Value="2">View 3</asp:ListItem>

</asp:DropDownList>

<hr />

<asp:MultiView ID="MultiView1" runat="server"
ActiveViewIndex="0">

<asp:View ID="View1" runat="server">

Now showing View #1

<asp:TextBox ID="TextBox1"
runat="server"></asp:TextBox>

<asp:Button ID="Button1" runat="server"
Text="Button" /></asp:View>

<asp:View ID="View2" runat="server">

Now showing View #2

<asp:HyperLink ID="HyperLink1" runat="server"
NavigateUrl="http://www.asp.net">

HyperLink

</asp:HyperLink>

<asp:HyperLink ID="HyperLink2" runat="server"
NavigateUrl="http://www.asp.net">

HyperLink

</asp:HyperLink>

</asp:View>

<asp:View ID="View3" runat="server">

Now showing View #3

<asp:Calendar ID="Calendar1" runat="server">

</asp:Calendar>

</asp:View>

</asp:MultiView></div>

</form>

</body>

</html>

<%@ Page Language="C#" %>

<script runat="server">

protected void IndexChanged(object sender, EventArgs e)

{

MultiView1.ActiveViewIndex =
Convert.ToInt32(DropDownList1.SelectedValue);

}

</script>

• A very useful file access feature under ASP.NET
is its file upload capability.

• You can present a form containing a text box and
browse button for users to navigate their local PC
directories to locate a file for uploading.

• By clicking a button users can copy the local file to a
server directory.

• This feature is illustrated by creating a file upload form for copying book pictures
to the c:\eCommerce\BookPictures directory.

• The upload function is disabled, but you should get a good sense of how it works.
The following form restricts uploads to JPG files no larger that 100 KB.

<asp:FileUpload id="id" Runat="Server"/>

File Upload Properties and
Methods

• An <asp:FileUpload> control has several
properties and methods to manage file
uploading.

Properties:

• Control.HasFile -

• Control.FileName
Control.PostedFile.ContentLength

Methods:

• Control.SaveAs("path")

• Whether or not a file has been selected and appears in the
input box is given by the control's HasFile property. This
property returns True or False for a script to determine
whether to proceed with file uploading.

• The FileName property gives the name of the file selected
for uploading. This is a reference only to the file name, not
to the entire file path showing in the input area.

• The PostedFile property is a reference to the file chosen for
uploading.

– This file object's ContentLength property returns the size of the
file in bytes.

• The control's SaveAs("path") method writes the uploaded
file to a server directory given by the path string. The
FileName property is appended to this path to copy the file
to the designated directory.

A check is made on the size of the upload file as given by its
FileUp.PostedFile.ContentLength property. Files that are larger than
100,000 bytes in length are rejected.

If FileUp.PostedFile.ContentLength > 100000

Message.Text = "Uploaded file size must be less than 100 KB."

Else

{ FileUp.SaveAs(Path+FileName)
Message.Text = "File Uploaded
"

Message.Text &= "File Name: “+ FileUp.FileName & "
"

Message.Text &= "File Size:" + FileUp.PostedFile.ContentLength "

If InStr(UCase(FileUp.FileName), ".JPG") = 0

“,message”

Else

“upload process”

A check is made to ensure that only JPG files are
uploaded. The FileUp.FileName property is checked
to make sure that it contains the substring ".JPG". If
not, then a message is written to the Message
control and the script ends. The file name is
converted to upper-case characters for the test to
ensure that both ".JPG" and ".jpg" files are
accepted.

FileUpLoad control

• The FileUpLoad control enables you to
upload file to the server. It displays a text
box control and a browse button that
allow users to select a file to upload to
the server.

• The FileUpload control does not
automatically save a file to the server
after the user selects the file to upload.

• You must explicitly provide a control or
mechanism to allow the user to submit
the specified file.

