MCA (SEM- II) Probability and Statistics (OCT-16)

(3 Hours)

Q.P. Code: 510902

[Total Marks: 100

- N.B (1) Question No1 is compulsory.
 - (2) Attempt any four questions out of remaining six questions.
 - (3) Assume necessary data but justify the same
 - (4) Figures to the right indicate full marks
 - (5) Use of scientific calculator is allowed

Q1. (a)	Age in years	20 -25	25-30	30-35	35-40	40-45	45 -50	[10]
, i	No. of policy holders	2	7	5	2	4	. 5	

For the above frequency distribution Find

- i) Inter Quartile Range
- ii) Quartile Deviation and its coefficient
- iii) Bowley's coefficient of skewness
- iv) Range and its coefficient
- Q1. (b) What is the probability that all vowels come together in the word [05] "COMMERCE"?
- Q1. (c) Prove that geometric distribution is memory less

[05]

[80]

Q2. (a) The joint probability density function of two dimensional random [08] variable (X,Y) is given by

 $f(x,y)=2\text{-}x\text{-}y\ 0\leq x\leq 1,\ 0\leq y\leq 1$

=0, otherwise

- Find marginal density functions of x and y.
- ii) Find the conditional density function of x|y and y|x.
- iii) Find Expectation of (x) and Expectation(Y)
- Q2. (b) If X and Y are independent Poisson variates show that the conditional [07] distribution of X given X+Y is binomial
- Q2. (c) Theory predicts that the proportion of beans, in four groups A, B, C, D [05] should be 9:3:3:1. In an experiment among 1,600 beans, the number in the four groups was 882, 313, 287 and 118. Does the experimental result support the theory? (tabulated value for χ2 for 3 d.f. at 5% LOS is 7.81)

Q3. (a) Find the Karl Pearson's skewness coefficient for the following data

Class Interval	0-10	10 - 20	20 - 30	30 - 40	40 - 50
frequency	11	25	61	93	70

TURN OVER

- Q3. (b) In manufacturing a certain component, two types of defects are likely to occur with respective probabilities 0.05 and 0.1. what is the [07] probability that a randomly chosen component
 - i) does not have either kind of defects
 - ii) Is defective?
 - iii) Has one kind of defect, given that it is found to be defective?
- Q3. (c) Trains arrive at the yard every 15 minutes and the service time is 33 [05] minutes. If the line capacity of the yard is limited to 4 trains, find
 - probability that the yard is empty
 - ii) The average number of trains in the system
- Q4. (a) In an experiment of tossing of four coins, if X denotes 'number of [08] heads, find
 - The probability mass function of X.
 - ii) The distribution function of X
 - iii) P(X <= 3)
 - iv) Variance of X
- Q4. (b) The height of a group of 1000 students follows a normal distribution [07] with mean 165cm and standard deviation 5 cm. Find the number of students having height
 - (i) up to 171 cm,
 - (ii) below 165 cm
 - (iii) between 160 to 170

[Given $P(0 \le Z \le 1.2) = 0.3849$, $P(0 \le Z \le 1) = 0.3413$ where Z is a standard normal variate]

- Q4. (c) A machine is designed to produce insulation washers for electrical devices [05] of average thickness of 0.025 cm. A random sample of 10 washers was found to have an average thickness of 0.024 cm with a standard deviation of 0.002 cm. Test the significance of the deviation. Value of t for 9 degrees of freedom at 5% level is 2.262
- Q5. (a) A committee of 4 persons is to be appointed from 3 officers of the [08] production department, 4 officers of purchase department, 2 officers of sales department and 1 charted accountant. Find the probabilities of forming the committee in the following manner.
 - i) There must be one from each category
 - ii) There must be at least one person from purchase department
- Q5. (b) In a sample of 12 fathers and their eldest sons gave the following data [07] about their height in inches.

Father	65	63	67	64	68	62	70	66	68	67	69	71
Son	68	66	68	65	69	66	68	65	71	67	68	70

Calculate rank correlation coefficient.

Q5. (c) The letters of the word 'failure' are arranged at random. Find the [05] probability that the consonants may occupy only odd positions

TURN OVER

[08]

[07]

Q6. (a) X and Y are two random variables having joint density function

X\Y	0	1	2
. 0	1/12	1/6	1/12
1	1/24	1/12	1/24
2	1/8	1/4	1/8

- i) Find the marginal Density functions of X and Y
- ii) Find the conditional distribution of Y for X=x.
- iii) Are X and Y independent?
- iv) Are X and Y uncorrelated?
- Q6. (b) Prove with example that three events may be mutually independent [07] but need not pair wise independent.
- Q6. (c) The size, mean and standard deviation of three samples is shown in [05] the table below Find the combined mean and combined standard deviation.

Sample>	Sample1	Sample2	Sample3
Sample size	75	150	25
Mean	20	25	30
Standard Deviation	5	7	6

Q7. (a) Suppose a random variable X takes on the values -3,-1,2 and 5 with [08] probabilities

х	-3	-1	2	5
p(x)	$\frac{2k-3}{10}$	<u>k-2</u>	$\frac{k-1}{10}$	$\frac{k+1}{10}$
	10	10	10	10

- i) Determine k and pmf of x
- ii) Determine the distribution function of x
- iii) Find the expected value of x
- iv) Find the Variance of X

V)

Q7. (b) Find the mean and variance of beta distribution of first kind

Q7. (c) Calculate Modal marks for the following.

10-30	30-50	50-70	70-90	90-110	110-130
4	10	14	12	8	6
l	4	4 10	4 10 14	4 10 14 12	

Q.1 A)

Age in years	20-25	25-30	30-35	35-40	40-45	45-50
No of policy holders	2	7	5	2	4	5

For the above frequency distribution find

- i. Inter Quartile range
- ii. Quartile deviation and its coefficient
- iii. Bowley's coefficient of skeweness
- iv. Range and its coefficient

Solution:

i) first arrange the numbers in ascending order

Inter Quartile=upper Quartile-lower Quartile

$$=2.5-1$$

$$=1.5$$

ii)

```
Q1=Value of (n/4)th item =Value of (60/4)th item = 15th itemQ1=Value of (n/4)th item =Value of (604)th item = 15th item Q1Q1 lies in the class 10.25-10.7510.25-10.75

... Q1=l+hf(n4-c)Q1=l+hf(n4-c)
Where l=10.25l=10.25, h=0.5h=0.5, f=12f=12, n/4=15n/4=15 and c=7c=7

... Q1=10.25+0.512(15-7)=10.25+0.33=10.58Q1=10.25+0.512(15-7)=10.25+0.33=10.58Q3=Value of (3n4)th item =Value of (3×604)th item = 45th item
```

Q.1 B) what is the probability that all vowels come to gether in word "COMMERCE"?

Solution:-

L

Forming words using the letters of the word COMMERCE

In the given word

8 {C, O, M, M, E, R, C, E}
 La = Repeating letters of the first kind
 2 {C's}
 Lb = Repeating letters of the second kind
 2 {M's}

Total number of letters

Lc = Repeating letters of the third kind

 $= 2 \{E's\}$

Lx = Letters without repetitions

= 2 {O, R}

L = La + Lb + Lc + Lx

Total number of Possible Choices

= Number of words that can be formed using the 8 letters of the word COMMERCE

L!

 $La! \times Lb! \times Lc!$

=

8!