</head>

<body>

<h3>File Upload</h3>

<form runat=server>

<asp:FileUpLoad id="FileUpLoad1"
AlternateText="You cannot upload files"
runat="server" />

<asp:Button id="Button1" Text="Upload"
OnClick="Button1_Click" runat="server" />

<asp:Label id="Label1" runat="server" />

</form>

</body>

</html>

script

<html>
<head>

<script language="C#" runat="server">
void Button1_Click(object sender, EventArgs e)

{
if (FileUpLoad1.HasFile)

Label1.Text = “
Received =" +
FileUpLoad1.FileName + “
Content Type=" +
FileUpLoad1.PostedFile.ContentType + “
Length="
+ FileUpLoad1.PostedFile.ContentLength;

else
Label1.Text = "No uploaded file";

}
</script>

<asp:FileUpLoad id="FileUpLoad1"
AlternateText="You cannot upload files"
backcolor="wheat" width=300

borderstyle="ridge" borderwidth=1
runat="server" />

HasFile and SaveAs

• Hasfile: Gets a value indicating whether the
FileUpload control contains a file.

• If the HasFile returns true, call the SaveAs
method. If it returns false, display a message
to the user indicating that the control does
not contain a file.

• SaveAs Saves the contents of an uploaded file
to a specified path on the Web server.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.saveas.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.hasfile.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.saveas.aspx

Exercise

• The following example demonstrates how to
create a FileUpload control that performs
error checking. Before the file is saved, the
HasFile method is called to verify that a file to
upload exists. In addition, the File..::.Exists
method is called to check whether a file that
has the same name already exists in the path.
If it does, the name of the file to upload is
prefixed with a number before the SaveAs
method is called. This prevents the existing
file from being overwritten.

http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.fileupload.hasfile.aspx
http://msdn.microsoft.com/en-us/library/system.io.file.exists.aspx

<%@ Page Language="C#" %>

<html >

<head>

<title>FileUpload.SaveAs Method Example</title>

<script runat="server">

protected void UploadButton_Click(object sender, EventArgs e)

{

// Before attempting to save the file, verify

// that the FileUpload control contains a file.

if (FileUpload1.HasFile)

// Call a helper method routine to save the file.

SaveFile(FileUpload1.PostedFile);

else

// Notify the user that a file was not uploaded.

UploadStatusLabel.Text = "You did not specify a file to upload.";

}

void SaveFile(HttpPostedFile file)

{

// Specify the path to save the uploaded file to.

string savePath = "c:\\temp\\";

// Get the name of the file to upload.

string fileName = FileUpload1.FileName;

// Create the path and file name to check for duplicates.

string pathToCheck = savePath + fileName;

// Create a temporary file name to use for checking
duplicates.

string tempfileName = "";

// Check to see if a file already exists with the

// same name as the file to upload.

if (System.IO.File.Exists(pathToCheck))

{ int counter = 2;

while (System.IO.File.Exists(pathToCheck))

{ // if a file with this name already exists,

// prefix the filename with a number.

tempfileName =counter.ToString() +fileName ;

pathToCheck = savePath + tempfileName;

counter ++;

}

fileName = tempfileName;

// Notify the user that the file name was changed.

UploadStatusLabel.Text = "A file with the same name already exists." +

"
Your file was saved as " + fileName;

}

else

{ // Notify the user that the file was saved successfully.

UploadStatusLabel.Text = "Your file was uploaded successfully.";

}

// Append the name of the file to upload to the path.

savePath += fileName;

// Call the SaveAs method to save the uploaded file to the specified directory.

FileUpload1.SaveAs(savePath);

}

</script>

</head>

<body>

<h3>FileUpload.SaveAs Method Example</h3>

<form id="Form1" runat="server">

<h4>Select a file to upload:</h4>

<asp:FileUpload id="FileUpload1“ runat="server">

</asp:FileUpload>

<asp:Button id="UploadButton" Text="Upload file“
OnClick="UploadButton_Click“ runat="server">

</asp:Button>

<hr />

<asp:Label id="UploadStatusLabel“ runat="server">

</asp:Label>

</form>

</body>

</html>