 $2! \times 2! \times 2!$

=

 $8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2!$

$$2\times1\times2\times1\times2\times1$$

 $= 8 \times 7 \times 6 \times 5 \times 3$

= 5,040

Let,

A: The event of the word formed with all the vowels coming together

• For Event "A"

For the word to be formed taking the vowels as a unit

LG = Total number of letters

= 6 {C, M, M, R, (O, E, E), C}

LGa = Repeating letters of the first kind

= 2 {C's}

LGb = Repeating letters of the second kind

 $= 2 \{M's\}$

LGx = Letters without repetitions

= 2 {R, (O, E, E)}

LG = LGa + LGb + LGx

For the first group (vowels)

LG1 = Total number of letters

= 3 {O, E, E}

LG1a = Repeating letters of the first kind

 $= 2 \{E's\}$

LG1x = Letters without repetitions

 $= 1 \{0\}$

=

LG1 = LG1a + LG1x

Number of favorable/favourable choices

- Number of ways in which a word can be formed (i.e. the no. of words that can be formed) using the letters of the word COMMERCE with all the vowels together.
- \Rightarrow mA = (Number of ways in which the 6 letters (taking the vowels as a unit) can be arranged) \times (Number of ways in which the vowels can be interarragned between themselves)

LG!

 $LGa! \times LGb!$

×

LG1!

LG1a!

=

6!

 $2! \times 2!$

×

3!

2!

=

$$6\times 5\times 4\times 3\times 2!$$

$$2!\times 2\times 1$$

X

 $3 \times 2!$

2!

$$=$$
 180×3

= 540

Probability of forming words using all the letters of the word COMMERCE with all the vowels together

⇒ Probability of occurrence of Event 'A'

=

Number of favourable/favorable choices for the Event

Total number of possible choices for the Experiment

$$\Rightarrow P(A) =$$

mA

n

```
=
540
5,040
=
3
28
Odds
Number of unfavorable choices
       Total number of possible choices - Number of favorable choices
                     n-mA
\Rightarrow mAc
       5,040 - 540
       4,500
in favor/favour
Odds in Favour of forming words using all the letters of the word COMMERCE with all the
vowels together
⇒ Odds in favor/favour of Event 'A'
      Number of favourable choices : Number of unfavorable choices
       m:mAc
       540:4,500
       3:25
=
against
Odds in Favour of forming words using all the letters of the word COMMERCE with all the
vowels together
⇒ Odds against Event 'A'
      Number of unfavourable choices: Number of favorable choices
=
      mAc: m
=
       4,500:540 = 25:3
=
```

Q.1 C) Prove that geometric distribution is memory less.

Ans-

```
Theorem The geometric distribution has the memoryless (forgetfulness) property.
Proof A geometric random variable X has the memoryless property if for all nonnegative
integers s and t,
P(X_s + t \mid X_t) = P(X_s)
or, equivalently
P(X_s+t) = P(X_s)P(X_t).
The probability mass function for a geometric random variable X is
f(x) = p(1-p)x x = 0, 1, 2, ...
The probability that X is greater than or equal to x is
P(X_x) = (1 - p)x x = 0, 1, 2, ...
So the conditional probability of interest is
P(X_s + t | X_t) =
P(X_s+t, X_t)
P(X_t)
P(X_s+t)
P(X_t)
(1-p)s+t
(1-p)t
= (1 - p)s
= P(X_s),
which proves the memoryless property.
APPL verification: The APPL statements
simplify((1 - op(CDF(GeometricRV(p)))(s)[1]) * (1 - op(CDF(GeometricRV(p))(t)[1]));
1 - simplify(op(CDF(GeometricRV(p))(s+t)[1]));
both yield the expression
(1 - p)s + t.
```

Q2)If X and Y are independent Poisson variates show that the conditional distribution of X given X+Y is binomial.

Boln:- Let αλγ be independent Poisson values variates with parameters λ, λλ λ2 respectively.

Then X+4 is also Paisson variate with parameter 1,+ 12.

$$P[X=\mu \mid x+y=n] = P[X=\mu \cap x+y=n]$$

$$P(x+y=n).$$

$$= P[X=\mu \mid x \mid y=n-\mu] \quad \text{independent}$$

$$P(x+y=n)$$

$$= e^{-\lambda_1} \times e^{-\lambda_2} \cdot n-r$$

$$= e^{-(\lambda_1+\lambda_2)} \times e^{-(\lambda_1+\lambda_2)} \times (e^{-(\lambda_1+\lambda_2)})^{\mu}$$

$$= e^{-(\lambda_1+\lambda_2)} \times (e^{-(\lambda_1+\lambda_2)})^{\mu} \times (e^{-(\lambda_1+\lambda_2)})^{\mu}$$

$$= e^{-(\lambda_1+\lambda_2)} \times (e^{-(\lambda_1+\lambda_2)})^{\mu}$$

Hence conditional distribution of X given X+Y=n is bunomial distribution with parameter n and $p=\frac{\lambda_1}{\lambda_1+\lambda_2}$

Trains arrive at the yard every 15 minutes and the service time is 33 minutes. If the line capacity of the yard is limited to 4 trains, find

- i) probability that the yard is empty
- ii) The average number of trains in the system

Som:
$$\lambda = \frac{1-p}{1-p^{N+1}} = \frac{p-1}{p^{N+1}-1} = \frac{2\cdot 2-1}{2\cdot 2^5-1} = \frac{1\cdot 2}{51\cdot 5-1} = 0.0237$$

(ii) Average no of trains in the system.

$$L_{S} = \sum_{i=0}^{N} NPi = D + P_{1} + 2P_{2} + 3P_{3} + 4P_{4}$$

$$= P_{0} \left(P + 2P^{2} + 3P^{3} + 4P^{4} \right)$$

$$= 0.0237 \left[2.2 + 2 \times 2.2^{2} + 3 \times 2.2^{3} + 4 \times 2.2^{4} \right]$$

$$= 0.0237 \left[2.2 + 9.68 + 31.94 + 93.70 \right]$$

$$= 3.26$$

Q4 a) In an experiment of tossing of four coins, if X denotes number of heads, find

- i) The probability mass function of X
- ii) The distribution function of X
- iii) P(x <= 3)
- iv) Variance of X

Solution:

Four coins are tossed, X denotes the number of heads
S ={HHHH, HHHT, HHTH, HTHH, HHTT, HTHT, HTTH, HTTT, THHH, THHT,
THTH, THTT, TTHH, TTTH, TTTT}

⇒ The values carried by the variable ("x") would be either 0, 1, 2, 3 or 4

 \Rightarrow "X" is a discrete random variable with range = {0, 1, 2, 3, 4}

In the experiment of tossing an unbiased coin four times

Total no. of possible choices	=	$2 \times 2 \times 2 \times 2$
i)	=	16

 \Rightarrow P(No Heads) = 1/16

For the two letter word "TTTT"

No. of letters

in total = $5 \Rightarrow n = 4$

of the first kind = $4 \{T, T, T, T\} \Rightarrow a = 4$

all of which are different $= 0 \Rightarrow x = 0$

No. of favorable choices	300	No. of ways in which the two letters of the word TTTT can be permuted.
	= n!/a!	

• One Heads = No. of favourable choices

Total no. of possible choices

No. of favorable choices	=	No. of ways in which the four letters of the word HTTT can be permuted.	
-----------------------------	---	---	--

Two Heads = No. of favourable choices
 Total no. of possible choices

```
\Rightarrow P(Two Head) = 6/16
For the four letter word "HHTT"
No. of letters
in total = 4 \Rightarrow n = 4
of the first kind = 2 {T, T} \Rightarrow a = 2
of the second kind = 2 {H, H} \Rightarrow b = 2
all of which are different = 0 {} \Rightarrow x = 0
```

No. of favorable choices = No. of ways in which the four letters of the word HHTT can be permuted. $= n!/a! \times b!$ $= 4!/2! \times 2!$ $= 4 \times 3 \times 2! / 2 \times 1 \times 2! = 6$

Three Heads = No. of favourable choices
 Total no. of possible choices
 ⇒ P(Three Head) = 4/16
 For the four letter word "HHHT"
 No. of letters
 in total = 4 ⇒ n = 4
 of the first kind = 3 {H, H, H} ⇒ a = 3
 all of which are different = 1 {T} ⇒ x = 1

No. of favourable choices = No. of ways in which the four letters of the word
HHHT can be permuted

= n! / a!= 4! / 3! = 4

• FourHeads = No. of favourable choices

Total no. of possible choices

⇒ P(Two Head) = 1/16

For the four letter word "HHHH"

No. of letters
in total = 4 cn = 4
of the first kind = 4 {H, H, H, H} ⇒ a = 4
all of which are different = 0 {} ⇒ x = 0

No. of favorable choices	 = No. of ways in which the four letters of the word HHHH can be permuted.
= n!/	

$$= n!/a!$$

= 4!/4!
= 4

Therefore, probability that the no. of heads would be

- $0 \Rightarrow P(X=0) = 1/16$
- 1 \Rightarrow P(X=1) = 4/16 OR 1/4
- 2 \Rightarrow P(X=2) = 6/16 OR 3/8
- $3 \Rightarrow P(X=3) = 4/16 \text{ OR } 1/4$
- $4 \Rightarrow P(X=4) = 1/16$

ii) The" would be:

=5

Expected no. of Heads

⇒ Expectation of "x"

$$\Rightarrow E(x) = \sum px$$
$$= 2$$

Variance of the number of heads

⇒ var (x) = E (x²) - (E(x))²
⇒ var (x) =
$$\sum px^2 - (\sum px)^2$$

= 5 - (2)²
= 5 - 4
= 1

Q4. (c) A machine is designed to produce insulation washers for electrical devices of average thickness of 0.025 cm. A random sample of 10 washers was found to have an average thickness of 0.024 cm with a standard deviation of 0.002 cm. Test the significance of the deviation. Value of t for 9 degrees of freedom at 5% level is 2.262

Solution:

Size of the given sample = 10 (small sample)

Sample mean = $\bar{x} = 0.024$ cm

Population mean = $\mu = 0.025$ cm

Degrees of Freedom = n-1 = 10 - 1 = 9

Table value of t for 9 df at 5% level of significance = 2.262

Null hypothesis H_o: The difference between x̄ and μ is not significant.

Alternative hypothesis H₁: $\mu \neq 0.025$

The test statistic

Calculated value of t is less than the table value of t at 5% level of significance and 9 df. We accept null hypothesis and conclude that the difference between \bar{x} and μ is not significant.

- Q5. (a) A committee of 4 persons is to be appointed from 3 officers of the production department, 4 officers of purchase department, 2 officers of sales department and 1 charted accountant. Find the probabilities of forming the committee in the following manner.
 - i) There must be one from each category
 - ii) There must be at least one person from purchase department

Solution:

$$N(s) = 13$$

i) Probability that there must be one person from each category

$$= \frac{3C1 + 4C1 + 2C1 + 1C1}{10C4}$$

$$= 3! + 4! + 2! + 1!$$

$$2! \quad 3! \quad 1! \quad 1! \quad = 10/210 \quad = 1/21 \quad = 0.04761$$

$$4! \ 6!$$

i) Probability that there must be at least one person from purchase department

$$= \frac{4C1 + 4C2 + 4C3 + 4C4}{10C4}$$

$$= \underline{4!} + \underline{4!} + \underline{4!} + \underline{4!} + \underline{4!}$$

$$\underline{3!} \quad \underline{2!2!} \quad \underline{3!} \quad \underline{4!0!} = 14/210 = 1/15 = 0.667$$

$$\underline{10!}$$

$$\underline{4!} \quad \underline{6!}$$

Q5. (b) In a sample of 12 fathers and their eldest sons gave the following data about their height in inches.

Father	65	63	67	64	68	62	70	66	68	67	69	71
Son	68	66	68	65	69 .	66	68	65	71	67.	68	70

Calculate rank correlation coefficient.

Solution:

Father	Son	Fr	Sr	d	di ²
65	68	9	5.5	3.5	12.25
63	66	11	9.5	1.5	2.25
67	68	6.5	5.5	1	1
64	65	10	11.5	-1.5	2.25
68	69	4.5	3	1.5	2.25
62	66	12	9.5	2.5	6.25
70	68	2	5.5	-3.5	12.25
66	65	8	11.5	-3.5	12.25
68	71	4.5	1	3.5	12.25
67	67	6.5	8	-1.5	2.25
69	68	3	5.5	-2.5	6.25
71	70	1	2	-1	1
	Tota		72.5		

$$= 1 - 6 * 72.5 / 12(122 - 1)$$

^{= 1 - 435 / 1716}

^{= 1 - 0.2535}

^{= 0.7465}

Q5 c) The letters of the word 'failure' are arranged at random. Find the probability that the consonants may occur only in odd positions. Solution:

The word Failure has 4 Vowels and 3 Consonants

If we consider 3 consonants to be placed at 4 odd places i.e. 1", 3", 5", 7" then the probability is 4C3

The probability of 3 consonants is 3! and of 4 vowels is 4!

Therefore,

- $= {}^{4}C_{3} * 3! * 4!$
- = 4!/3! * 3! * 4!
- = 4! * 4!
- = 576
- Q6. (c) The size, mean and standard deviation of three samples is shown in the table below Find the combined mean and combined standard deviation.

Sample>	Sample1	Sample2	Sample3	
Sample size	75	150	25	
Mean	20	25	30	
Standard Deviation	5	7	6	

Solution:-

Find combined mean from the following data

$$N_1 = 75$$
, $X_1 = 20$
 $N_2 = 150$, $X_2 = 25$
 $N_3 = 25$, $X_3 = 30$
Solution:
(ombined mean:
 $X_{12} = N_1 \cdot X_1 + N_2 \cdot X_2 + N_3 \cdot X_3$
 $N_1 + N_2 + N_3$
 $X_{12} = 75.20 + 150 - 25 + 25.30$
 $X_{12} = 1500 + 3750 + 750$
 $X_{12} = 6000$
 $X_{12} = 24$

$N_1 = 75$, $\overline{X}_1 = 20$, $\sigma_1 = 5$
$N2 = 150, \overline{X}_2 = 25, \sigma_2 = 7$
N3 = 25, \(\overline{X}_3 = 30, \sigma_3 = 6
Solution:
Combined mean
- NI. XI + M2. X2+ M3. X3
X12 = N, +N2+N3
75.20 + 150.25 + 25.30
X12 = 75+ 150+25
1500 + 3750 + 750
$X_{12} = 250$
$\bar{x}_{12} = 6000$
2-50
$\bar{X}_{12} = 24$
Combined mean = 24
$d_1 = \overline{\chi}_1 - \overline{\chi}_{12} = 20-24 = -4$
$d2 = \overline{x}_2 - \overline{x}_{12} = 25 - 24 = 1$
d3 = x3 - x12 = 30-24 = 6
Combined Standard deviation
N1. (67+d7)+(N2. (62+d2)+N3. (63+d3)
012= N1 + N2 + N3
T-= 0 1 1 1 1 (10 11) 1 (20 1 20 1
75. (25+16)+150. (49+1)+25. (36+36) 75+150+25
$\sigma_{12} = \sqrt{\frac{3075 + 7500 + 1800}{250}} = \sqrt{\frac{12375}{250}}$
V 250 V 250
012 = 7.04
Combined SD = 7.04
Collibrate SV - 1.04

Q7. (c) Calculate Modal marks for the following.

Marks	10-30	30-50	50-70	70-90	90-110	110-130
No of students	4	10	14	12	8	6

Solution:

From the above table, F₀-14, F₁-10, F₂-12, h=20 Modal class is 50-70

Mode =
$$L_1 + [(F_0 - F_1) / 2 F_0 F_1 F_2] * h$$

= $50 + [(14-10) / 2*14-10-12] * 20$
= $50 + (4/6) * 20$
= $50 + 13.33$
= 63.33